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1. Introduction. Let ¢ denote Euler’s function and let ¢ denote the sum of
the divisors function. In [2], Makowski and Schinzel consider the function
a{e(m)/n, showing that

ol () < infa(qo(n)) 1 1

liminf ——* .
im inf i sin M T2 2% 4

They ask if o{p(n)/n = 1/2 is true for all n, stating that Mrs. K. Kuhn has
shown this inequality for all n with at most 6 prime factors, They also remark
that even the weaker inequality

(1.1) inf?(—"i}’fl) >0

remains open.

In this note* we prove (1.1). The proof is elementary, the principal tool
being Brun’s method.

Throughout, the letter p denotes a prime.

2. The proof of (1.1). If T is a set of primes, let
| (Tx= ¥ Up

xife<p=x

where Z’ signifies that the primes p in the sum also have the property that p—1
is free of prime factors from T We have the following result:

LemMA 2.1. There is an absolute constant ¢, = 1 such that for any set of
primes T and any x we have

S(T ) < e exp(— ¥ 1/p)
’ PEX
peT

Indeed, this follows from [17 (Theorem 2.2) and a partial summation.

* Supported in part by an NSF grant.
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Note that if m is a natural number, then

i g%@: Y, log(1+1/p+ ... +1/p% = 3 1/p+0(1),
pYm plm
QQ,M [121 g(l-1/p) = le 1/p+0(1).

Given a natural number n, let S(i) denote the set of prime factors of @{n). Thus

o1 Iogfiq;(i)-—ulog ((()’) ogm—)= % =3 p+0(). 3

PeSiny pln

Let S'(n) denote the set of primes p such that every prime in p—1 les in S(n). |
Thus from (2.1) we have ;

alo®
log—(q%(l)> 2 p— 3 1/p+o(l). )
peS(n) peS'{n) !
We conclude that (1.1) will follow from the following theorem:

THEOREM 2.2. There is an absolute constant ¢, such that
pes’ peS

for any finite set of primes S, where §' denotes the set of primes p such that every
prime in p—1 lies in S.

Proof. Let S be an arbitrafy finite set of primes, let k be a natural number
such that § < [1, exp(e)], and let T'be the (infinite) set of prlmes that do not
belong to S. For each natural number j, let

ﬁi = Z llp:

peS*
exple! =1} < p<expleh)

so that

Ma

(2.2) 2 1/p=

pesS’ i

B:.

"

1
Note that from Lemma 2.1 we have ]
2.3) B; = s(T, exp(e)) < c1 exp(— Y 1/p)
p<hanen
for each natural number i, Let
b; = > . I/fp fori=1,2,...

peT
exple’ ~ 1) < p<explef)
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Note that we may assume 2¢ 1, for otherwise §' = {2} and the theorem is
trivially true. Thus

(2.4) S tifp=Yb, fori=1,2,...
peT =1
p<explel)
Since
2.5) b= Y Yp=140ET, i=1,2,..,
explel— ) <p<expfel) L

we infer from (2.3) and (2.4) that
By < min(l, ¢iexp(—(by+ ... +b))+0(™Y

for every natural number i, We conclude from (2.2) that

o3

@6) Y lp—YYp=5+ Y B~ ), lp+ 3 1p

peS’ peS =1 psexple®) peT
pSexple®)

s

L8

Now, for i >k, we infer from (2.5) that b; = bj = 1+0(e™), so that
2.7 Y min(l, c;exp(—(b,+ ... +B))) < ¥ e TR g1,

i>k i>k

min(l, ¢ exp(—(b +... + ) —k+b; +... + b +0(1).

1t

1

Thus from (2.5)—(2.7) we will have Theorem 2.2 once we prove the following
lemima: :

LemMa 23. If ¢ = 1 is fixed and if
k
Shys. b= min(l, cexp(—(b,+ ... +b)))—k+b,+ ... +by,
C =1 .

then the maximum value of fon [0, 1]* is less than ef(e— 1)+ logc for any natural
number k.

Note that the letters by,...,b, appearing in (2.6) satisfy 0 < b, < by for
each i, rather than 0 <b;,< 1. However, the maximum value of f on
{0, b1] x ... x[0, by] is less than or equal to the maximum value of f on

[0, max(1, b})] x ... x{0, max (1, by},

which, by (2.5), is. within O(1) of the maximum value of f on {0, 1}* Thus
Lemma 2.3 suffices for the completion of the proof of Theorem 2.2 and (1.1).

Proof of Lemma 2.3: Let k be given and assume the maximum value of
f is attained at (B,,...,B)e[0, 1J* First note we may assume that

B, <B,< ...<B,
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forif B;,, < B, then interchanging these two numbers will not make fsmaller,
If

cexp(—(B, + ... +BJ) =1
then )
SBy...B)=B + ... +B, < loge.
So we may assume there is a first subscript iy such that -
cexp(—(B, + ... +B;)) < 1.
Then B+ ... +B;,., < loge, so that
(2.8)  f(By.....B) <iy+ i exp(—~(By 4+ ... +B))—k+B,+ ... +B,

i=ig+1

k

< ) exp(—(Bisit ... +B))—(k—ig)+ By + ... +B,+ 1 +loge.

i=ig+1
Let
k
g(bl'o‘l'l!""bk): Z exp(~(b,-0+1+ e +bi))—“(k-i0)+bf0+1+ ‘e +bk
i=fo+1

and say the maximum of g on [0, 177" is assumed at (Aig+1,....4,). Thus
from (2.8) we have

2.9 JBr o BY < g(Aigr s, ..., A)+ 1 +loge.”
As above, we may assume Aiger S S AT Ay = ... = A, =1, then
from (2.9) we have '
. k—1ia
SBL...BY< Y e f+1+logc<m+logc
j=1

Thus we may assume there is a greatest index i, with A, < L
If 4;, =0, then from (2. 9) we have

k—iy
f(Bl"“’Bk) S‘ il'_‘io’{' Z e—j_(k‘_'io)‘['(k—il)'l"l‘!”lqgc
j=1 |
(4
< ——+loge.
e_

Thus we may assume 0 < A;, < 1. Then

7
i(Afo‘l'll LR !Ak) = O!
s,
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so that
. k
(2.10) 1= Z exp(—(Aigs1+ ... + A4}
= [exp{—(iges+ ... + AN (I +exp(— D+ ... +exp(—(k—i,)).
This implies

- Ai0+1+ +Ai[ <10g—i'
e—1
Thus from {2.9) and (2.10) we have

fBy.....B) < (fim_iu—l)—i-1—(k—io)+l9ge—ji+(k—i1)+1+10gc

—log—S—+1+loge < — 1
= log— oge < ——+loge,

which proves the lemma.
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