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Abstract

We prove that there is a (perfect) matching between two intervals of positive integers
of the same even length, with corresponding pairs coprime, provided the intervals
are in [n] and their lengths are > c(log n)2, for a positive constant c. This improves
on a recent result of Bohman and Peng. As in their paper, the result has an
application to the lonely runner conjecture.

1. Introduction

Suppose one has two intervals I and J of positive integers, and both have the same

length. Among the many possible bijections from I to J , it is interesting to wonder if

at least one of them is a coprime matching. That is, in the bijection, corresponding

numbers should be relatively prime. It is easy to see that sometimes this is not

possible. For example, if 1 /∈ I and J contains a number j divisible by the product

of the members of I, then that number j cannot correspond to any member of I.

Another easy way to block a coprime matching is if both intervals contain a strict

majority of even numbers, as would be the case with {2, 3, 4} and {8, 9, 10}, for

example.

An easy way to bar the majority evens case is to insist that the common length

be even, say 2m. And an easy way to bar an element from one interval having a

common nontrivial factor with each number of the other interval is to insist that

the numbers are not too large in comparison to the length.

Here are some existing results about coprime matchings of intervals. If one of

the intervals is [n] = {1, 2, . . . , n} and the other an arbitrary interval of length n,

then there is a coprime matching, see [8]. Here we allow odd lengths and there is no

prohibition of one of the intervals involving numbers much larger than the length,

but these are compensated for by having the number 1 in one of the intervals.

Very recently, Bohman and Peng [1] showed that if I, J are contiguous intervals

of any length k ≥ 4 such that k ∈ I, then there is a coprime matching, so verifying

a conjecture of Larsen, Lehmann, Park, and Robertson [7]. They also proved the
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following result.

Theorem A. There is a positive constant C such that if n is sufficiently large,

m > exp(C(log log n)2), and I, J ⊂ [n] are intervals of length 2m, then there is a

coprime matching of I and J .

In this note we improve on Theorem A.

Theorem 1. There is a positive constant c such that if n is sufficiently large,

m > c(log n)2, and I, J ⊂ [n] are intervals of length 2m, then there is a coprime

matching of I and J .

Note that the expression c(log n)2 cannot be improved to log n. This follows from

[2, Theorem I], where it is shown that there are infinitely many integers n for which

there is an interval of ≥ log n integers in [n] each with a nontrivial common divisor

with n. This can be improved a little using better estimates for the Jacobsthal

function, see [3].

Adding to the interest of the Bohman–Peng paper is an application of Theorem

A to the lonely runner conjecture. This conjecture asserts that if v1, v2, . . . , vn
are distinct positive integers, then there is a real number t such that no vit is

strictly within distance 1/(n + 1) of an integer. This has been shown by Tao [10]

when the vi’s are at most 1.2n. In [1], the lonely runner conjecture is shown when

the vi’s are at most 2n − ε(n), where ε(n) is of the shape exp(C′(log log n)2), for

a positive constant C′. Theorem 1 (more precisely, Proposition 1 below) has the

analogous application: by the same argument as in [1], if v1 < v2 < · · · < vn ≤
2n− c′(log n)2, the lonely runner conjecture holds. It remains a challenge to show

it when {v1, v2, . . . , vn} ⊂ [2n], much less the full conjecture.

2. The set up

Recall the König–Hall “marriage” theorem, see [4, 6]. One version asserts that if

I, J are sets with |I| finite, and G is a bipartite graph between I and J , then G

contains a matching of I into J if and only if for each S ⊂ I, S has at least |S|
neighbors in J . The Bohman–Peng paper uses the following version of this theorem.

Lemma 1. If I, J are finite sets with |I| = |J | and G is a bipartite graph from I

to J , then G contains a perfect matching if and only if for each S ⊂ I and T ⊂ J

with |S|+ |T | > |I|, there is some s ∈ S and t ∈ T with (s, t) ∈ G.

Proof. Since |I| = |J | < ∞, any matching from I into J is a perfect matching.

Say there is no perfect matching, so by the König–Hall theorem, there is some

S ⊂ I which has fewer than |S| neighbors in J . Let S′ be the set of neighbors

of S and let T = J \ S′. Then there is no edge (s, t) ∈ G with s ∈ S, t ∈ T ,
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yet |S| + |T | > |S′| + |T | = m. Conversely, suppose some S ⊂ I, T ⊂ J with

|S|+ |T | > m has no edge (s, t) with s ∈ S, t ∈ T . The neighbors of S are contained

in J \ T , a set of cardinality m− |T | < |S|, so there is no perfect matching by the

König–Hall theorem.

We say two integers s, t are 2-coprime if no odd prime divides both s and t, that

is, gcd(s, t) is a power of 2. As in the Bohman–Peng paper, the problem can be

reduced to the following.

Proposition 1. There is a positive constant c such that if n is sufficiently large,

m > c(log n)2, and I, J ⊂ [n] are arithmetic progressions of length m with common

difference 1 or 2, the following holds. Whenever S ⊂ I and T ⊂ J are nonempty,

with |S|+ |T | ≥ m, there is a 2-coprime pair s, t with s ∈ S, t ∈ T .

Corollary 1. There is a bijection of I and J with corresponding numbers being

2-coprime.

Proof. This follows immediately from Proposition 1 and Lemma 1.

As pointed out in [1], to use Lemma 1 it suffices to consider the case when

|S|+ |T | > m. The weaker hypothesis |S|+ |T | ≥ m in Proposition 1 is useful when

considering the application to the lonely runner problem.

Corollary 2. With c the constant in Proposition 1, if n is sufficiently large, m >

c(log n)2, and I, J ⊂ [n] are intervals, then there is a coprime matching of I and J

if either

1. I, J have length 2m or

2. I, J have length 2m+ 1 and the least elements of I, J have opposite parity.

Proof. First suppose that I, J have length 2m. Let I0, J0 be the even elements of

I, J , respectively, and let I1, J1 be the odd elements. We have |I0| = |J1| = m

and |I1| = |J0| = m. Applying Corollary 1, there is a matching of I0 and J1 with

corresponding elements being 2-coprime. But as elements of I0 are all even and

elements of J1 are all odd, being 2-coprime implies being coprime. So the matching

is a coprime one, and similarly for I1 and J0. Thus, we have the result in the first

case. So suppose I, J have length 2m+ 1 with least elements of the opposite parity.

Then again we have |I0| = |J1| and |I1| = |J0|, and the same proof works.

In particular, Theorem 1 holds. We can also say something in the remaining

cases of two intervals of the same length.

Corollary 3. With c the constant in Proposition 1, if n is sufficiently large, m >

4c(log n)2 and I, J ⊂ [n] are intervals of length 2m+1 with odd least elements, then

there is a coprime matching from I to J . Further, if m > 7c(log n)2 and I, J ⊂ [n]
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are intervals of length 2m + 1 with even least elements, then there is a matching

from I to J such that corresponding elements, except for one pair, are coprime, with

the offending pair having gcd 2.

Proof. We abbreviate an interval of integers {u, u+ 1, . . . , u+ k} as [u, u+ k]. Say

I = [i, i+2m] and J = [j, j+2m], where i, j are odd. Let a be the first odd number

≥ 2m/3 and let I1 = [2i, 2i + a]. By Theorem 1 there is a coprime matching from

I1 to [j+ a, j+ 2a]. Let j+ a1 correspond to 2i in the matching, so that a1 is even.

By Theorem 1 there is a coprime matching from [i+ 1, i+ a1] to [j, j + a1 − 1] and

also a coprime matching from [i+ a1 + 1, i+ 2m] to [j + a1 + 1, j + 2m]. With the

coprime pair i, j + a1 this shows there is a coprime matching from I to J .

The argument when |I| = |J | = 2m+ 1 with even least elements is similar. Now

we match i with j+a2, an even element in the middle third of J such that (j+a2)/2

is coprime to i, with the rest of the argument being the same. To see that such a

j+a2 exists, we use Theorem 1 on the first one-sixth of the interval I, and one-half

of the even numbers in the middle third of J .

2.1. Sketch of the proof

The argument in [1] uses a result of Erdős [2] on the Jacobsthal function that implies

that a long string of consecutive members of an arithmetic progression of common

difference 1 or 2 has at least one member 2-coprime to a given integer s. We use

instead a sequel result of Iwaniec [5] that implies that each s ∈ S is 2-coprime to

many elements of J , in fact, so many elements that we are done unless T is small

enough to miss all of them. But T small forces S to be somewhat large, namely at

least of magnitude m/(logm)2. At that point, an averaging argument comes into

play. In particular, it is first shown that such a large set S has most members with

a not-too-large “m part” (namely the largest squarefree divisor composed of odd

primes up to m). This, coupled with the first argument shows that we may assume

that |S| is even larger, at least of magnitude m/(log logm)2. A finer averaging

argument now shows that for most s ∈ S the value of ϕ(s)/s is mostly determined

by the primes ≤ logm dividing s. A final averaging argument shows that many

elements of S have ϕ(s)/s not too small. Returning to the first thought of getting

many members of J to be 2-coprime to s, we no longer need the Iwaniec result and

can do a complete inclusion-exclusion, which allows us to complete the proof. This

last step has some overlap with the approaches in [1] and [8].

3. The proof of Proposition 1

Let ϕ denote Euler’s function, and let ω(n) denote the number of different prime

numbers that divide n. For n > 2 we have ω(n) = O(log n/ log log n). It is con-
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venient to have a weaker, but explicit inequality: if n > 1, then ω(n) ≤ 2 log n

(since ω(n) is at most the base-2 logarithm of n). Further, for ω(n) > 1 and n odd,

n/ϕ(n) ≤ 3 logω(n). This follows from considering those n that are the product of

the first k ≥ 2 odd primes, using (3.5) and (3.30) from [9], and checking the small

cases. In the proof c1, c2, . . . are absolute, positive constants and it is assumed that

n (and so m) is sufficiently large.

Assume the hypotheses of Proposition 1 hold. Let S ⊂ I, T ⊂ J be nonempty

subsets with |S|+ |T | ≥ m. We may assume that |S|+ |T | = m and |S| ≤ |T |. For

any integer k > 0, let km denote the largest odd, squarefree divisor of k supported

on the primes ≤ m. Since primes > m can divide at most one element of J , if S

contains an element s such that sm = 1, then the number of elements of J that are

not 2-coprime to s is at most ω(s) ≤ 2 log n = O(m1/2). Since |T | ≥ m/2 there

must be an element in T that is 2-coprime to s. Similarly, if sm = qb where q

is an odd prime ≤ m and b > 0, then the number of elements of J that are not

2-coprime to sm is ≤ m/q + 1 and so the number of elements not 2-coprime to s is

≤ m/3 +O(m1/2). So again T must have an element 2-coprime to s.

From now on, we assume that each element of S is divisible by at least two

different odd prime numbers ≤ m. Let s ∈ S. From [5], it follows that there is a

positive constant c1 such that an interval of length c1(sm/ϕ(sm))ω(sm)2 logω(sm)

has ≥ ω(sm)2 integers coprime to sm. If J has common difference 1, we apply this

result directly to sub-intervals of J . If J has common difference 2 and J ⊂ 2Z,

we apply it to 1
2J , while if J ⊂ 2Z + 1, we apply it to 1

2 (J + M), where M is

the product of all of the odd primes ≤ m. In all cases we thus have that for each

string of 2c1(sm/ϕ(sm))ω(sm)2 logω(sm) consecutive members of J , there are at

least ω(sm)2 integers coprime to sm.

Note that sm satisfies sm/ϕ(sm) ≤ 3 logω(sm) as remarked above. Thus, a string

of length 6c1(ω(sm) logω(sm))2 of consecutive members of J has at least ω(sm)2

numbers coprime to sm. Further, since ω(sm) = O(log sm/ log log sm), we have

ω(sm) logω(sm) ≤ c2 log sm ≤ c2 log n for some constant c2 > 0. We let c in the

theorem be 6c1c
2
2, so that J has at least 1 string of length 6c1(ω(sm) logω(sm))2

of consecutive members. In particular, breaking J (or 1
2J in the case that J ⊂

2Z, or 1
2 (J + M) in the case J ⊂ 2Z + 1) into consecutive strings of length

6c1(ω(sm) logω(sm))2, we see that J contains > (1/7c1)m/(logω(sm))2 integers

coprime to sm. As above, s is divisible by at most 2 log n primes larger than m,

and each of these primes divides at most one member of J . So J contains at least

(1/6c1)m/(logω(sm))2 − 2 log n numbers 2-coprime to s. Since m > c(log n)2 and

ω(sm) < 2 log n, we have that there is a positive constant c3 such that for each

s ∈ S, ∑
j∈J

j 2-coprime to s

1 ≥ c3m

(logω(sm))2
. (1)



INTEGERS: 21 (2021) 6

Hence we may assume that |T | ≤ m− c3m/(logω(sm))2, so that

|S| ≥ c3m/(logω(sm))2. (2)

Now logω(sm) ≤ log(3 log n) and m > c(log n)2 so that log log n = O(logm). Thus

(2) implies that there is a positive constant c4 with

|S| ≥ c4m/(logm)2. (3)

Lemma 2. The number of integers i ∈ I with im > exp((logm)4) is O(m/(logm)3).

Proof. We have∑
i∈I

log im =
∑

2<p≤m

log p
∑
i∈I
p | i

1 ≤ 2m
∑
p≤m

log p

p
= O(m logm),

by an inequality of Chebyshev. Thus, the lemma follows.

Using (3), Lemma 2 implies that there is a member s of S with sm ≤ e(logm)4 .

Thus, by (2), we now can assume that there is a positive constant c5 with

|S| ≥ c5
m

(log logm)2
. (4)

Lemma 3. The number of integers i ∈ I with

f(i) :=
∑
p | i

logm<p≤m

1

p
>

(log logm)2

logm

is at most O(m/(log logm)3).

Proof. We have∑
i∈I

f(i) =
∑

logm<p≤m

1

p

∑
i∈I
p | i

1 ≤ 2m
∑

logm<p≤m

1

p2
= O

(
m

logm log logm

)
.

The lemma follows.

With Lemmas 2 and 3, (4) implies that there is a positive constant c6 such that

there are at least (1 − c6/ log logm)|S| members s of S with sm ≤ e(logm)4 and

f(s) ≤ (log logm)2/ logm. For a positive integer k, let

k0 = klogm =
∏
p | k

2<p≤logm

p.
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For any s as above, the number of members of J coprime to s0 is∑
d | s0

µ(d)
∑
j∈J
d | j

1 ≥
∑
d | s0

(
µ(d)

m

d
− 1
)

=
ϕ(s0)

s0
m− 2ω(s0).

Now ω(s0) < π(logm) = o(logm), so that 2ω(s0) = mo(1), and on the other hand,

mϕ(s0)/s0 = Ω(m/ log logm). Thus, J contains at least 0.99mϕ(s0)/s0 integers

coprime to s0. The number of members of J coprime to s0 but not coprime to sm
is at most ∑

p | s
logm<p≤m

(
m

p
+ 1

)
≤ 2mf(s).

Since f(s) ≤ (log logm)2/ logm, J contains at least 0.98mϕ(s0)/s0 integers coprime

to sm, and thus, as above, at least 0.97mϕ(s0)/s0 integers 2-coprime to s. And, as

we have seen, this holds for at least (1− c6/ log logm)|S| members s of S.

We use the next result (cf. [8, Prop. 3]) to show that it is unusual for an element

i ∈ I to have i0/ϕ(i0) large.

Lemma 4. For m sufficiently large, we have∑
i∈I

(
i0

ϕ(i0)
− 1

)
<

3

10
m.

Proof. We have
k

ϕ(k)
=
∑
d | k

µ(d)2

ϕ(d)
.

Let P denote the product of the odd primes p ≤ logm. Thus,∑
i∈I

i0
ϕ(i0)

=
∑
i∈I

∑
d | i0

µ(d)2

ϕ(d)
=
∑
d |P

1

ϕ(d)

∑
i∈I
d | i

1

≤
∑
d |P

m/d+ 1

ϕ(d)
= m

∑
d |P

1

dϕ(d)
+
∑
d |P

1

ϕ(d)

= m
∏
p |P

(
1 +

1

p(p− 1)

)
+
∏
p |P

p

p− 1
. (5)

Note that ∏
p

(
1 +

1

p(p− 1)

)
=
ζ(2)ζ(3)

ζ(6)
< 1.944,

where ζ is the Riemann zeta-function. The first product in (5) is missing the prime

2, so it is < (2/3)1.944 = 1.296. Extending the second product in (5) over all
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integers in [2, logm], we see that it is ≤ logm. Thus,∑
i∈I

i0
ϕ(i0)

< 1.296m+ logm,

and the lemma follows for all sufficiently large m.

Corollary 4. For all sufficiently large integers m and for any real number t > 1,

the number of i ∈ I with i0/ϕ(i0) > t is at most 0.3m/(t− 1).

Proof. Let N denote the number of integers i in question. Lemma 4 implies that

N(t− 1) < 3m/10.

Let r = m/|S|, so that r ≥ 2. We apply Corollary 4 with t = 0.9r, and we deduce

that the number of i ∈ I with i0/ϕ(i0) > 0.9r is ≤ 0.3m/(0.9r − 1) ≤ 3m/(8r) =
3
8 |S|. Thus, more than 5

8 of the members s of S have s0/ϕ(s0) ≤ 0.9r. Further, we

have seen above that at least (1 − c6/ log logm)|S| members s of S are 2-coprime

to at least 0.97mϕ(s0)/s0 members of J . Thus, at least (5/8 − c6/ log logm)|S|
members s of S have this property and also s0/ϕ(s0) ≤ 0.9r. Let s be one such

element. There are at least 0.97m/(0.9r) elements j of J that are 2-coprime to s.

Now 0.97m/(0.9r) > 1.07m/r = 1.07|S|, and |T | = m − |S|. Thus some of these

values of j must be in T , completing the proof of Proposition 1.
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