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Abstract. A positive integer n is called cyclic if there is only
one group of order n up to isomorphism, and of course this group
must be cyclic. Every prime number is cyclic, but there are many
more cyclic numbers. It is perhaps natural to wonder if various
notorious conjectures about primes might be provable for cyclics.
This thought was taken up in a remarkable paper of Cohen [1],
where a number of conjectures about cyclic numbers were raised.
In this note we address a few of these conjectures, including an ana-
logue of the twin prime conjecture and an analogue of Goldbach’s
conjecture.

1. Introduction

A number n is said to be cyclic if all groups of order n are isomorphic
to a cyclic group of order n. The well-known criterion for n to be cyclic
is that gcd(n, ϕ(n)) = 1, where ϕ is Euler’s function, see the venerable
history of this result in [6]. Consider the set

N = {n : n = p2 or n = pq with p ≡ 1 (mod q)},
where p, q denote prime numbers. Evidently no member of N is cyclic,
and it is easy to see that every number that is not cyclic is divisible by
some member of N .

Let C(x) denote the number of cyclic numbers in [1, x] and let
w(x) = eγ log log log x for x ≥ 20, where γ is Euler’s constant. (For
completeness, we let w(x) = 1 for x < 20.) We know after Erdős that

C(x) ∼ x/w(x), x→∞.
The idea behind the proof is that most numbers n not divisible by any
prime ≤ log log n are cyclic and most numbers divisible by a prime
≤ log log n are not cyclic. The quantity log log n is crucial here, it is
shown in [3] that on a set of asymptotic density 1, gcd(n, ϕ(n)) is the
largest divisor of n composed solely of primes ≤ log log n.
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A number of interesting conjectures about cyclic numbers are raised
in the new paper Cohen [1]. Here we prove some of them. We first
prove an asymptotic result for the distribution of twin cyclics, defined
as a pair n, n + 2 with both numbers cyclic. (Note that the only even
cyclic number is 2.) The proof is similar to the proof of [6, Theorem
2.1].

In addition, we leverage the ideas in the proof to give an asymp-
totic for the number of representations of an even number as a sum of
two cyclic numbers that is very similar to the conjectured asymptotic
related to Goldbach’s conjecture.

We also discuss various finite patterns that admit or do not admit
infinitely many cases with all numbers being cyclic.

2. Twin cyclics

Let C2(x) denote the number of cyclic numbers n ≤ x such that n+2
is also cyclic. And let c2 denote the twin-prime constant

c2 =
∏
p>2

(
1− 1

(p− 1)2

)
.

It is conjectured by Hardy and Littlewood [4, Eq. 5.311] that P2(x),
the number of twin-primes ≤ x, is ∼ 2c2x/(log x)2. Here we prove an
asymptotic formula for C2(x).

Theorem 1. We have C2(x) ∼ 2c2x/w(x)2 as x→∞.

Proof. Let y = log log x, let ε = 1/ log log y, and let M denote the
product of the odd primes ≤ y1+ε. For the lower bound implicit in the
theorem, we first estimate

C ′2(x) =
∑
n≤x

gcd(n(n+2),2M)=1

1.

By a complete inclusion-exclusion argument, C ′2(x) is equal to∑
n≤x

gcd(n(n+2),2M)=1

1 =
∑
d|M

µ(d)
∑
n≤x
n odd

d|n(n+2)

1 =
∑

d1d2|M

µ(d1d2)
∑
n≤x
n odd

d1|n, d2|n+2

1,

where µ is the Möbius function. Using that d1d2 is squarefree, and
so gcd(d1, d2) = 1, the inner sum here is 1

2
x/d1d2 + O(1) where the

O-constant is uniform. Thus,

(1) C ′2(x) =
1

2
x
∑

d1d2|M

µ(d1d2)

d1d2
+O(3y

1+ε

),
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since the number of times we have the O(1) to account for is the number

of pairs d1, d2 with d1d2 | M , which is 3π(y
1+ε), with π the prime-

counting function. (Each prime p |M has 3 mutually exclusive choices:
divide d1, divide d2, divide M/d1d2.) By an elementary exercise, we
have∑
d1d2|M

µ(d1d2)

d1d2
=
∑
d|M

µ(d)

d

ϕ(M/d)

M/d
=
ϕ(M)

M

∑
d|M

µ(d)

ϕ(d)

=
∏
p|M

(
1− 1

p

)(
1− 1

p− 1

)
=
∏
p|M

(
1− 1

p

)2∏
p|M

(
1− 1

(p− 1)2

)
.

The above display, Mertens’ theorem, and the definition of c2 imply
that ∑

d1d2|M

µ(d1d2)

d1d2
∼ 4e−2γc2/(log y)2 = 4c2/w(x)2, x→∞.

Thus, from (1) we have C ′2(x) ∼ 2c2x/w(x)2 as x→∞.
For the lower bound it remains to show that very few such n do not

have both n and n+2 cyclic; that is, that C ′2(x)−C2(x) = o(x/w(x)2).
Suppose the least prime factor of n is > y1+ε. If n is not cyclic, it must
be divisible by some member of N , so divisible by p2 with p > y1+ε or
by some pq with p ≡ 1 (mod q) and q > y1+ε. The number of n ≤ x
in the first category is at most∑

p>y1+ε

x

p2
<

x

y1+ε
= o(x/w(x)2).

For the second category we use the Brun–Titchmarsh inequality (see
[5]) to sum 1/p over primes p ≡ 1 (mod q), 2q < p ≤ x/q, getting
� log log(x/q2)/q < y/q. Thus, the number of n ≤ x in the second
category is at most∑

q>y1+ε

∑
p≡ 1 (mod q)
2q<p≤x/q

x

pq
� x

∑
q>y1+ε

y

q2
<

x

yε
= o(x/w(x)2).

Thus, the number of n ≤ x with gcd(n, 2M) = 1 that are not cyclic
is o(x/w(x)2). Similarly, the number of n ≤ x with gcd(n + 2, 2M) =
1 that are not cyclic is o(x/w(x)2), so the number of n ≤ x with
gcd(n(n+ 2), 2M) = 1 with either n or n+ 2 not cyclic is o(x/w(x)2).
We thus conclude that

C2(x) ≥ (2c2 + o(1))x/w(x))2, x→∞.
We now prove the upper bound implicit in the theorem. Let M ′ be

the product of the odd primes p ≤ y1−ε. We will show that there are
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very few twin cyclics n, n+ 2 with gcd(n(n + 2), 2M ′) > 1 and by the
arguments above, this will suffice.

Suppose that q | n where q ≤ y1−ε. If q - ϕ(n), then n is not divisible
by any prime p ≡ 1 (mod q). Using item 2 on p. 4 of [6] we have that
the number of such n ≤ x is � x/ exp(y/(q − 1)) where the implied
constant is uniform. This expression is increasing in the variable q
and so summing the inequality for q ≤ y1−ε we arrive at the estimate
O(xy/ey

ε
) which is indeed small compared to x/(w(x))2. Thus, we

may assume that gcd(2M ′, n) = 1 and by a parallel argument, we may
assume that gcd(2M ′, n+ 2) = 1. This completes the proof. �

3. A Goldbach analogue

Note that Theorem 1 proves that there are infinitely many twin
cyclics, thus settling Conjecture 2 in Cohen [1]. Conjecture 1 in [1]
asks for an analogue of Goldbach’s conjecture, namely to show that
every even natural number n is a sum of two cyclic numbers. We can
at least prove that this holds if n is sufficiently large. Let G(n) be the
number of ordered pairs of cyclic numbers m1,m2 with m1 +m2 = n.

Theorem 2. For n even

G(n) ∼ 2c2n

w(n)2

∏
p |n

2<p<log logn

p− 1

p− 2
, n→∞.

We remark that the product in the theorem is � w(n) so that
n/w(n)2 � G(n) � n/w(n) for n even. The proof of Theorem 2
comes down to counting pairs m1,m2 with m1 +m2 = n and m1m2 has
all prime factors > log log n, since, as in the proof of Theorem 1, it is
unlikely for a number to be cyclic if it has a prime factor < y1−ε and
there are not many non-cyclic numbers with least prime factor > y1+ε.
We suppress the details.

4. k-tuples

The proof of Theorem 1 can be easily further generalized to count
cyclic integers n with n + j also cyclic, where j is an arbitrary even
number. If Cj(x) is the number of such n ≤ x, then we have, for j 6= 0,
j even and fixed,

Cj(x) ∼ 2c2x

w(x)2

∏
p | j

2<p<log log x

p− 1

p− 2
, x→∞,

a formula which might be compared with [4, Conjecture B], which
deals with prime pairs p, p + j. In fact, the later discussion in [4]
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deals with prime k-tuplets, where it is asked for n+a1, . . . , n+ak to be
simultaneously prime infinitely often when {a1, . . . , ak} is an admissible
set, meaning it does not contain a complete residue system modulo any
prime. The analogue for cyclic numbers has us replace powers of log x
with like powers of w(x) and the singular series only involves primes to
log log x. With cyclic numbers these are theorems, not just conjectures.

For example, the above ideas can show that the number of n ≤ x
with n, n+ 2, n+ 6 all cyclic is

∼ 9c3x

2w(x)3
, x→∞, where c3 =

∏
p>3

(
1− 3p− 1

(p− 1)3

)
.

Precisely the same asymptotics hold for n, n+ 4, n+ 6.
Also note that if a1 < · · · < ak form an admissible set, then there

are infinitely many n such that not only is each n + ai cyclic, but the
k cyclic numbers are consecutive in the sequence of cyclic numbers.
This can be proved by subtracting the various cases where there are
intervening cyclic numbers, which have counts that are small compared
with the initial count where being consecutive is not considered.

While being admissible is essential when dealing with primes, this
is not so with cyclics. For example, one can prove there are infinitely
many cyclic triples n, n + 2, n + 4, even though {0, 2, 4} is not admis-
sible (it is a complete residue system modulo 3). However, the count
for n ≤ x is not of order x/w(x)3 but the much smaller expression
x/w(x)5/2(log x)1/2. An asymptotic constant can be worked out using
the above ideas plus the work in [2].

However, not every pattern is “cyclic admissible”. For example, there
are just two cyclic numbers n with n + 1 also cyclic, namely n = 1, 2.
Here is a criterion for a pattern to represent infinitely many cyclic
numbers: Just one residue class modulo 2 and no complete residue
system modulo p2 for every prime p.

For example, n, n+2, n+4, n+6, n+8, n+10, n+12, n+14 represents
infinitely many cyclic 8-tuples, but throwing in n + 16, one of the
numbers is divisible by 9, so is not cyclic.

It would be nice to show in relation to Theorem 2 that every even
n > 0 is the sum of two cyclic numbers, and probably this is doable.
Somewhat more difficult are some of the short-interval conjectures in
[1]. For example, it is conjectured there that there is always a cyclic
number between consecutive squares.
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