COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI
34 ,TOPICS IN CLASSICAL NUMBER THEORY

BUDAPEST (HUNGARY), 1981. (!)u.'ol. Dec. i??‘f)

ON THE SIZE OF THE COEFFICIENTS OF THE CYCLOTOMIC

. POLYNCMIAL

P.T. BATEMAN, C. POMERANCE® and R.C. VAUGHAN

1. INTRODUCTIOCN

Let @n denote the polynomial with constant term
1L whose zeros are the primitive n-th roots of unity.
Thus él(z)=l~z and

Roe,(z) =1 - =",

dln

s0o that if n>l we have

o (z) = 1 (L-gdyr(a/d)
n dlin

“The work of the second-named author was supported by a
grant from the National Science Foundation,
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= 1 Al 2 2y G,

dln
where u and ¢ denote the functions of Mdbius and
Euler.
If m is cdd ard i is any positive integer, then
21—1'
6, (z) = ¢ (~z ).
2'p
Further, if m 1is odd and Py rPgrererBy are the distinct
primes dividing =, then
mf (pypars.p,)
Qm(z) = ¢ (z "2 k.

plpz.. .pk

Thus the non-zero coefficients of @n are determined

up to sign by the set of odd primes dividing n.

We write
¢{a)
¢ (g = ¥ alm,nds"
n w=0
and put
aln) = max lato,n)l;

o=0,1,..0¢9(n)
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I

elnl}
s(r) = 1

. =0

lalm;n)l|.

For example, since 3%,{z)=l~z and @p(z)=l+z+...+zp_l

for any prime p, we have at once that a(ll)=l, s(1)=2,
a{pl)=i,

we have

5{p)=p. If p and g are distinct cdd primes,

MIGOTTI's classical result that a(pg)=l (see

£11, ©43, £lol, £lll1), Since the degree of én is e(n),

we have the trivial inegualities

s(n) . _s{n)

o F Trelny < alr) € 5(n) (nz2).

As indicated earlier, the value of a(n)} or s(n)
depends only on the set of odd primes dividing n.

in this paper we consider the growth of a(a) and
5{n) when the number of odd prime factors of a is
fixed. On the one hand we shall prove a more specific

form {Theorem 1} of the following result,

THEOREM A. If k 1is a given positive integer, then

. k—l ’ .
stn)fn € atay s n°  1E7L

for all n having exactly k distinct odd pripe factors
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+  Theorem A sharpens the ineguality

. 2k~l
(13 aln) < 8(n) £ n

proved in [21. The second inequality of Theovem A 1s
proved by establishing the recursive ineguality

k-2
A(plpz...pk) ES A(plpz...pk_l) jzo S(plPZ"‘pj)'

where Pyepgre-+ep, Aare distinct odd primes, and com-
bining it with a theorem of Carlitz on s(plpz). A
similar but superficially more ¢omplicated recursive
argument was used in (121 to prove the inequality

k-1, _
) alny £ .:km(n)2 fx-1

for all a with exactly & distinct odd prime factors,

2k—4
for kzd. For

vhere k=l for %s3 and Ck=3
large k it is easy to see that (2) is slightly weaker
than the inequality of Theorem A.

We remark that, since

A B 1 N
GRS SR s
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for all =n with exactly k distinct odd prime factoers,
an inequality of the form
(3) atn) s opn” 15T

(for all n with exactly k distinct odd prime factors)

implies an inequality of the form (2) with

We chose the form (3) in Theorem A, since our proof of
Theorem 1 naturally gives cé=l. Althougn {2) may very
well be true with ck=l, it does not seem easy to get
such a result unless we assume that the smallest odd
prime factor of n 1is large.

In the opposite direction it seams reasonable to

rake the fellowing conjecture.

CONJECTURE B, If Xx 1is a given positive inteyer,

there exists a positive constant ¢ depending only on

k
k such that

aln) = s(ndfn 2 o n”
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for infinitely many »n with exactly k distinct odd
prime factors.

We shall show (Theorem 2) that Conjecture B is a
consequence of the celebrated prime k-tuples conjecture.
In addition we shall prove a more specific form (Theorem
3) of the following unceonditional result, which is weaker
than the assertion of Conjecture B by a logarithmic

factor.

THEOREM C. If k is a given positive integer, then

k-1 k=1
AG = stdfn 2 n® 5[5 log m)?

for infinitely many n with exactly Xk distinet odd

prime factors,

A basic tool in obtaining Theorems 2 and 3 is the

following elementary result.

LEMMA 5. Suppose r is a positive integer greater

than 1 and n 15 a product of k primes each

congruent to 2r-1 or 2r+l modulo 4r. Then

zk—l 2k—l

xif(2r) 1
H (cot T}') > r .

1¢n((—1)k'1 e

- 176 -

In addition the following resuit on the distribution

of prime numbers is essential for Theorem 3.

LEMMA 8. If k is a given positive Integer, there
are infinitely many odd positive integers r for which
we can find k distinet primes PyrbPoress by satisfying

py = 2r + 1 (mod 4r), p; < Bkr log r

for 1=1,2,...,k.

If the number of prime factors of n is unre-
gtricted, we remark that the following results on the
order of magnitude of a{r) are known. If a(n)>1

{which requires n2103)}, then

loglog Alr}
4) log 2 =
log n leg n __log n
< + of J ).
109189 n (104109 n)” (logiog m)3

On the other hand

loeglog aa)
) log 2 z
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log n - log n
z Y55Tog n + (1-loyg 2) +

(loglog n)2

+ O(___Jffi_ﬂ___g),
(logloyg r)

for an infinite sequence of values of n.

The result (4) follows immediately from (1} by using

the known estimate

log n log n

aln} < + +
leglog n {loglcg n}2

& 0(__.2££L11___),

{loglog n}"

where w(n) is the number of distinct prime factors of

Fi Y

The result (5), which improves upon & series of
. earlier results by Paul Erd@s, was first obtained in {153
but is proved more simply in C141, It can also be deduced

from Lemma 5 by taking r=2 or r=3 and using the

readily verified fact that if m

2r-1 or

is the product of the

first k primes congruent to 2r+l medulo
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4z, then

log L ¢ lcg L
= gegeseniio | f]-log g(22)) — 20 4
loglaog ay (leglog mk)z
log o

+ of ’.

(loglog mk)3

2., LEMMAS FOR THE UPPER BOUND.
LEMHA 3. (cf, t41) If p and q are distinct
odd primes, then S{pg) < (pg-1)f2, with eguality if

and enly if |p-gl=2.

PROOF. We may suppose p<g. Then CARLITZ proved

in £33 that

slpg) = 1 + 2ul{pg-l-gul/p,

where u 1s the integer between O and p such that

gqu & -1 (mod p), (See aiso Hilfssatz 3 of £1l21.) For

integral wu the quadratic function

£(u) = ulpg-l-gu)
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is largest when u=(p-1}/2, since

flutl) — £(ud gl{p-1-2u)} - 1,

Hence

-1 -1 2otz
S{pg) £ 1 + BE— (py-l-¢ 25—) = 2—%;1ﬁﬂ R
with equality if and enly if ¢(p-1)/2 = -l(mod p), i.e

if and only if ¢ = 2{mod p). Wow g2p+2 and so

’

2
pa-p . pa-t
s(pg} = Zp EEE_

with egquality if and only if g=p+2.

LEMMA 2. If p,g, and r are odd primes and

p<g<r, then A(pgr)sp-l.

LEMMA 2 is a classical result of BANG. For a proof
see [13 or C47. In [3] the bound A(pgr) S [{3p+l){41
was obtained; this coincides with Bang’s result if p

is 3 or 5, but 1s sharper if pz7,

LEMMA 3. are digtinct odd primes

If pl'PZ""'Pk

then

~ 180 -

{z 7}

£

% (z} = ¢
PPy ePy PyPyeerPyy

k-2 P.caP.snsssp
x (= FE27 543 k—l)/;}( PPyeeeRy
142

K¢
J=0 P1P2 Py

where the first factor in the product is to be interpre-

P293-"P -
ted us ¢l(z k l) and the last factqr in the

product is to be interpreted as & {z),
PPy Pp o

PROOF. We repeatedly use the identity

= P
{6) Qpﬁ(Z) = ¢n(z )Ién(z),
where p is a prime and n 1is any integer not divisible
by p. We begin by neting that

$ (z) =
PyByer Py

Pk
= 9 (z “)fe (z),
plPZ"'pk—l plp2"'pk—l B

Applying (6) to the preceding denominator, we obtain
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& (z) =
PyPp-r Py

Py
= ¢ z & (2}
P1Pye Py P1Pare-Py 2

Py
Ia (z * l].
P Ppr Py

Applying (6) to the preceding denominator, we get

= & (z

) x
plpz. . "pk—l

® (z)
PPy Py

2 (z) x
PPy« Pr.2

By 9P,
(2 k-27k l).

Pr-1
% 9 (z 9
Plp2"'Pk—3 plp2"'pk—3

Repeated use of (6) on the various denominators which

oceur leads to the result of the lemma.

REMARK. We shall apply Lemmas 3 and 4 only for

k24, but both sides make sense even for k=1 1if the

empty product which occurs in that case is interpreted

as 1.

LEMMA 4., If PyePgreeaap,  are distinct odd prinmes

- 182 -

then
Alpypy.ripy) =

k-2
< A{plpz...pk_l) ‘"0 S(plpz.-.pj).
. F=

PROOF. TFor |z|<l we have the expansion

PPyl v PyPaaes, 1
B I b S S N

2, )

PiPo+enp, 2P Pae B,
o172 k-1, TT102 k-1

=1+ o

Thus the identity of Lemma 3 gives
a(m,plpz..,pk) =

= 5

{alr,p pres.D Y ox
TrSrSyrevers, ot 172 k=1

kn2
® 'E a(sj,plpz...pj)},

F=0
where the dash indicates that the sum is to be extended

over those values of FrSprS renesS, ot satisfying
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k-2
pr + jEO pj+2"'pkﬂlsj + pyPye Byt T Or

(73
0O < r = 0(plp2.-.pk_1},

0= 5y < Q(plpz.-.pj), 0 £ t.

Since we need only consider those = with m < PyPg-e»

Y- it follows that £<py Moreover, for given

values of m,s,sSqreessSE_ g the integer ¢ is deter-

mined modulo Py by (7). Hence, if ReSpeSyr-se155 g
are given, there is at most one pessible choice for t

and then r 1is determined by (7)., Thus

Ia(m,plpz...pk)l <

k-2

= A(pip2"'pk—1) .E S(plpg-..pj)
i=0

and the ineguality of the lemma follows,

3, PROOF OF THE UPPER BOUND.

THEOREM 1. I1f %23 and pl,pz,...,pk are odd
primas with pi<p2<...<pk, then
- 184 -

Slpypyeaap M pypgenepyd <

k=2 k-i=}l _

< alpypyeiap ) < 121 By R

PROOF. For k=3 the assertion of the theorem

coincides with Bang’s theorem (Lemma 2). For k=4 ILemma

4 gives
alpypapapy) <
£ Alpypopy)s(L)sip)s(pyp,).

sing the fact that s5(1)=2, S(pl)=p1 and applying

Lemmas 1 and 2, we obtain

- alpypapqap,) S (py~D)2p) (pypy-12f2 =

= (py=Lip;{pyp,-1),

a result obtained in t41 which is slightly sharper than

thg inequality of Theorem 1 for x=4. If k25, we have
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(8) ToAlpypgeeapy) S

£ Alp Py b, 1)5(1)8(p 280 py) *

k=2 :
= I S(plpzu--Pj)~
i=3

2
applying the estimate 5(1)5(p1)5(p1p2) < pypy and
using the inaguality

s{plpz...pj) < plpz---PjA(plpz---Pj)

for j=3,...,k-2, we obtain from (8)

-2 3

k k=
{9} A(plpz...pk} < Py by e

2 k-1
Cen PlaPrey '23 A(plp2‘..pj).
3=

If we assumg the inegquality
i~-2 2j-i—l -1
— 2

caap) <0 N s
A(plpz P N 4

to be known for 3=3,4,.,.,%x-1 and then use (%), we

~ 186 -

ohtaln theanalogous estimate for A(plpznn.pk). Thus

Theorem 1 1s proved,

REMARK 1. Note that the bound of Theorem 1 is

independent of py_q and py- (CE, [71 or [1O3),
REMARK 2, Since pl<p2<...<pk and

k-2 , _
Zl (zk—x—l~l) - zk 1., x,

i
it follows frem Thecrem % that

k-1
A(plpz-..pk) < {plp2"'pk}(2 k)lk,

vhich gives the conclusion of Theorem A of the Intro-

ducticn,

REMARK 3. As indicated in the Introduction, it
would be reasonable te conjecture that (2) holds with
Ck=l, or mere specifically that

k-2 kwi-1

(10} Alpipgeeemy) 5 1 (p,-1)? -1

i=1 .

for primes P with pl<p2(--.<pk. Although Belter’s

improvement of Lemma 2 would be helpful if used in the
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above procf, it dees not appear to give {(10), even for

I

{1+ u(nld)etlil(zr)3U(n[d)r

k=4, wunless we assume that plzl7. din

4, A TRIGOWOMETRICAL LEMMA, so that

LEMMA 5. Suppose r is an integer greater than 1

Lo ((-1y%71 oFif€2s)y )
and n 15 a product of k distinct prime numbers each n
congruent te 2r-1 or 2r+l modulo 4r. Then
k-1 k-1
k-1 k=1 2 cos xf(4r),2 cog xf(dr}.2
- i 2 2 = !
!Qn(("l)k 1 eﬁl,(zr}:” = f(cot z’_‘,;} S r , (2 sin 7 I‘)) E Y ICTD) ) >
PROOF. We first note that if 4 is the product of k-1
2

j primes each congruent to 2r-1 or 2r+l meodule 4r, >r .
then 4= 1 (mod 4#) 1if j is even and 4= 2r * 1
(mod 4r) if j is odd, Thus, if »n 1is as given in the

hypothesis of the lemma and if dln, then

exidf(2r) t:il(zr)'

= uldle

Hence

Qn((_l)k_l exif{Zr)) -

Qo+ (-13k enidf(zr))u(nfd) -

dln

- 188 -

5. DEDUCTION OF CONJECTURE B FROM THE PRIME k-~

TUPLES CONJECTURE.

N The prime Xx-tuples conjecture was apparently first

discussed in(61 and is now usualiy formulated as follows.

PRIME k-TUPLES CONJECTURE. Suppose that dyrdgres

1

ied are any

y are positive integers and byebgreacsh

k
integers such that the following condition is satisfied:

for each prime p the congruence
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(11)

has fewer than p
many positive integers h such that ajhth,, a2h+b2,..
eega hth,  are all primes.

THEQREM 2, If the prime k-tuples conjecture holds

for a particular value of k., ther

for infinitely many positive integers

¥ odd prime Ffactors,
PROOF, We apply the prime k+-tuples conjecture

with

b, = (-1)Y, a;= a(2rizlirl)a

3 4 i 2 iy
where AL is the product of the odd primes not exceedin
k. Clearly the congruence (1l1) has no solutions if
psk. 1If prk, then, since

ZE%J,] + 1 <4,

(alx+bl)(azx+h2)...(akx+bk) = 0{mod p)

solutions. Then there are infinitely

gkl Sk-1

aln) 2 s{n)fn = 2 (k1)

n with exactly

~ 190 -

the coefficients EyrByreesyd are relatively prime to

k

and thus (11} has exactly &k solutions module p.

P

Thus there are infinitely many positive integers hn

such that the integers

202¢

i1 ,
e, 5=14lda e ¢ (-1)7 (i=1,2,...,k)

are all prime. Clearly

p; % 2a,h + (~1)" (mod 4a.h) Gi=1,2,...,k).

Thus we may apply Lemma 5 with r=Akh and NEp Py ePpe

#5ince pis2ir, we have n$2kk1rk. Hence

stn) 2 1o ((=L)F7H R/, g

Zkullk

( n
2551

)

and the theorem is proved,

AEMARK, The result of Thecrem 2 may be written in

a form analogous to that used in Theorem 1, namely
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S(Plp2"'pk)

a2 Apipgesapy) 2 —it K
1720+ Py PPy Py
k-1 k-1 k-2 k-i-1
> 272 o™ Iy n Pl .
i=1

for infinitely many k-tuples of odd primes pl<pz<.-.

':‘<pk' of course (12} is somewhat weaker than the
inegquality of Theorem 2, whereas Theorem 1 is stronger

than Theorem A,
6. SOME LEMMAS FROM ANALYTIC NUMBER THEORY.

If y>2 and @m and 1 are coprime positive

integers, we recall that x(yjm,1) denotes the number o

primes not exceeding v which are congruent to I

modulo  m.
LEMMA 6. If y»2, then
Y
1 du Y
w(yim,1) = I + ol b
! @ (m) 2 log u (loy 9)100
3/2
for all o less than (log y) and all 1 relativel

prime te ®B, where the constant implied by the big ©

symbol is absclute and effectively computakble.
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PROOF. This lemma may be readily deduced Ffroim for-

mida {36)in {137, The estimate of the lemma would still

be. true if the assumption = < (log 1.,-)3"2 ware replaced

by the assumption m < (log y}"

however for

for some fixed wu;

uz2 the proof requires Siegel’s theorem and

accordingly the o-constant is then no longer effectively

'computable.

?EMMA 7. f%here i=s a constant E such that

\
10
= ——E—Eééi log y + E +

2x

T A
¢ odd, lsgsy °'97

+ o(ted uy
g
:fér y»2.
PROOF. Sea (81,
LEMMA B, 1f &k

i5 a given positive integer, there
s ,

exist infinitely pany odd positive integers r for which

we can find k distinct primes PyePoresesby satisfying

P, = 2r + 1l{mod 4r), p; < 5kr leg =
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for 1=l:;2,...:k. Hence

PROOF. For large positive x we define the fol-
&l = 315 £(3)leg 3 x

! 1
lowing finite sets depending on  x. Let P be the set 2.4 Tog = T oX1oyloy x

(log x)2

) >
of primes congruent to 3 modulo 4 which lie in the
interval ({x, 7x3. Let ¢ be the set of odd integers

> 2,1 %
which lie in the interval (0.8 k log x, 2.4k log x1. log x

et M bhe the set of ordered pairs (p,q) such that .
or x sufficiently lar
pEP, gSg, and p=l{mod gq). ¥ ge.

Let us consider the function ¢

The lemmas of the present section enable us to on ¥ defined by

estimate the cardinality of M. By Lemma 6 we have

Flp,g)y = L
¥ zq
\M| = 7 {u(7x; 4g; 2q+1) - w(x; dg, 2g+1I} =
q<0 ) 1 In view of the definitions of » and g, the range of

f 15 contained in the set g consisting of the odd

. o i integers which lie in the interval

1
= ¥ fgr—f oot 1.
40 2q(g) Tog u (log x)}.GO
¢ x-1 Tx~1
Now “TH X Tog » ' 1.6 % 1oy x)_
T gy bx x 7 Since
/ log u log x 2)
* 9 {log =)
25
IRI = =% X
and by Lemma 7 IZ ¥ Tog x + o(l),
1 _los £(3) logloy x we must have k |R| < iu
EQ ey _—_T—Zn log 3 + of Tog = ). i#] for large x. Henee, if x is
¥
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sufficiently large; the function £ must take on some
value r at least k times. In other words, if x is
sufficiently large, there exists an element r of k

and r distinct pairs (pyrq))eloyray)eererlpgig) in

¥ such that

Pt et mct
29y 299 77T 24,

Clearly the primes p; are distinct and

p, = 2r + 1 (mod 4r),

Also

p, £ Zqir + 1< 4.8 kr log x + 1.

Since 1log r

log x + olloglog x), we have

p, <5 kr log r

if x 1is sufficiently large. Since r tends to

infinity with x, there are infinitely many odd positive

integers r for which the conclusion of the lemma holds.

- 196 ~

Thus the proof is coﬁplete.

REMARK. The constant 5 occurring in Lemma 8 could

be replaced by any number greater than

m*uziiﬂ_ = 4,19575.

105 {3} ' o

This can be seen by chahnging the definitions of p ang
¢ 1in the proof so that P becomes the set of primes
congruent to 3 modulo 4 which 1lie in the interval (x,
(x+1)x] and ¢ bhecomes the set of odd integers which

lie in the interval
Loy Qronte 1o o
105 t(3) R U Y &) g xd.
where X is a large positive constant.

7. AN UNCONDITIONAL RESULT.

THEOREM 3. If &k is a given positive integer,
there are infinitely many positive integers n with
exactly k distinect odd prime facters PyrPgurssedy

such thak

et

any z 50
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2k_l—k I p

Fy i=
- x i=

k-1

(5 ¥ log pl)2 {5 x log pl)2

whera pl<p2<"'<Pk'

PRCOF, Let r be a positive integer for which the
conclusion of Lemma 8 holds, l.e., for which there exist

k primes PyrPyavaeapy with

P = py =4S = 2r + 1 (mod 4z}

and

Py < Py e Py < 5 kr log r,
Put N=PiPg« s Py Since
Py <5 kr logr <5 kr log Py

Lemma 5 gives

sty 2 1o ((-1)* LR/ €200y)

- 198 -

k-1 2k—1 k-1

2 2
> r > py (5 & log Pyl .
Hence
pzk_l—k
stn) , s(n) Pk .
n k zk—I
Pr (5 k log p;)
-2 o _
Since pi<p,<...<p. and ¥ (¥ 7I7Eyy o Rl g
1%P2 K B

the final conclusion is immediate and the theorem is

proved,

REMARK 1. Since p, % WE < p,s Theorem C of

the Introduction is an immegiate conseﬁuence of Theorem

3.

REMARK 2. For k=3 results of the above type but

without a logarithmic factor may be found in [91 and r127.

REMARK 3. The constant 5 cccurring in Theorem 3

could be replaced by any number greater than
= 1.64767,., .,

i e
420 ¢{3)

To obtain such an impfoved constant it would suffice to
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(a)

(b)

{c)

13l

£23]

C31

£43

[51

take advantage of the factor =x/d sgquandered in
Lemma 5,

gain a factor 1/2 by using primes congruent to
2r-1 moduloe 4r as well as primes congruent to
2r+l modulo 4r, and

take advantage of the factor 2:49![525 £(3)}
mentioned in the remark at the end of the previous

section.
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