FASC. 1

ON THE COMPOSITION OF THE ARITHMETIC FUNCTIONS σ AND φ

BY

CARL POMERANCE (ATHENS, GEORGIA)

1. Introduction. Let φ denote Euler's function and let σ denote the sum of the divisors function. In [2], Makowski and Schinzel consider the function $\sigma(\varphi(n))/n$, showing that

$$\lim\inf\frac{\sigma(\varphi(n))}{n}\leqslant\inf_{4\ln}\frac{\sigma(\varphi(n))}{n}\leqslant\frac{1}{2}+\frac{1}{2^{34}-4}.$$

They ask if $\sigma(\varphi(n))/n \ge 1/2$ is true for all n, stating that Mrs. K. Kuhn has shown this inequality for all n with at most 6 prime factors. They also remark that even the weaker inequality

(1.1)
$$\inf \frac{\sigma(\varphi(n))}{n} > 0$$

remains open.

In this note* we prove (1.1). The proof is elementary, the principal tool being Brun's method.

Throughout, the letter p denotes a prime.

2. The proof of (1.1). If T is a set of primes, let

$$s(T, x) = \sum_{x^{1/e}$$

where \sum' signifies that the primes p in the sum also have the property that p-1 is free of prime factors from T. We have the following result:

LEMMA 2.1. There is an absolute constant $c_1 \ge 1$ such that for any set of primes T and any x we have

$$s(T, x) \le c_1 \exp\left(-\sum_{\substack{p \le x \ p \in T}} 1/p\right).$$

Indeed, this follows from [1] (Theorem 2.2) and a partial summation.

^{*} Supported in part by an NSF grant.

Note that if m is a natural number, then

$$\log \frac{\sigma(m)}{m} = \sum_{p^{a} || m} \log (1 + 1/p + \dots + 1/p^{a}) = \sum_{p | m} 1/p + O(1),$$

$$\log \frac{\varphi(m)}{m} = \sum_{p | m} \log (1 - 1/p) = -\sum_{p | m} 1/p + O(1).$$

Given a natural number n, let S(n) denote the set of prime factors of $\varphi(n)$. Thus

(2.1)
$$\log \frac{\sigma(\varphi(n))}{n} = \log \frac{\sigma(\varphi(n))}{\varphi(n)} + \log \frac{\varphi(n)}{n} = \sum_{p \in S(n)} 1/p - \sum_{p \mid n} 1/p + O(1).$$

Let S'(n) denote the set of primes p such that every prime in p-1 lies in S(n). Thus from (2.1) we have

$$\log \frac{\sigma(\varphi(n))}{n} \geqslant \sum_{p \in S(n)} 1/p - \sum_{p \in S'(n)} 1/p + O(1).$$

We conclude that (1.1) will follow from the following theorem:

THEOREM 2.2. There is an absolute constant c_2 such that

$$\sum_{p \in S'} 1/p - \sum_{p \in S} 1/p \leqslant c_2$$

for any finite set of primes S, where S' denotes the set of primes p such that every prime in p-1 lies in S.

Proof. Let S be an arbitrary finite set of primes, let k be a natural number such that $S \subset [1, \exp(e^k)]$, and let T be the (infinite) set of primes that do not belong to S. For each natural number i, let

$$\beta_i = \sum_{\substack{p \in S' \\ \exp(e^{i-1})$$

so that

(2.2)
$$\sum_{p \in S'} 1/p = \frac{1}{2} + \sum_{i=1}^{\infty} \beta_i.$$

Note that from Lemma 2.1 we have

(2.3)
$$\beta_i = s(T, \exp(e^i)) \leqslant c_1 \exp\left(-\sum_{\substack{p \in T \\ p \leqslant \exp(e^i)}} 1/p\right)$$

for each natural number i. Let

$$b_i = \sum_{\substack{p \in T \\ \exp(e^{i-1})$$

Note that we may assume $2 \notin T$, for otherwise $S' = \{2\}$ and the theorem is trivially true. Thus

(2.4)
$$\sum_{\substack{p \in T \\ p \leq \exp(e^i)}} 1/p = \sum_{j=1}^i b_j \quad \text{for } i = 1, 2, \dots$$

Since

(2.5)
$$b_i' := \sum_{\exp(e^{i-1})$$

we infer from (2.3) and (2.4) that

$$\beta_i \leq \min(1, c_1 \exp(-(b_1 + \dots + b_i))) + O(e^{-i})$$

for every natural number i. We conclude from (2.2) that

$$(2.6) \sum_{p \in S'} 1/p - \sum_{p \in S} 1/p = \frac{1}{2} + \sum_{i=1}^{\infty} \beta_i - \sum_{p \le \exp(e^k)} 1/p + \sum_{\substack{p \in T \\ p \le \exp(e^k)}} 1/p$$

$$\leq \sum_{i=1}^{\infty} \min(1, c_1 \exp(-(b_1 + \dots + b_i))) - k + b_1 + \dots + b_k + O(1).$$

Now, for i > k, we infer from (2.5) that $b_i = b'_i = 1 + O(e^{-i})$, so that

(2.7)
$$\sum_{i>k} \min(1, c_1 \exp(-(b_1 + \dots + b_i))) \leqslant \sum_{i>k} e^{-(i-k)} \leqslant 1.$$

Thus from (2.5)-(2.7) we will have Theorem 2.2 once we prove the following lemma:

LEMMA 2.3. If $c \ge 1$ is fixed and if

$$f(b_1,\ldots,b_k) := \sum_{i=1}^k \min(1, c \exp(-(b_1+\ldots+b_i))) - k + b_1 + \ldots + b_k,$$

then the maximum value of f on $[0, 1]^k$ is less than $e/(e-1) + \log c$ for any natural number k.

Note that the letters b_1, \ldots, b_k appearing in (2.6) satisfy $0 \le b_i \le b_i'$ for each i, rather than $0 \le b_i \le 1$. However, the maximum value of f on $[0, b_1'] \times \ldots \times [0, b_k']$ is less than or equal to the maximum value of f on

$$[0, \max(1, b'_1)] \times ... \times [0, \max(1, b'_k)],$$

which, by (2.5), is within O(1) of the maximum value of f on $[0, 1]^k$. Thus Lemma 2.3 suffices for the completion of the proof of Theorem 2.2 and (1.1).

Proof of Lemma 2.3. Let k be given and assume the maximum value of f is attained at $(B_1, \ldots, B_k) \in [0, 1]^k$. First note we may assume that

$$B_1 \leqslant B_2 \leqslant \ldots \leqslant B_k$$

for if $B_{i+1} < B_i$, then interchanging these two numbers will not make f smaller. If

$$c\exp(-(B_1 + \ldots + B_k)) \geqslant 1$$
,

then

$$f(B_1,\ldots,B_k) = B_1 + \ldots + B_k \leqslant \log c.$$

So we may assume there is a first subscript i_0 such that r

$$c\exp\left(-(B_i+\ldots+B_{i_0})\right)<1.$$

Then $B_1 + \ldots + B_{i_0-1} \leq \log c$, so that

$$(2.8) f(B_1, \dots, B_k) \leq i_0 + \sum_{i=i_0+1}^k \exp\left(-(B_{i_0+1} + \dots + B_i)\right) - k + B_1 + \dots + B_k$$

$$\leq \sum_{i=i_0+1}^k \exp(-(B_{i_0+1}+\ldots+B_i))-(k-i_0)+B_{i_0+1}+\ldots+B_k+1+\log c.$$

Let

$$g(b_{i_0+1},\ldots,b_k) = \sum_{i=i_0+1}^k \exp\left(-(b_{i_0+1}+\ldots+b_i)\right) - (k-i_0) + b_{i_0+1}+\ldots+b_k$$

and say the maximum of g on $[0, 1]^{k-i_0}$ is assumed at (A_{i_0+1}, \ldots, A_k) . Thus from (2.8) we have

$$(2.9) f(B_1, \dots, B_k) \leq g(A_{i_0+1}, \dots, A_k) + 1 + \log c.$$

As above, we may assume $A_{i_0+1} \leq \ldots \leq A_k$. If $A_{i_0+1} = \ldots = A_k = 1$, then from (2.9) we have

$$f(B_1,\ldots,B_k) \leqslant \sum_{j=1}^{k-i_0} e^{-j} + 1 + \log c < \frac{e}{e-1} + \log c.$$

Thus we may assume there is a greatest index i_1 with $A_{i_1} < 1$. If $A_{i_1} = 0$, then from (2.9) we have

$$f(B_1, ..., B_k) \le i_1 - i_0 + \sum_{j=1}^{k-i_1} e^{-j} - (k - i_0) + (k - i_1) + 1 + \log c$$

$$< \frac{e}{e - 1} + \log c.$$

Thus we may assume $0 < A_{i_1} < 1$. Then

$$\frac{\partial g}{\partial b_{i_1}}(A_{i_0+1},\ldots,A_k)=0,$$

so that

(2.10)
$$1 = \sum_{i=i_1}^{k} \exp\left(-(A_{i_0+1} + \dots + A_i)\right)$$
$$= \left[\exp\left(-(A_{i_0+1} + \dots + A_{i_1})\right)\right] \left(1 + \exp(-1) + \dots + \exp(-(k-i_1))\right).$$

This implies

$$A_{i_0+1} + \ldots + A_{i_1} < \log \frac{e}{e-1}$$

Thus from (2.9) and (2.10) we have

$$f(B_1, \dots, B_k) < (i_1 - i_0 - 1) + 1 - (k - i_0) + \log \frac{e}{e - 1} + (k - i_1) + 1 + \log c$$

$$= \log \frac{e}{e - 1} + 1 + \log c < \frac{e}{e - 1} + \log c,$$

which proves the lemma.

REFERENCES

[1] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, London 1974. [2] A. Makowski and A. Schinzel, On the functions $\varphi(n)$ and $\sigma(n)$, Colloq. Math. 13 (1964), pp. 95-99.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GEORGIA ATHENS, GEORGIA 30602, U.S.A.

Reçu par la Rédaction le 26.2,1988