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Our story begins with Alphonse de Polignac, 1817–1890.

He is known principally for two conjectures, made in 1849.

(1) Every positive even number is the difference of two

consecutive primes in infinitely many ways.

(2) Every odd number is of the form 2n + p, where p = 1 or p is

prime.

Actually these were announced as theorems. And not only

theorems, but the second one was claimed to have been

verified up to 3,000,000.
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On (1), even leaving out “consecutive” and “infinitely many
ways” we still don’t know if every even number is the difference
of two primes. But probably de Polignac was correct, his
conjecture is widely believed, but still unproved. We do know
that most even numbers are the difference of two primes at
least once, but the only number proved to be the difference of
two primes infinitely often is 0.

But conjecture (2) is clearly nonsense. The number 1 is not of
the form 2n + p. OK, say we start at 3:

3 = 20+2, 5 = 21+3, 7 = 21+5, 9 = 21+7, 11 = 22+7, . . . .

But try 127:

127− 20 = 126, 127− 21 = 125, 127− 22 = 123,

127− 23 = 119, 127− 24 = 111, 127− 25 = 95, 127− 26 = 63.
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As is not uncommon, de Polignac had been preceded by Euler.
And Euler had known about 127 being a counterexample.
Since 127 is not only prime, but a Mersenne prime, Euler
wondered if that were a clue. But he found the composite
number 959 as a counterexample as well, and concluded that
perhaps there was not much to be discovered here.

Leonhard Euler
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So why might we consider this an interesting problem?

Lets try counting. Let A(x) denote the number of pairs 2n, p,
where n ≥ 1, p is 1 or an odd prime, and 2n + p ≤ x. That is,
we have a function that sends a pair n, p to an odd integer in
[1, x]. We know there are (about) 1

2x odd numbers to x. What
is the size of the domain of this function?

For each odd prime p < x, we can count the number of powers
of 2 up to x− p. This is blog2(x− p)c, where the subscript 2
indicates a base-2 log. And

A(x) =
∑
p<x

blog2(x− p)c ∼
1

log 2
x.

Now 1
log 2 = 1.442 · · · > 1

2, so maybe we should conjecture that
almost all odds in [1, x] are covered?
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Or maybe we should conjecture that the number of odds in

[1, x] not of the form 2n + p is ∼ cx where

c =
1

2
e−2/ log 2 = 0.0279 . . . .

(This would be so for a random map from a set of size 1
log 2x to

a set of size 1
2x.)

Can we at least prove that a positive proportion of odd

numbers are indeed of the form 2n + p?

Romanoff (1934). Yes we can.

He did this using Cauchy’s inequality and a sieve result

counting quadruples n, n′, p, p′ with 2n + p = 2n′ + p′ ≤ x.
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So, many numbers can be represented as 2n + p, what about

odd numbers like 127 and 959 that cannot be so represented?

Enter Paul Erdős and Johannes van der Corput. In 1950 they

published (independent) proofs that in fact a positive

proportion of odds are not of the form 2n + p.

J. van der Corput, Over het vermoeden van de Polignac,

Simon Stevin, 27 (1950), 99–105.

P. Erdős, On integers of the form 2k + p and some related

problems, Summa Brasil. Math. 2 (1950), 113–123.
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Erdős. There is an arithmetic progression of odd numbers, no

term of which is of the form 2n + p.

Proof. Every integer satisfies at least one of

0 (mod 2), 0 (mod 3), 1 (mod 4),

3 (mod 8), 7 (mod 12), 23 (mod 24).

So, if m is in the residue class determined by

1 (mod 3), 1 (mod 7), 2 (mod 5),

23 (mod 17), 27 (mod 13), 223 (mod 241),

then for any n, we have that m− 2n is divisible by one of the

primes 3, 5, 7, 13, 17, 241.
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It is difficult to make out van der Corput’s proof, at least for
me, it being largely expository, floridly written, and in Dutch.
There also appears to be a mistake in the argument, which is
only carefully worked out in a base case, and generalized with a
flourish. It is possible to generalize the argument correctly, and
it can be summed up as using a combination of the two ideas
we’ve looked at: the pigeon-hole principle and a covering.

We saw the pigeon-hole failed because the number of pairs n, p

that map to odd numbers 2n + p ≤ x, namely 1
log 2x, is larger

than 1
2x. Van der Corput notes that if 2n + p ≡ 1 (mod 3), then

either n is even and p = 3 (a negligible case) or n is odd and
p ≡ 2 (mod 3). Thus we’ve cut down the domain by a factor 4,
and the range by a factor 3.

This is not enough, but it’s progress.
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Say we also ask for 2n + p ≡ 2 (mod 5). We are already

restricting to n odd, so n ≡ 1 or 3 (mod 4). If n ≡ 1 (mod 4),

then p = 5, a negligible case, so that we can reduce to n ≡ 3

(mod 4) and p ≡ −1 (mod 5). We’ve cut down the domain by

a further factor of 2× 4 = 8, and the range by a factor 5.

Is this enough?

We’re now looking at pairs n, p where n ≡ 3 (mod 4) and

p ≡ −1 (mod 15), and these map to odd integers in the residue

class 7 (mod 15).

No, 1
log 2 ·

1
4 ·

1
8 = .045 . . . > 1

2 ·
1

15 = .033 . . . .
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Lets also bring in the prime 17, and say we try and hit odd

numbers of the form 2n + p ≡ 127 (mod 255).

We have seen that but for some negligible cases, we must have

n ≡ 3 (mod 4) and p ≡ −1 (mod 15). But 127 ≡ 8 (mod 17),

so if n ≡ 3 (mod 8), then p = 17, which is neglible. We may

thus assume n ≡ 7 (mod 8) and p ≡ −1 (mod 17).

Our domain now consists of pairs n, p with n ≡ 7 (mod 8) and

p ≡ −1 (mod 255), while the range consists of odd numbers

that are 127 (mod 255).

And 1
log 2 ·

1
8 ·

1
ϕ(255) = .001408 . . . < 1

2 ·
1

255 = .001960 . . . .
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So this does it, via a partial covering and the pigeon-hole

principle:

Van der Corput: There is a positive proportion of odd

numbers that are not of the form 2n + p.

We now ask about this proportion. Van der Corput tells us that

it is at least

1

2
·

1

255
−

1

log 2
·

1

8

1

ϕ(255)
≈ 5.52× 10−4.

While Erdős tells us it is at least

1

2
·

1

3
·

1

5
·

1

7
·

1

13
·

1

17
·

1

241
≈ 8.94× 10−8.
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Both arguments can be improved to achieve a larger density.

First, in the Erdős argument, using the same primes, there are

several ways of choosing the residue classes. It is the exponents

n that are covered, and this can be done with 2 choices mod 2,

2 further choices mod 4, 2 further choices mod 8, 3 choices

mod 3, 2 choices mod 12, and 1 choice mod 24. That is,

8.94× 10−8 is to be multiplied by 48, giving a density of

4.29× 10−6.

There are also other coverings that might be used, but it

seems the van der Corput argument is the way to go.
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With van der Corput, there are also multiple ways to achieve

the same ends, and with modulus 255, there are 8 ways, so

that density is increased to 4.41× 10−3.

By bringing in the primes 7 and 13 that Erdős used as part of

his argument, we can increase the density to 7.47× 10−3.

Then bringing in 11, 31, and 41 (so that we start to consider

the exponent n (mod 5)), we increase further to 8.49× 10−3.

And bringing in 19, 37, and 73, we increase further to

8.84× 10−3.
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In 2006, L. Habsieger & X.-F. Roblot rediscovered van der

Corput’s method, and with the help of a large computer,

improved the above estimate of 8.84× 10−3, by about 2.4% to

9.05× 10−3.

Can one achieve density 10−2?

And what can we say about the density of numbers that can be

represented?

Recall that Romanoff showed that a positive proportion of

numbers are indeed of the form 2n + p.
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Romanoff did not work out a numerical value for the density,

but in the last decade, several papers addressed this issue:

Y. G. Chen & X.-G. Sun (2004): .0868

L. Habsieger & X.-F. Roblot (2006): .0933

J. Pintz (2006): .09368

G. Lü (2007): .09322
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We conclude that the density of odd numbers represented in

the form 2n + p is between .09368 and .49095.

Actually we don’t even know the density exists, so these are

bounds for the lower density and the upper density, respectively.

So, what is the truth? A small numerical experiment indicates

that perhaps the density is about .455.

It is interesting to reflect that even a totally wrong conjecture

(of de Polignac) can spur interesting work, and in this case, it

gave birth to the entire field of covering congruences.
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THANK YOU
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