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Abstract. Consider the Laplacian operator on a bounded open domain in
Euclidean space with Dirichlet boundary conditions. We show that for each

number D with 1 < D < 2, there are two bounded open domains in R2 of the
same area, with their boundaries having Minkowski dimension D, and having

the same content, yet the secondary terms for the eigenvalue counts are not

the same. This was shown earlier by Lapidus and the second author, but a
possible countable set of exceptional dimensions D were excluded. Here we

show that the earlier construction has no exceptions.

1. Introduction

Let Ω be a nonempty, bounded open set in R2. We consider eigenvalues for the
Laplacian operator ∆ = ∂2/∂x2 + ∂2/∂y2 for the closure in the Sobolev space of
smooth functions with compact support, which are 0 on ∂Ω. It is well-known that
the nonzero eigenvalues are negative, forming a discrete multiset, with each multi-
plicity bounded. By convention we consider the absolute value of these eigenvalues
and label them 0 < λ1 ≤ λ2 ≤ . . . . Let

N(λ; Ω) =
∑
m≥1
λm≤λ

1

denote the counting function of the λm’s.
Weyl’s classical asymptotic formula for N(λ; Ω),

(1.1) N(λ; Ω) ∼ |Ω|2
4π

λ, λ→∞,

is now known for arbitrary Ω, see [1], [12]. Weyl conjectured that if ∂Ω is suf-
ficiently regular then there is a secondary term in (1.1) that is asymptotically a
constant depending on the one-dimensional measure of ∂Ω times λ1/2. Ivrii (see
[7]) essentially proved this conjecture.

There remains the issue of when ∂Ω is not sufficiently regular, in particular
if the boundary has a fractal dimension larger than 1. In 1979, Berry suggested
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a modified Weyl conjecture with a secondary term for N(λ; Ω) proportional to a
constant times λd/2, where d is the Hausdorff dimension of ∂Ω.

However, the Hausdorff measure of ∂Ω depends on the relative placement of the
connected components of Ω in the ambient space, yet the eigenvalues do not care
about this placement, so the Berry conjecture cannot strictly be true, see Lapidus
[8]. Brossard and Carmona [2] had earlier demonstrated a specific counterexample
to the Berry conjecture, and suggested instead that the Minkowski dimension D of
∂Ω is the more appropriate parameter. In fact, it was shown in [8] (also see [9])
that if ∂Ω has Minkowski dimension D with 1 < D < 2 and finite upper Minkowski
content in this dimension, then the error in (1.1) is O(λD/2). This led Lapidus [8]
to conjecture that if in addition it was assumed that ∂Ω is Minkowski measurable
in dimension D, then there would be a secondary term in (1.1) of the form cλD/2,
with c a positive constant depending on the Minkowski content of ∂Ω.

The analogue of this modified Weyl–Berry conjecture for regions in R1 was
subsequently proved in [10], with a simplified proof given in [5]. However, for
dimension 2 the conjecture is false in general. If a set of Newtonian capacity zero is
removed from a given domain, the eigenvalues are not changed, yet the Minkowski
dimension and content can be altered by strategically choosing which set of capacity
zero to remove. This idea was developed in [6] and [11]. However, this behavior
seems to be simple to bar with a further modification of the Weyl–Berry conjecture
by stating it in terms of the “intrinsic” Minkowski dimension of the boundary,
where we take the infimum of Minkowski dimensions of the boundaries of domains
that agree up to a set of Newtonian capacity 0, and also the “intrinsic” Minkowski
content, defined in the same way.

A more compelling counterexample was given in [11], involving sprays of the
1 × 1 unit square and of the 1 × 2 rectangle. (A “spray” is a disjoint union of
similar copies of some given simple region with bounded total area.) However, the
argument in [11] was not sufficient to give a counterexample for all Minkowski
dimensions D with 1 < D < 2, but rather for all but a possible countable set. In
this note we show that the construction in [11] actually works for every D with
1 < D < 2: there are no exceptions.

As in [11], the counterexample extends in a natural way to higher-dimensional
ambient spaces Rn for n ≥ 2.

Our argument involves getting precise formulations of the coefficient of the
secondary terms for N(λ; Ω) for our two domains Ω in terms of the Riemann zeta-
function and the Dedekind zeta-function for the quadratic field Q(i). We then
show that these two functions are different for all D with 1 < D < 2. Along the
way we prove some results of perhaps independent interest about the zeta-functions
involved. For example, we show that (s− 1)ζ(s) is monotone for real s ≥ 1/2. We
show the same for L(s, χ), where χ is the quadratic Dirichlet character mod 4.

2. Our domains

Fix an arbitrary number D with 1 < D < 2. Our first domain, denoted Ω1,
is the disjoint union of the j−1/D × j−1/D open squares for j = 1, 2, . . . arranged
in the plane so that they don’t overlap and sit inside a large disc. (It is routine to
show that such an arrangement is possible; for a particularly efficient packing, see
Moon and Moser [13].)
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Let a be the positive real number (2/(D + 2))1/D and let Ω′2 be the disjoint
union of the aj−1/D×2aj−1/D rectangles for j = 1, 2, . . . also arranged in the plane
so that they don’t overlap and sit inside a large disc.

The area of Ω1 is ζ(2/D), where ζ is the Riemann zeta-function. The area of
Ω′2 is 2a2ζ(2/D). Note that since 1 < D < 2, we have 2a2 < 1, so that the area of
Ω′2 is smaller than the area of Ω1. Let Ω2 be the disjoint union of Ω′2 and a square
of area (1− 2a2)ζ(2/D). Thus, Ω1 and Ω2 have the same area.

As in [11], we have that the boundaries of Ω1 and Ω2 both have Minkowski
dimension D with Minkowski content in dimension D of 23−D(2−D)−1(D− 1)−1.

Let ζ1(s) be the spectral zeta-function for the 1 × 1 square and let ζ2(s) be
the spectral zeta-function for the a × 2a rectangle. Also let N(λ; Ωi) denote the
counting function of the eigenvalues for the Dirichlet Laplacian on Ωi, for i = 1, 2.
From [11, Theorem 3.2] we have

(2.1) N(λ; Ωi) =
1

4π
ζ(2/D)λ+ (ζi(D/2) + o(1))λD/2, λ→∞,

for i = 1, 2. Note that the eigenvalues for the additional square tacked on to Ω′2
affect the main term for N(λ; Ω2) (and is taken into account in (2.1)) and create
an error of O(λ1/2), which is negligible. That is, these eigenvalues are invisible to
the secondary term.

The argument in [11] depended on ζ1, ζ2 being non-identical analytic functions,
and so the secondary term coefficients in (2.1) could agree for at most countably
many D in (1, 2). Our goal in this paper is to show that they actually are unequal
for all D in (1, 2). Towards this end, we obtain explicit descriptions of the spectral
zeta-functions ζ1, ζ2.

3. Our spectral zeta-functions

The eigenvalues for the 1× 1 square are the numbers π2(m2 + n2) where m,n
run over positive integers. Thus,

ζ1(s) =
∑
m,n>0

1

π2s(m2 + n2)s
.

This function resembles the Dedekind zeta-function for the Gaussian field Q(i),
namely

ζQ(i)(s) =
∑
I6=0

1

N(I)s
=

1

4

∑
(m,n)6=(0,0)

1

(m2 + n2)s
,

where I runs over the nonzero ideals of Z[i]. For a pair m,n > 0 that we see in
ζ1(s), there are 4 corresponding terms (±m,±n) giving the same value to m2 +n2,
and this 4-fold appearance in the last sum is compensated by the 1

4 in front of it.
In addition, ζQ(i)(s) has terms coming from pairs (±m, 0) and (0,±n) that have no
counterpart in ζ1(s). These extra terms contribute ζ(2s) to ζQ(i)(s). Thus,

(3.1) π2sζ1(s) = ζQ(i)(s)− ζ(2s).

Let χ be the Dirichlet character mod 4; that is χ is defined on all integers n,
with χ(n) = 0, 1,−1 depending, respectively, on whether n is even, n ≡ 1 (mod 4),
n ≡ −1 (mod 4). Consider the L-function

L(s, χ) =

∞∑
n=1

χ(n)

ns
.
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We know that L(s, χ) is an entire function, and the series for it converges uniformly
on compact subsets of <s > 0. It is of interest to us via the formula

(3.2) ζQ(i)(s) = ζ(s)L(s, χ).

Now we look at ζ2(s). We take a as in the last section. We have the eigenvalues
a−2π2(m2 +n2/4), where m,n > 0 are integers. We find it more convenient to work
with 4−sa−2sπ2sζ2(s), giving us

4−sa−2sπ2sζ2(s) =
∑
m,n>0

1

(4m2 + n2)s
.

Let r2(k) be the number of representations of k as 4m2 +n2 with m,n > 0. Further,
let r(k) denote the number of representations of k as m2 + n2, where m,n are any
integers. We have∑

m,n>0

1

(4m2 + n2)s
=

∞∑
k=1

r2(k)

ks
,

∑
(m,n) 6=(0,0)

1

(m2 + n2)s
=

∞∑
k=1

r(k)

ks
.

Here are some observations on r2(k). First note that for k ≡ 2 (mod 4), we
have r2(k) = 0, since squares are never 2 (mod 4). Next note that for k odd, a
representation of k as a sum of two squares must have one of the squares even and
one odd. From this we see that

r2(k) =

{
1
8r(k), k not a square,
1
8r(k)− 1

2 , k is a square.

Indeed, if m,n > 0 and k = 4m2 + n2 with n odd, then there are 8 corresponding
representations of k as a sum of two squares, namely (±2m,±n), (±n,±2m). The
expression 1

8r(k) also counts an additional 1
2 if k is a square, so the formula holds

for odd k.
Now consider even values of k, so as we have seen, we may assume that 4 | k.

We claim in this case that we have

r2(k) =

{
1
4r(k/4), k not a square,
1
4r(k/4)− 1, k is a square.

Indeed, a representation of k as 4m2 + n2 has n even, so that k/4 = m2 + (n/2)2.
Further, a pair m,n with m,n > 0 gives rise to 4 signed representations of k/4.
In addition, there are 4 additional representations of k/4 as a sum of two squares
when k is a square. So 1

4r(k) needs to be decreased by 1 in this case.
Putting these thoughts together, we have

4−sa−2sπ2sζ2(s) =

∞∑
k=1

r2(k)

ks

=
∑
k>0
k odd

(
r(k)/8

ks
− 1/2

k2s

)
+
∑
k>0
4|k

(
r(k/4)/4

ks
− 1

(k/2)2s

)

=
1

2

∑
k>0
k odd

r(k)/4

ks
+ 4−sζQ(i)(s)−

1

2
ζ(2s)− 1

2
2−2sζ(2s).
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Figure 1. Mathematica plot of the right-hand side of (4.1) on (1/2, 1).

Now, r(k)/4 is multiplicative, and the local factor corresponding to the prime 2 in
the Euler product for ζQ(i)(s) is (1− 2−s)−1, so that

1

2

∑
k>0
k odd

r(k)/4

ks
=

1

2
(1− 2−s)ζQ(i)(s).

Thus, with the above calculation, we have

4−sa−2sπ2sζ2(s) =

(
1

2
− 2−1−s + 4−s

)
ζQ(i)(s)−

1

2
(1 + 4−s)ζ(2s),

so

a−2sπ2sζ2(s) =
(
22s−1 − 2s−1 + 1

)
ζQ(i)(s)−

1

2
(4s + 1)ζ(2s).

We have proved the following result.

Proposition 3.1. With the notation defined earlier, we have

π2sζ1(s) = ζQ(i)(s)− ζ(2s),

a−2sπ2sζ2(s) = (22s−1 − 2s−1 + 1)ζQ(i)(s)−
1

2
(4s + 1)ζ(2s).

4. Are they equal?

Our task is to show that ζ1(D/2) 6= ζ2(D/2) for 1 < D < 2. With s = D/2 we
have a−2s = D/2 + 1 = s+ 1. So, from Proposition 3.1, we would like to show that

(4.1) (s+1)π2s(ζ1(s)−ζ2(s)) = (s−22s−1+2s−1)ζQ(i)(s)−
(
s+

1

2
− 22s−1

)
ζ(2s)

is nonzero for 1
2 < s < 1. In Figure 1 we present a Mathematica plot of the

expression in (4.1), and though it is close to 0, one can plainly see that it is not 0.
Is this a proof? Not quite, since there may conceivably be some wild gyrations of
the functions between the discrete points used by Mathematica to form the plot.
In this section we give the details necessary to prove that the expression in (4.1) is
negative for s in (1/2, 1).

We begin with the following result.

Proposition 4.1. The function (s− 1)ζ(s) is increasing on [1/2,∞).
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Proof. For <s > 0, s 6= 1, we have

(4.2) ζ(s) =
s

s− 1
− s

∫ ∞
1

x−1−s{x} dx,

where {x} = x−bxc is the fractional part of x. For <s > 1, this well-known formula
follows from the definition of ζ(s) as a Dirichlet series and partial summation; for
<s > 0, s 6= 1, it follows by analytic continuation. The same argument applied to

ζ ′(s) =

∞∑
n=1

−n−s log n,

gives us

ζ ′(s) =
−1

(s− 1)2
−
∫ ∞

1

(−sx−1−s log x+ x−1−s){x} dx

for <s > 0, s 6= 1. Thus,

((s− 1)ζ(s))′ = ζ(s) + (s− 1)ζ ′(s)

= 1−
∫ ∞

1

(−s(s− 1)x−1−s log x+ (2s− 1)x−1−s){x} dx.

(This identity can also be obtained by differentiating s − 1 times the equation in
(4.2).) The integrand is positive for s ∈ (1/2, 1), so replacing {x} with 1 gives a
lower bound on this interval. That is,

((s− 1)ζ(s))′ > 1−
∫ ∞

1

−s(s− 1)x−1−s log x+ (2s− 1)x−1−s dx = 0,

and the proposition is proved for the interval [1/2, 1].
We now deal with the range s ≥ 1. We have, as is easy to see,

(1− 21−s)ζ(s) =

∞∑
n=1

(−1)n−1n−s.

Let h(s) be the sum of the first 5 terms of this series, and let hk(s) = −k−s + (k+
1)−s, so that

(1− 21−s)ζ(s) = h(s) +

∞∑
k=3

h2k(s).

It is easy to see that for k ≥ 3, the function hk(s) is increasing for s ≥ 1. (The
derivative is k−s log k − (k + 1)−s log(k + 1) and this is positive on s ≥ 1 when
(k + 1)/k > log(k + 1)/ log k, which holds for k ≥ 3.) We now show that h(s) is
also increasing for s ≥ 1.

We have

3sh′(s) =

(
3

2

)s
log 2− log 3 +

(
3

4

)s
log 4−

(
3

5

)s
log 5.

Call this function g(s). Then

g′(s) =

(
3

2

)s
log

3

2
log 2−

(
3

4

)s
log

4

3
log 4 +

(
3

5

)s
log

5

3
log 5.

It is easy to check that the sum of the first two terms here is positive for s ≥ 1, it
only involves checking that (log 4

3 log 4)/(log 3
2 log 2) < 2. So, g′(s) > 0 for s ≥ 1,

which in turn implies that g(s) is increasing for s ≥ 1. But g(1) > 0, so we have
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g(s) > 0 for s ≥ 1, which in turn implies that h(s) is increasing for s ≥ 1. Thus,
(1− 21−s)ζ(s) is increasing for s ≥ 1.

It suffices now to show that (s − 1)/(1 − 21−s) is increasing and positive for
s > 1. It is clearly positive. Letting x = s− 1 and taking the derivative, we get

1− 2−x − x2−x log 2

(1− 2−x)2
=

2x − 1− x log 2

2x(1− 2−x)2
,

which is seen to be positive by using the Taylor expansion for 2x in the numerator.
This completes the proof. �

We also need a monotonicity result for L(s, χ).

Proposition 4.2. The function L(s, χ) is increasing on [1/2,∞).

Proof. Write L(s, χ) = −f1(s) + f2(s) + f3(s), where f1(s) = −(1 + 1/5s +
1/9s + · · ·+ 1/49s), f2(s) = −(1/3s + 1/7s + · · ·+ 1/47s), and

f3(s) =

∞∑
j=13

(
−1

(4j − 1)s
+

1

(4j + 1)s

)
.

Let s ≥ 1/2. We have

f ′3(s) =

∞∑
j=13

(
log(4j − 1)

(4j − 1)s
− log(4j + 1)

(4j + 1)s

)
.

The function x 7→ (log x)x−s is decreasing for x > e1/s, and thus for all x ≥
8. Hence, each summand in f ′3(s) is positive, and so f ′3(s) > 0. Therefore, the
proposition will follow if f ′2(s)− f ′1(s) > 0 for all s ∈ [1/2, 1].

We give a computer-assisted proof of this last inequality. Observe that

f ′2(s) = log(3)/3s + log(7)/7s + · · ·+ log(47)/47s

while

f ′1(s) = log(5)/5s + log(9)/9s + · · ·+ log(49)/49s.

In particular, both f ′1(s) and f ′2(s) are decreasing on [1/2, 1]. To verify that f ′2(s)−
f ′1(s) > 0 on all of [1/2, 1], partition [1/2, 1] into N := 104 equal-length subintervals
[xi, xi+1] for i = 0, . . . , N − 1, where each xi = 1/2 + i/(2N). The minimum of
f ′2(s) − f ′1(s) on [xi, xi+1] is bounded below by f ′2(xi+1) − f ′1(xi). Using gp/pari,
one can easily check that f ′2(xi+1)− f ′1(xi) > 0.004 for all i = 0, . . . , N − 1.

This shows that L(1, χ) is increasing on [1/2, 1]. To complete the proof, fix
s ≥ 1 and note that since log(x)/xs is decreasing for x ≥ 3, it follows that L′(s, χ)
is positive. Hence L(s, χ) is increasing on [1/2,∞). �

Remark. There is an alternative approach to Propositions 4.1 and 4.2 based
on the Hadamard product decompositions of ζ(s) and L(s, χ). We discuss how
this goes for L(s, χ) first, since the argument is slightly more involved than for
(s− 1)ζ(s).

We start from the formula for L′

L found as equation (17) on p. 83 of [4]. This
gives that for all real s,

(4.3)
L′(s, χ)

L(s, χ)
− L′(0, χ)

L(0, χ)
=

1

2

Γ′(1/2)

Γ(1/2)
− 1

2

Γ′( s2 + 1
2 )

Γ( s2 + 1
2 )

+
∑
ρ

<
(

1

s− ρ
+

1

ρ

)
,
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where ρ runs over the zeros of L(s, χ) in the critical strip 0 ≤ <(s) ≤ 1. (If we did
not take real parts in the last summand, then (4.3) would hold for all complex s.)
When s > 0, we have <( 1

s−ρ + 1
ρ ) ≥ 0 as long as

(4.4) <(ρ)(s−<(ρ)) + =(ρ)2 > 0.

Restrict now to real s > 0. Then <(ρ)(s − <(ρ)) ≥ −1. To get a handle on =(ρ),
we compare eq. (17) of [4, p. 83], taken at s = 0, with eq. (18) from the same
page; this yields

L′(0, χ)

L(0, χ)
+

1

2
log

4

π
+

1

2

Γ′(1/2)

Γ(1/2)
= −

∑
ρ

<1

ρ
.

From [3, Corollary 10.3.2, p. 188 and Proposition 10.3.5, pp. 189–190], we have

L′(0, χ) = log Γ(1/4)
2·Γ(3/4) and L(0, χ) = 1

2 . It follows that

(4.5)
∑
ρ

<1

ρ
= 0.0777839 . . . .

Note that each term in this sum is nonnegative. We now take the subsum of (4.5)
where <ρ ≥ 1

2 . If ρ is any zero in the critical strip, then 1 − ρ is also a zero with
the same imaginary part. So our subsum consists of all zeros on the critical line
and for each zero in the critical strip not on the critical line, we take the member
of the pair ρ, 1− ρ with the larger real part. Now

<1

ρ
+ <1

ρ
=

2 · <ρ
(<ρ)2 + (=ρ)2

≥ 1

1 + (=ρ)2
.

Since ρ and ρ are both nontrivial zeros of L(s, χ), (4.5) implies that |=ρ| > 3.4.
Thus, (4.4) holds for s > 0 (for every ρ). Consequently, the sum on ρ in (4.3) is
nonnegative for these values of s. Turning to the digamma terms, recall that

−Γ′(z)

Γ(z)
=

1

z
+ γ +

∞∑
k=1

(
1

z + k
− 1

k

)
;

this follows, e.g., by logarithmically differentiating equation (2) on p. 73 of [4].

Hence, −Γ′(z)
Γ(z) is a decreasing function of z for real z > 0. Therefore, when 0 < s ≤

1,

1

2

Γ′(1/2)

Γ(1/2)
− 1

2

Γ′( s2 + 1
2 )

Γ( s2 + 1
2 )
≥ 1

2

(
Γ′(1/2)

Γ(1/2)
− Γ′(1)

Γ(1)

)
= log

1

2
.

(Here the final equality can be obtained from the partial fraction expansion of
digamma given above.) Plugging back into (4.3), we deduce that for 0 < s ≤ 1,

L′(s, χ)

L(s, χ)
≥ 2 log

Γ(1/4)

2 · Γ(3/4)
+ log

1

2
.

This last expression is larger than 0.09, and in particular is positive. Since L(s, χ) >
0 for s > 0, it follows that L′(s, χ) > 0 on (0, 1]. Thus, with the final step in the
proof of Proposition 4.2 we have L(s, χ) increasing on [0,∞).

A similar method will show that (s−1)ζ(s) is increasing on (0,∞). Notice that

for s > 0, we have ((s − 1)ζ(s))′ > 0 exactly when ζ′(s)
ζ(s) + 1

s−1 > 0 . Eq (7) on p.
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80 of [4], combined with the expression for B on p. 81, shows that for all real s,

ζ ′(s)

ζ(s)
+

1

s− 1
= −1

2
γ − 1 + log(2π)− 1

2

Γ′( s2 + 1)

Γ( s2 + 1)
+
∑
ρ

<
(

1

s− ρ
+

1

ρ

)
,

where ρ now runs over the nontrivial Riemann zeta zeros. As remarked on p. 82
of [4], |=ρ| > 6 for all ρ. (It is known in fact that |=ρ| > 14.) It follows from our

earlier arguments that the the sum on ρ is nonnegative for all s > 0. Since −Γ′(z)
Γ(z)

is decreasing for real z > 0, we deduce that for 0 < s ≤ 4,

ζ ′(s)

ζ(s)
+

1

s− 1
≥ −1

2
γ − 1 + log(2π)− 1

2

Γ′(3)

Γ(3)
> 0.08.

It remains to show that (s−1)ζ(s) is increasing for s > 4. Using the idea at the end
of the proof of Proposition 4.1, it suffices to show that (1− 21−s)ζ(s) is increasing
in this range of s. Now ((1−21−s)ζ(s))′ = log(2)/2s− log(3)/3s+ . . . . When s > 4,
the terms log(x)/xs are decreasing for x ≥ 2. Hence, ((1− 21−s)ζ(s))′ > 0.

Remark. Concerning specifically Proposition 4.1, Harold Diamond has shown
us a proof by somewhat different methods that (s−1)ζ(s) is monotone for s ≥ −2.5,
which is nearly best possible.

Referring back to (4.1), we see that

(s+ 1)π2s(ζ1(s)− ζ2(s)) = (s− 22s−1 + 2s−1)ζQ(i)(s)−
(
s+

1

2
− 22s−1

)
ζ(2s)

=
22s−1 − s− 1

2

s− 1
2

· 1

2
(2s− 1)ζ(2s)− (s− 22s−1 + 2s−1)

1− s
(s− 1)ζ(s)L(s, χ).(4.6)

Each of 1
2 (2s − 1)ζ(2s), (s − 1)ζ(s), and L(s, χ) is positive on [1/2, 1], and our

work above shows that these functions are increasing there. The next proposition
supplies the corresponding results for the remaining factors in (4.6).

Proposition 4.3. Both of the functions

s− 22s−1 + 2s−1

1− s
and

22s−1 − s− 1
2

s− 1
2

are positive and increasing on (0,∞). (We assume here that the discontinuities
have been filled in to make the functions continuous.)

Proof. We first prove that both functions are increasing on the entire real
line. We begin by recalling a fact from calculus about convex functions: Suppose
that g is a C2 function on an open interval I. For each x, y ∈ I, put

S(x, y) =

{
g(x)−g(y)
x−y if x 6= y,

g′(x) if x = y.

If g′′ > 0 on I, then S(x, y) is increasing separately in both x, y. Applying this
with g(x) = 22x−1 − x − 2x−1 and x = 1, y = s shows that the first function is
increasing. To handle the second function, take g(x) = 22x−1 − x − 1/2, and look
at x = s, y = 1/2. Since both functions vanish at 0, their positivity on (0,∞) is
now immediate. We remark that this calculus fact could also have been used for
the last step in the proof of Proposition 4.1. �

We can now prove our main result.
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Proof that ζ1(s) 6= ζ2(s) for 1/2 < s < 1. Let F (s) denote the first term
on the right-hand side of (4.6), and let G(s) denote the second, subtracted term.
Then F and G are positive, increasing functions on [1/2, 1]. We will prove that
F − G < 0 on [1/2, 1] by the same method employed in the proof of Proposition
4.2. We partition [1/2, 1] into N := 50 equal length intervals [xi, xi+1] for i =
0, 1, . . . , N − 1, with each xi = 1/2 + i/(2N). The maximum of F −G on [xi, xi+1]
is at most F (xi+1)−G(xi). Using Mathematica, one easily computes that each of
these differences is smaller than −0.001. �
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