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Common values of the arithmetic functions φ and σ

Kevin Ford, Florian Luca and Carl Pomerance

Abstract

We show that the equation φ(a) = σ(b) has infinitely many solutions, where φ is Euler’s totient
function and σ is the sum-of-divisors function. This proves a fifty-year-old conjecture of Erdős.
Moreover, we show that, for some c > 0, there are infinitely many integers n such that φ(a) = n
and σ(b) = n, each having more than nc solutions. The proofs rely on the recent work of the
first two authors and Konyagin on the distribution of primes p for which a given prime divides
some iterate of φ at p, and on a result of Heath-Brown connecting the possible existence of Siegel
zeros with the distribution of twin primes.

1. Introduction

Two of the oldest and most studied functions in the theory of numbers are the sum-of-divisors
function σ and Euler’s totient function φ. Over fifty years ago, Paul Erdős conjectured that
the ranges of φ and σ have an infinite intersection [7, p. 172; 27, p. 198]. This conjecture
follows easily from some famous unsolved problems. For example, if there are infinitely many
pairs of twin primes p and p+ 2, then φ(p+ 2) = p+ 1 = σ(p), and if there are infinitely
many Mersenne primes 2p − 1, then σ(2p − 1) = 2p = φ(2p+1). Results from [10] indicate that
typical values taken by φ and by σ have a similar multiplicative structure; hence, common
values should be plentiful. A short calculation reveals that there are 95 145 common values
of φ and σ between 1 and 106. This is to be compared with a total of 180 184 φ-values and
189 511 σ-values in the same interval. In [8], the authors write that ‘it is very annoying that
we cannot show that φ(a) = σ(b) has infinitely many solutions . . . ’. Annoying, of course, since
it is so obviously correct! Erdős knew (see [17, Section B38]) that φ(a) = k! is solvable for
every positive integer k, and so all one would have to do is show that σ(b) = k! is solvable for
infinitely many choices for k. In fact, this equation seems to be solvable for every k �= 2, but
proving it seems difficult.

The heart of the problem is to understand well the multiplicative structure of the shifted
primes p− 1 and p+ 1.

In this note, we give an unconditional proof of the Erdős conjecture. Key ingredients in
the proof are a very recent bound on counts of prime chains from [13] (see Section 3 for a
definition) and estimates for primes in arithmetic progressions. The possible existence of Siegel
zeros (see Section 2 for a definition) creates a major obstacle for the success of our argument.
Fortunately, Heath-Brown [19] showed that, if Siegel zeros exist, then there are infinitely many
pairs of twin primes. However, despite the influence of possible Siegel zeros, our methods are
completely effective.

Theorem 1.1. The equation φ(a) = σ(b) has infinitely many solutions. Moreover, for some
positive α and all large x, there are at least exp((log log x)α) integers n � x that are common
values of φ and σ.
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We also show that there are infinitely many integers n that are common values of φ and σ
in many ways. Let A(n) be the number of solutions of φ(x) = n and let B(n) be the number
of solutions of σ(x) = n. In 1929 Pillai [24] showed that the function A(n) is unbounded, and
in 1935 Erdős [5] showed that the inequality A(n) > nc holds infinitely often for some positive
constant c. The proofs give analogous results for B(n). Numerical values of c have been given
by a number of people ([2, 14, 25, 28]), the largest so far being c = 0.7039, which is due to
Baker and Harman [1]. The key to these results is to show that there are many primes p for
which p− 1 has only small prime factors. Erdős [6] conjectured that, for any constant c < 1,
the inequality A(n) > nc holds infinitely often.

Theorem 1.2. For some positive constant c, there are infinitely many n such that both
inequalities A(n) > nc and B(n) > nc hold. Moreover, for some constant a > 0, there are at
least (log log x)a such numbers n � x, for all large x.

Necessary results on the distribution of primes in progressions, twin primes, and prime chains
are given in Sections 2 and 3. In Section 3, we prove Theorem 1.1. In Section 4, we present the
additional arguments needed to deduce the conclusion of Theorem 1.2. Theorem 1.2 resolves
another conjecture of Erdős (stated as Conjecture C8 in [27, p. 193]): for each number k, there
is some number n with A(n) > k and B(n) > k. Later, in Section 5, we pose some additional
problems concerning common values of φ and σ.

We consider n = σ(
∏

p∈S p) =
∏

p∈S(p+ 1), where S is a set of primes p � x for which all
prime factors of p+ 1 are small, say at most z. In this way, n should be the product of some
of the primes at most z, each to a possibly large power. We deduce that n is in the range of φ
by exploiting the general implication

φ(rad(m)) | m =⇒ m = φ

(
m·rad(m)
φ(rad(m))

)
, (1.1)

where rad(m) is the product of the distinct prime factors of m. Let vq(m) denote the exponent
of q in the factorization of m. We expect for n = σ(

∏
p∈S p) that vq(φ(rad(n))) � vq(n) for

q � z; hence, the hypothesis in (1.1) should hold. Turning this into a proof requires lower
bounds of the expected order for the number of p ∈ S for which q | p+ 1.

We remark that, by our proofs below, the numbers n, which are constructed for Theorems
1.1 and 1.2, are also values taken by the Carmichael function λ(m), the largest order of an
element of (Z/mZ)∗. Moreover, for the n in Theorem 1.2, there are at least nc such values m.
We thank Bill Banks for this observation.

2. Primes in progressions

Throughout, constants implied by O, �, �, and � notation are absolute unless otherwise
noted. Bounds for implied constants, as well as positive quantities introduced later, are
effectively computable. The symbols p, q, and r always denote primes, and P (m) is the largest
prime factor of an integer m > 1. Let π(x;m, a) be the number of primes p � x, with p ≡ a
(mod m), and let

ψ(x;m, a) =
∑
n�x

n≡a (mod m)

Λ(n),

where Λ is the von Mangoldt function. The behavior of π(x;m, a) and ψ(x;m, a) are intimately
connected to the distribution of zeros of Dirichlet L-functions. Of particular importance are
possible zeros near the point 1. Let C(m) denote the set of primitive characters modulo m.
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It is known (cf. [4, Chapter 14]) that, for some constant c0 > 0 and every m � 3, there is at
most one zero of

∏
χ∈C(m) L(s, χ) in the region

	s � 1 − c0
log(m(|
s| + 1))

. (2.1)

Furthermore, if this ‘exceptional zero’ β exists, then it is real, it is a zero of L(s, χ) for a real
character χ ∈ C(m), and

β � 1 − c1

m1/2 log2m
(2.2)

for some positive constant c1. Better upper bounds on β are known (Siegel’s theorem [4,
Chapter 21]), but these are ineffective. The ‘exceptional moduli’ m, for which an exceptional
β exists, must be quite sparse, as the following classical results show [4, Chapter 14].

Lemma 2.1 (Landau). For some constant c2 > 0, if 3 � m1 < m2, χ1 ∈ C(m1), and χ2 ∈
C(m2), then there is at most one zero β of L(s, χ1)L(s, χ2) with β > 1 − c2/log(m1m2).

We immediately obtain the following.

Lemma 2.2 (Page). For any M � 3, the function∏
m�M

∏
χ∈C(m)

L(s, χ)

has at most one zero in the interval [1 − (c2/2)/logM, 1].

McCurley [23] showed that c0 = 1/9.645908801 holds in (2.1). Kadiri [21] showed that we
may take c0 = 1/6.397 and, in Lemmas 2.1 and 2.2, we may take c2 = 1/2.0452.

It is known from McCurley [23] that c0 = 1/9.645908801 holds in (2.1); Kadiri [21] showed
that we may take c0 = 1/6.397; and, by Lemmas 2.1 and 2.2, we may take c2 = 1/2.0452.

The Riemann hypothesis for Dirichlet L-functions implies that no exceptional zeros can exist.
If there is an infinite sequence of integers m and associated zeros β satisfying (1 − β) logm→ 0,
then such zeros are known as Siegel zeros, and their existence would have profound implications
on the distribution of primes in arithmetic progressions [4, Chapter 20, (9)]). As mentioned
before, Heath-Brown showed that the existence of Siegel zeros implies that there are infinitely
many prime twins.

Lemma 2.3 [19, Corollary 2]. If χ ∈ C(m) and L(β, χ) = 0 for β = 1 − λ(logm)−1, then,
for m300 < z � m500, the number of primes p � z with p+ 2 prime is

C
z

log2 z
+O

(
λz

log2 z

)
, where C = 2

∏
p>2

(1 − (p− 1)−2) = 1.32 . . . .

If Siegel zeros do not exist, then there still may be some Dirichlet L-function zeros with
real part greater than 1/2, which would create irregularities in the distribution of primes in
some progressions. Such progressions, however, would have moduli larger than a small power
of x. We state here a character sum version of this result, due to Gallagher (see the proof of
Theorem 7 in [15]). Let

ψ(x, χ) =
∑
n�x

Λ(n)χ(n) and Ψ(x,m) =
∑

χ∈C(m)

|ψ(x, χ)|.
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Lemma 2.4. If c2 is as in Lemma 2.1, then, for every λ ∈ (0, c2/2] and ε > 0, there are
constants 0 < α � 1 and x0 so that, for x � x0, we have∑

3�m�xα

m�=m0

Ψ(x,m) � εx.

Here m0 corresponds to the conductor of a Dirichlet character χ for which L(β, χ) = 0 for some
β > 1 − λ/ log(xα). If there is no such zero, then set m0 = 0.

We remark that m0, if it exists, is unique by Lemma 2.2.
We also know that Ψ(x,m) is small for most m ∈ (xα, x1/2−δ] if δ > 0 is fixed. This follows

from the next lemma, which is a key ingredient in the proof of the Bombieri–Vinogradov
theorem.

Lemma 2.5. For 1 � M � x, we have∑
m�M

Ψ(x,m) �
(
x+ x5/6M + x1/2M2

)
log4 x.

Proof. This is [4, Chapter 28, (2)].

For positive reals δ, γ, y, and x, with 1 � y � x1/2−δ, and a nonzero integer a, we define

Sq(x; δ, a) = #{p � x : P (p+ a) � x1/2−δ, q | p+ a},

E(x, y; δ, γ) =
{
q � y : Sq(x; δ, 1) � γx

q log x
or Sq(x; δ,−1) � γx

q log x

}
.

We say that a real number x is (α, ε)-good if Ψ(x;m) � εx for 3 � m � xα. Roughly speaking,
this means that the exceptional modulus in Lemma 2.4 does not exist (for appropriate λ).

Lemma 2.6. There are absolute constants δ > 0 and γ > 0 such that the following holds.
For every α > 0, there are constants η > 0 and x1 > 0 such that, if x � x1 and x is (α, 1

10 )-good,
then, for all y � x1/2−δ, we have

#E(x, y; δ, γ) � yx−η.

Proof. We may assume that 0 < δ < 1/6. Let k be a positive integer such that Q =
2−kx1/2−δ � 1. Let R1 = max{Q−1x1/2−5δ/4, xδ/4} and let R2 = R1x

δ/4. By standard esti-
mates [4, Chapter 20, (3)], if q ∈ (Q, 2Q] and r ∈ (R1, R2], then, for a = ±1, we have∣∣∣∣ψ(x; qr, a) − x

φ(qr)

∣∣∣∣ � 1
φ(qr)

(Ψ(x, q) + Ψ(x, r) + Ψ(x, qr) +O(x/ log x)) . (2.3)

Let E1(Q) = {q ∈ (Q, 2Q] : Ψ(x, q) > x/10}. Since x is (α, 1
10 )-good, we have E1(Q) = ∅ when

Q � 1
2x

α. Otherwise, by Lemma 2.5, we have

#E1(Q) �
(
1 +Qx−1/6 +Q2x−1/2

)
log4 x� Q(x−δ + x−α) log4 x.

Let

E2(Q) = {q ∈ (Q, 2Q] : Ψ(x, qr) > x/10 for at least R1x
−δ/8 primes r ∈ (R1, R2]}.
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COMMON VALUES OF THE ARITHMETIC FUNCTIONS φ AND σ Page 5 of 11

By Lemma 2.5 and the inequality R2Q � x1/2−δ/2, we have

#E2(Q) � (x+ x5/6R2Q+ x1/2(R2Q)2) log4 x

R1x1−δ/8
� Qx−δ/8 log4 x.

Also, by Lemma 2.5, we have

#{r ∈ (R1, R2] : Ψ(x, r) � x/10} �
(
1 + x−1/6R2 + x−1/2R2

2

)
log4 x� R1x

−δ/2 log4 x.

For each q ∈ (Q, 2Q] with q �∈ E1(Q) ∪ E2(Q), let

R(q) = {r ∈ (R1, R2] : Ψ(x, qr) � x/10, Ψ(x, r) � x/10}.
By (2.3), for r ∈ R(q) and a = ±1, we have

π(x; qr, a) � ψ(x; qr, a) −O(
√
x)

log x
� x

2qr log x
. (2.4)

Also, by the above estimates and Mertens’ formula, we have∑
r∈R(q)

1
r

�
∑

R1<r�R2

1
r
−O(x−δ/8 log4 x) � δ

2
. (2.5)

Since R1 � xδ/4, it follows that a shifted prime p+ a is divisible by at most �4/δ� primes in
R(q). Hence, we have

Sq(x; δ, a) � δ

4

∑
r∈R(q)

(π(x; qr,−a) − #U(q, r)) ,

where
U(q, r) = {p � x : qr | p+ a, P (p+ a) > x1/2−δ}.

Since r � R2 � x1/2−δ, if p ∈ U(q, r), then p+ a = qrsb, where s > x1/2−δ is prime and

b � x+ 1
qrs

� x+ 1
x1−9δ/4

� x3δ.

For fixed b, q, r, and a, we estimate the number of possible choices for s using the sieve [18,
Theorem 3.12]. We obtain

#U(q, r) �
∑

b�x3δ

x

bqr log2(x/bqr)
b

φ(b)
� x

qr log2 x

∑
b�x3δ

1
φ(b)

� δx

qr log x
.

For small enough δ, we then have #U(q, r) � x/(4qr log x), and we conclude from (2.4) and
(2.5) that

Sq(x; δ, a) � δx

16q log x

∑
r∈R(q)

1
r

� δ2x

32q log x
.

Finally, #E1(Q) + #E2(Q) � 1
4Qx

−η for η = min{α/2, δ/9} and large x. Summing over choices
of the dyadic interval (Q, 2Q], with Q � y and a ∈ {−1, 1}, completes the proof.

3. Prime chains and the proof of Theorem 1.1

Suppose that n is a positive integer with φ(rad(n)) | n and that q is a prime with q � n. Then
n is not divisible by any prime t ≡ 1(mod q), since otherwise q | φ(rad(n)), which would imply
that q | n. Iterating, n is not divisible by any prime t′ ≡ 1 (mod t), where t is a prime with t ≡ 1
(mod q), and so on. Thus, the single nondivisibility assumption that q � n, plus the assumption
that φ(rad(n)) | n, forces any prime t in any prime chain for q to also not divide n. We
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Page 6 of 11 KEVIN FORD, FLORIAN LUCA AND CARL POMERANCE

define a prime chain as a sequence of primes q = t0, t1, t2, . . . , where each tj+1 ≡ 1 (mod tj).
Alternatively, if φj is the j-fold iterate of φ, then a prime t is in a prime chain for q if t = q or
q | φj(t) for some j.

Let T (y, q) be the set of primes t � y that are in a prime chain for q. Crucial to our proof
is the following estimate.

Lemma 3.1 [13]. For every ε > 0, there is a constant C(ε) so that, if q is prime and y > q,
then #T (y, q) � C(ε)(y/q)1+ε.

More estimates for counts of prime chains with various properties may be found in
[3, 9, 13, 22].

We now proceed to prove Theorem 1.1. There is an absolute constant λ0 > 0 so that, if
λ � λ0, then the error term in the conclusion of Lemma 2.3 is at most 0.1z/log2 z in absolute
value. Let α > 0 and x0 be the constants from Lemma 2.4 corresponding to ε = 1

10 and λ = λ0,
and let δ, γ, η, and x1 be the constants from Lemma 2.6.

Suppose that x � max(x0, x1). We show that there are many common values of φ and σ that
are at most e2x by considering two cases. First, suppose that x is not (α, ε)-good. Then, for
some m � xα and χ ∈ C(m), we have L(β, χ) = 0 for some β � 1 − λ0/log(xα). By (2.2), we
have

m� log2 x

(log log x)4
.

Let z = m500. By Lemma 2.3, the set T of primes p � z − 1 for which p+ 2 is also prime
satisfies #T � 1.2z/log2 z. Let 0 < θ < 1/500 be a sufficiently small constant and let x be
large depending on θ. If q = P (p+ 1) � zθ, then p+ 1 = qb, where b is free of prime factors in
(q, z1/4]. The number of such p ∈ T , by an application of the large sieve [4, p. 159], is of order
at most ∑

q�zθ

z

log3 z

log q
q

� θz

log2 z
.

Let S = {p ∈ T : P (p+ 1) > zθ}. Choose θ so small that #S � z/log2 z. For p ∈ S, we have

#{p′ ∈ S : P (p+ 1) | p′ + 1} � z

P (p+ 1)
< z1−θ.

Hence, there is a set P of primes in S with #P = �zθ/log2 z�, and such that, for each p ∈ P,
P (p+ 1) � p′ + 1 for all p′ ∈ P different from p. For any subset M of P, let n(M) =

∏
p∈M(p+

1), so that n(M) = σ(
∏

p∈M p) = φ(
∏

p∈M(p+ 2)). Furthermore, since each factor p+ 1 in
the product n(M) has the unique ‘marker prime’ P (p+ 1) that divides no other p′ + 1 in the
product, the numbers n(M) are distinct as M varies. Since n(M) � z#P � x500αx500θα � ex

for x large, there are at least 2#P > exp{zθ/2} common values of φ and σ that are at most ex.
Observing that z > (log x)999 completes the proof in this case.

Now assume that x is (α, ε)-good. Let E = E(x, x1/2−δ; δ, γ) and let

T =
⋃
q∈E

T (x1/2−δ, q). (3.1)

Consider
S = {p � x : P (p+ 1) � x1/2−δ and t � p+ 1 for all t ∈ T }. (3.2)

By partial summation and Lemmas 2.6 and 3.1, for each ε > 0, we have∑
t∈T

1
t

�
∑
q∈E

∑
t∈T (x1/2−δ,q)

1
t
�ε

∑
q∈E

x(1/2−δ)ε

q1+ε
�ε x

(1/2−δ)ε−η.
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COMMON VALUES OF THE ARITHMETIC FUNCTIONS φ AND σ Page 7 of 11

Thus, if ε is small enough and x large, then we have∑
t∈T

1
t
<

γ

20 log x
. (3.3)

Using Lemma 2.6, we have 2 �∈ E , so that #{p � x : P (p+ 1) � x1/2−δ} > (γ/2)x/ log x. Thus,

#S >
γx

2 log x
−

∑
t∈T

x

t
� γx

3 log x
. (3.4)

Let pj be the jth largest prime in S, and

nj = σ

⎛
⎝ ∏

p∈S−{pj}
p

⎞
⎠ =

∏
p∈S−{pj}

(p+ 1).

Clearly, B(nj) � 1. Note that the prime factors of nj are � x1/2−δ, so that

φ(rad(nj)) | u!,

where u = �x1/2−δ�. If q � x1/2−δ and q ∈ T , then q � φ(rad(nj)). If q �∈ T , we then have

vq(φ(rad(nj))) � vq(u!) � x1/2−δ

q − 1
. (3.5)

On the other hand, for such q, Lemma 2.6 and (3.3) imply that

vq(nj) � #{p ∈ S − {pj} : q | p+ 1} � γx

q log x
− 1 −

∑
t∈T

x

qt
� γx

2q log x
(3.6)

for x sufficiently large. Therefore, comparing (3.5) with (3.6), we see that (1.1) holds with
m = nj , and so A(nj) � 1. By the prime number theorem, nj �

∏
p�x(p+ 1) � e2x if x is

large. The numbers nj are distinct, and hence there are at least #S � (γ/3)x/ log x common
values of φ and σ less than e2x. This completes the proof of Theorem 1.1.

4. Popular common values of φ and σ

In this section, we combine the proof of Theorem 1.1 with a method of Erdős [5]. A key estimate
is [5, Lemma 2] as follows:

#{n � x : P (n) � log x} = xo(1) (x→ ∞). (4.1)

More results about the distribution of integers n with P (n) small may be found in [20].
Let us define λ = λ0, α, x0, x1, and η as in the proof of Theorem 1.1. Without loss of

generality, suppose that α � 1
500 . Theorem 1.2 is proved by considering the following two

cases: x is not (α, 1
10 )-good and x is (α, 1

10 )-good. The following lemmas provide the necessary
arguments.

Lemma 4.1. For some absolute constants c > 0 and a > 0, if 0 < α � 1
500 , and x is large

(depending on α) and not (α, 1
10 )-good, then there are at least (log x)a integers n � ex for

which both A(n) > nc and B(n) > nc.

Proof. As in the proof of Theorem 1.1, by (2.2), there is an exceptional modulusm satisfying

log2 x

(log log x)4
� m � xα
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Page 8 of 11 KEVIN FORD, FLORIAN LUCA AND CARL POMERANCE

and such that

#{p � z : p+ 2 prime} � z

log2 z
, z = m500. (4.2)

Let δ be a positive absolute constant. Let P be the set of primes p � z, with p+ 2 prime and
P (p+ 1) � z1−δ. If p and p+ 2 are both prime and P (p+ 1) > z1−δ, then p+ 1 = qb for some
prime q and some b � zδ. By sieve methods [18, Theorem 2.4], for small enough δ, we have

#P � z

log2 z
−

∑
b�zδ

#{q � z/b : q, qb− 1, qb+ 1 prime}

� z

log2 z
−O

⎛
⎝ ∑

b�zδ

z

b log3 z

(
b

φ(b)

)2
⎞
⎠ � z

log2 z
−O

(
δz

log2 z

)
� z

2 log2 z
.

Let H = �z1−δ/2� and J = �#P/H�. Define the sets Pj , with 1 � j � J , as follows: P1 is the
set of the smallest H primes in P, and P2 is the set of the next H smallest primes from P, etc.
Let K = �z1−δ/ log z�. We may assume that x is large enough that K � 2, so that, if M is a
set of K primes from some Pj , then

n(M) = σ

⎛
⎝ ∏

p∈M
p

⎞
⎠ = φ

⎛
⎝ ∏

p∈M
(p+ 2)

⎞
⎠ � zK , P (n(M)) � z1−δ � log

(
zK

)
. (4.3)

By (4.1), the function n(·) maps sets M into a set of integers of cardinality � zδK/6; but the
number of K-element subsets M of some Pj is(

H

K

)
�

(
H

K

)K

� zδK/2

for x large. Thus, for each j � J , there is some nj such that nj = n(M) for at least zδK/3

K-element subsets M of Pj . We conclude from (4.3) that A(nj), B(nj) � zδK/3 � n
δ/3
j . Since

n1 < n2 < . . . < nJ � zK < ex and J � zδ/2/(2 log2 z) − 1, we conclude that the lemma holds
with c = δ/3 and a = 499δ once x is sufficiently large.

Lemma 4.2. There is an absolute constant c > 0, so that, if α > 0, and x is large (depending
on α) and (α, 1

10 )-good, then there are more than (1/3) log x integers n � ex satisfying A(n) >
nc and B(n) > nc.

Proof. Let ε = 1/10. Let δ, γ, and η be the constants from Lemma 2.6. Define T as in (3.1)
and S as in (3.2), and consider S̃ = {p ∈ S : p � √

x}. Let N := #S̃, so that, from (3.4), we
have N � (γ/4)x/ log x for x large. Also, N � 2x/ log x. Let Q be the set of primes q � x1/2−δ

with q �∈ T . For q ∈ Q, by (3.6) and the Brun–Titchmarsh inequality, we have

Nq := #{p ∈ S̃ : q | p+ 1} � N

q
. (4.4)

Suppose that k is an integer with N1/2 � k � N3/4. For q ∈ Q, if we choose a k-element subset
M of S̃ at random, then we expect that the number of p ∈ M with q | p+ 1 to be kNq/N ;
that is, we are viewing a prime p as corresponding to the random variable that is 1 if q | p+ 1,
and 0 otherwise. By a standard result in the theory of large deviations (see [16, Section 5.11,
(5)]), we have that the number of choices of M, with

#{p ∈ M : q | p+ 1} � kNq

2N
for all q ∈ Q (4.5)
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is at least ⎛
⎝1 −

∑
q∈Q

e−νkNq/N

⎞
⎠ (

N

k

)
� 1

2

(
N

k

)
� 1

2

(
N

k

)k

for some absolute positive constant ν, and for large x. (That the probabilistic model has
us choosing ‘with replacement’ is easily seen to be negligible.) As in the proof of Lemma
4.1, n(M) = σ(

∏
p∈M p) < xk and P (n(M)) � x1/2−δ < log(xk). By (4.1), there are at most

xk/30 � Nk/29 distinct values n(M). Hence, for large x, there is some integer n < xk with
many representations as n(M), where M satisfies (4.5); in particular, we have

B(n) � 1
2

(
N

k

)k

N−k/29 � xk/5 > n1/5.

We next show that, for each such n, we have A(n) large. Note that, generalizing (1.1), we
have that, if w is a positive integer with φ(w·rad(n)) | n, then

n = φ

(
w·rad(n)

n

φ(w·rad(n))

)
.

Thus, we can show that A(n) is large if we can show that there are many such integers w with
(w, n) = 1 (to ensure that the integers w·rad(n)·n/φ(w·rad(n)) are distinct for the different
w). Toward this end, let

S ′ = {p � x : p >
√
x, q | p− 1 implies q ∈ Q}, N ′ = #S ′.

By Lemma 2.6 and (3.3), we have N ′ � x/ log x, so that N ′ � N . For each qj , with q ∈ Q, let

N ′
qj := #{p ∈ S ′ : qj‖p− 1},

so that the Brun–Titchmarsh inequality implies that N ′
qj � x/(qj log(ex/qj)) for qj � x.

Consider k′ = �ξk�, where ξ is a small fixed positive number. For each k′-element subset
M′ of S ′, let w(M′) =

∏
p∈M′ p. If M′ is chosen at random, then the expected value of∑

p∈M′ vq(p− 1) = vq(φ(w(M′))) is k′
∑

j�1 jN
′
qj/N ′ (we are now viewing our random variable

as vq(p− 1)). By the same result in [16], there are at least 1
2

(
N ′

k′
)

choices for M′ with

vq(φ(w(M′))) � 3
2
k′

∑
j�1

jN ′
qj

N ′ for all q ∈ Q.

For such choices of M′, we have vq(φ(w(M′))) � k′/q, and so, if we choose ξ small enough,
then we have

vq(φ(w(M′))) � k
Nq

4N
� 1

2
vq(n)

by (4.4) and (4.5). Since (cf. (3.5))

vq(φ(rad(n))) � x1/2−δ

q − 1
� 1

2
vq(n),

and since each prime factor of w(M′) is greater than x1/2 � P (n), we deduce that
φ(w(M′)·rad(n)) | n and that the numbers w(M′)·rad(n)·n/φ(w(M′)·rad(n)) are distinct for
different choices of M′. It follows that

A(n) � 1
2

(
N ′

k′

)
� 1

2

(
N ′

k′

)k′

> xk′/5 � nξ/5.

Consider c = min(1/5, ξ/5). Note that our construction of n depends on k, and

xk/2 � n � xk � ex.
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Letting k run over the powers of 2 in [N1/2, N3/4] produces more than (1/3) log x distinct
values of n, each at most ex, for which A(n) > nc and B(n) > nc.

5. Further problems

The following are some additional problems concerning common values of φ and σ.
(1) It is known that, for any integer k � 1, there are integers n with B(n) = k and, for

any integer l � 2, there are integers n with A(n) = l; see [11, 12]. The famous Carmichael
conjecture states that A(n) is never 1, but this is still open.

Conjecture 5.1. For every k� 1 and l� 2, there are integers n with A(n)= l and B(n)= k.

Schinzel has shown (private communication; see also [26]) that this conjecture follows from his
Hypothesis H.

(2) If, as conjectured by Hardy and Littlewood, the number of pairs of twin primes at most
x is approximately Cx/ log2 x, then the number of common values n � x of φ and σ is of order
at least x/ log2 x. What is the correct order of #{n � x : A(n) � 1 and B(n) � 1}?

(3) Does φ(a) = σ(b) have infinitely many solutions with squarefree integers a and b? Our
construction, when using (α, ε)-good values of x, uses squarefree b, while a is divisible by large
powers of primes.

(4) As mentioned, Erdős showed that A(k!) � 1 for every positive integer k (see [17,
Section B38]). Is B(k!) � 1 for every k �= 2? How about at least infinitely often? Note that
our proof of Lemma 4.2 shows that there is some number c > 0 such that A(k!) � (k!)c for
every k.

Remark 5.2. There is an alternative approach to proving Theorems 1.1 and 1.2 (with a
somewhat weaker conclusion about the number of common values below x), suggested to us
by Sergei Konyagin. Namely, it is possible to prove, using Lemmas 2.1 and 2.2, that there is
an α > 0 such that, for large u, there is a value of x ∈ [log u, u] that is (α, 1

10 )-good. Indeed,
let λ > 0 be small and let α be the constant from Lemma 2.2. Let γ be a constant satisfying
γ > 1/(10α). Letm1,m2, . . . be the (possibly empty) list of moduli for which there is a character
χ ∈ C(mj) and zero βj � 1 − λ/logmj of L(s, χ). Let j be the largest index withmj � (log x)α.
If there is no such j, then x is (α, 1

10 )-good. Otherwise, u = max(log x, exp{γ(1 − βj)−1}) is
(α, 1

10 )-good upon using the definition of j and applying Lemma 2.1.
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Universidad Nacional Autonoma de México
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