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(Graphic art by Tobias Baanders, based on some needlepoint of

Willemien Lenstra and a concept of Hendrik Lenstra)

These are in fact the sequence of exponents n, written in

binary, for which 2n − 1 is prime.

A prime of the form 2n − 1 must have n itself prime. They go

back to Pythagoras and Euclid, and are currently known as

Mersenne primes.

They have certainly grabbed the public’s imagination!
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TIME Magazine’s 29th greatest invention of 2008.

The exponent in binary: 10100100011101100010100001.
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(While perhaps the 29th greatest invention, it is the 47th prime

of the form 2p − 1.)



The current largest known (Mersenne) prime is

2136279841 − 1.

The exponent in binary is 1000000111110111011100100001.

It was unearthed last October (after a hiatus of 6 years) and is

the 52nd known Mersenne prime.
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The current search: One runs through candidate exponents p.
If 2p − 1 survives a search for possible small prime factors
q ≡ 1 (mod p) with (2/q) = 1, it is checked if

32p−1
≡ −3 (mod 2p − 1).

If it is not, the calculation is checked (in much less time than it
took to compute the first time). If the congruence holds, the
exponent p is then subjected to the Lucas–Lehmer test:
Starting with x = 4, iterate x 7→ x2 − 2 (mod 2p − 1)
p− 2 times. This is 0 if and only if 2p − 1 is prime.

The Lucas–Lehmer test “lives” in the quadratic field Q[
√
−3].

Similar primality tests work for n when n+ 1 has a fully known
(or mostly known) prime factorization. Though in general we
have the polynomial time primality test of Agrawal, Kayal, and
Saxena (with improvements by Lenstra and P), it is not
competitive with Lucas–Lehmer when the latter is appropriate.
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Here is a heuristic that there are infinitely many Mersenne

primes: The number 2p − 1 has least prime factor > p. A

random number n with all prime factors > logn is prime with

probability ∼ eγ log logn/ logn, where γ is Euler’s constant.

Applying this with n = 2p − 1, the likelihood it is prime is

(eγ/ log 2)(log p)/p. It remains to note that the series∑
(log p)/p diverges. The numerical evidence seems to support

this reasoning, even with the special constant eγ/ log 2.
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We also have the Fermat numbers Fn = 22n + 1. (An odd

prime of the form 2k + 1 must have k a power of 2.) Fermat

thought all of these numbers are prime, and he was right for

n = 0,1,2,3,4. Consider the case n = 5. If p | F5, then

225 ≡ −1 (mod p), so that p ≡ 1 mod 26. Then (2/p) = 1, so

that 2(p−1)/2 ≡ 1 (mod p), and hence p ≡ 1 (mod 27). The

candidates for p are

129, 257, 385, 513, 641, . . . .

But 129, 385, and 513 are obviously not prime, and 257, which

is F3 cannot divide F5 since the Fermat numbers are easily seen

to be pairwise coprime. So, the very first candidate is 641, and

in fact, as Euler showed, it is indeed a proper factor of F5.
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The Fermat numbers have been tested up to n = 32, and all of

them after n = 4 are composite. Many of these were found

composite after a nontrivial prime factor was found. We also

have Pepin’s test: For n ≥ 1, Fn = 22n + 1 is prime if and only

if 3(Fn−1)/2 ≡ −1 (mod Fn). The largest n tested this way is

n = 24. Pepin’s test generalizes to the case when the number

m to be tested has m− 1 completely (or mostly) factored, and

is simpler than the Lucas–Lehmer test.

A heuristic suggests there are only finitely many Fermat primes,

since
∑

(log logFn)/ logFn converges. In fact it converges so

rapidly, it is thought there are no more Fermat primes after

n = 4.
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Here are some possibly easier questions:

Are there infinitely many primes p with 2p − 1 composite?

Are there infinitely many n with 22n + 1 composite?
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Actually these are also not known!

Perhaps we can follow the maxim: If you can’t solve the

problem, generalize it.

Let Φm(x) denote the mth cyclotomic polynomial. This is the

minimum polynomial for e2πi/m. Some facts:

xn − 1 =
∏
m |n

Φm(x), Φn(x) =
∏
m |n

(xm − 1)µ(n/m).

Also, deg(Φn) = ϕ(n), Euler’s function. Some examples:

Φp(x) = (xp−1)/(x−1), Φ2n+1 = (x2n+1
−1)/(x2n−1) = x2n+1,

so that

Φp(2) = 2p − 1, Φ2n+1(2) = 22n + 1.
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So, here are the generalized and supposedly easier questions:

Are there infinitely many m with Φm(2) prime?

Are there infinitely many m with Φm(2) composite?
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The second question has a disappointingly easy answer! In fact

two disappointingly easy answers!

Say a prime factor p of Φm(2) is primitive if `(p) = m. Here,

`(p) denotes the multiplicative order of 2 in (Z/pZ)×.

Examples: `(5) = 4, `(7) = 3, `(17) = 8, `(31) = 5.

In fact: If `(p) = m, then p | Φm(2).

Must every prime factor of Φm(2) be primitive?

The answer is “almost.” If m is of the form pj`(p) for some

prime p, with j ≥ 1, then p | Φm(2). In this case p is an

intrinsic prime factor. It is unique and p2 - Φm(2).
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Bang (1886): Each Φm(2) has a primitive prime factor except

for m = 1 and m = 6. (Note that Φ1(2) = 1 and Φ6(2) = 3.)

Thus, every Φm(2), where m = pj`(p) for a prime p > 3, is

composite. For example, m = 20, and Φ20(2) = 205, which has

the primitive prime factor 41 and the intrinsic prime factor 5.

So, let’s reword the problems. Let ψm = Φm(2)/p if m is of the

form pj`(p), and otherwise let ψm = Φm(2).

Are there infinitely many m with ψm prime?, composite?
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Consider the polynomial x4 + 4. Is it irreducible in Z[x]?

Well, the roots are ±1± i, which each have degree 2, so it’s

not irreducible. In fact

x4 + 4 = x4 + 4x2 + 4− 4x2 = (x2 + 2)2 − (2x)2

= (x2 + 2x+ 2)(x2 − 2x+ 2).

Similarly,

4x4 + 1 = (2x2 + 2x+ 1)(2x2 − 2x+ 1).
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Now say m ≡ 4 (mod 8), so m = 8k + 4. Then

Φm(x) | x4k+2 + 1, so

Φm(2) | 4 · 24k + 1 = (2 · 22k + 2 · 2k + 1)(2 · 22k − 2 · 2k + 1).

When m = 8k + 4, we have ψm = ψ+
mψ
−
m, where

ψ+
m = gcd(ψm,2·22k+2·2k+1), ψ−m = gcd(ψm,2·22k−2·2k+1).

Schinzel (1962): For m ≡ 4 (mod 8) and m > 20, we have

ψ+
m > 1 and ψ−m > 1. In particular, ψm is composite.

Theorem (P, 2024). There are infinitely many m 6≡ 4 (mod 8)

with ψm composite. There are infinitely many m ≡ 4 (mod 8)

with not both ψ+
m and ψ−m prime.
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Sketch of the proof.

The idea is that ψm is exponentially large, about 2ϕ(m). So if

p | ψm and p is not much bigger than m, then as a large number

with a modest prime factor, ψm must be composite.

How many primes p ≤ x have `(p) < x1/2/ logx? Well, 2m − 1

has fewer than m prime factors and∑
m<x1/2/ logx

m < x/(logx)2.

Since there are ∼ 1
2x/ logx primes p ∈ (x/2, x], most of them

have `(p) ≥ x1/2/ logx. So, most of them have ψ`(p) composite.

That is, there are infinitely many m with ψm composite.
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We can insist in this argument that p ≡ 3 (mod 8), which
steers us away from the ψ+

m, ψ
−
m argument. Or p ≡ 5 (mod 8),

which shows that infinitely often ψ+
m, ψ

−
m are not both prime.

All well and good, but how many m ≤ x have ψm composite (in
the case m 6≡ 4 (mod 8)). In the argument just presented, we
could have the primes p crowding into just a few ψm’s. Though
unlikely, it is possible. Or is it?

We have m | p− 1. For a given m, the number of choices for
p ≤ x with m | p− 1 is ≤ x/m ≤ x1/2 logx. Let S be the set of
m’s which occur in this argument, so that

x

logx
�

∑
m∈S

x

m
≤ #S · x1/2 logx,

and we conclude that #S � x1/2/(logx)2.
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By being a little more careful with the estimates, we can prove

the following.

Theorem (P, 2024). The number of integers m ≤ x with

m 6≡ 4 (mod 8) and ψm composite is ≥ x1/2 for x sufficiently

large. Further, the number of m ≤ x with m ≡ 4 (mod 8) and

not both ψ+
m, ψ

−
m prime is ≥ x1/2.
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Additional problems:

Can we do better than x1/2 values of m ≤ x with ψm

composite?

Are the standard conjectures, like the abc-conjecture, the

Riemann Hypothesis, the Generalized Riemann Hypothesis, and

the prime k-tuples conjecture helpful for the problems we’re

considering?

The answer is “yes” to all of these.
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First, we can use a variant of the proof presented to get > xθ

values of m ≤ x with m 6≡ 4 (mod 8) and ψm composite, where

θ = 3/5 or a little larger, and similarly for ψ+
m and ψ−m when

m ≡ 4 (mod 8). The key here is a result of Baker and Harman

that a positive proportion of primes p have a prime factor of

p− 1 that is > pθ. We need a version where p ≡ 3 (mod 4) and

a version where p ≡ 5 (mod 8), which takes some effort.

Assuming the Elliott–Halberstam conjecture in analytic number

theory would allow for θ to be arbitrarily close to 1.
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We can prove a stronger result assuming the prime k-tuples
conjecture of Hardy and Littlewood. This is a grand
quantitative generalization of the twin primes conjecture. (For
example, it asserts that the number of twin primes up to x is
asymptotically cx/(logx)2 for an explicit positive constant c.)

From this conjecture we have that the number of primes p ≤ x
with p ≡ 3 (mod 4) and 2p+ 1 prime is asymptotically
cx/(logx)2 (for a different explicit positive constant c).

Why is this interesting? Well, if p is such a prime, then,
2p+ 1 | 2p − 1, so for p > 3, we have 2p − 1 composite. (For
example, 211 − 1, 223 − 1, and 283 − 1 are composite.) So, the
number of m ≤ x with m odd and ψm composite is � x/(logx)2.

A quick proof: Let q = 2p+ 1, so q ≡ 7 (mod 8) and (2/q) = 1.
Then 2(q−1)/2 ≡ 1 (mod q), so q | 2p − 1.
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An issue that I’ve not mentioned: A composite number need
not be divisible by 2 different primes! I don’t know how to
unconditionally prove that there are infinitely many m 6≡ 4
(mod 8) with ψm divisible by 2 different primes, and similarly
for the 4 (mod 8) case. However, using the abc-conjecture,
this issue disappears. Even so, it takes some work.

One deals with the “a+ b = c” equation: 1 + (2m − 1) = 2m.
Let rad(n) denote the product of the distinct primes dividing n.
Then rad(abc) = 2 rad(2m − 1). Now ψm | 2m − 1, and an
averaging argument shows that most of the time ψm > 2εm.
If ψm is a prime power, then rad(ψm) ≤ ψ1/2

m so that
rad(2m − 1) ≤ 2(1−ε/2)m. This implies that rad(abc) < 2c1−ε/2,
contradicting the abc-conjecture. Thus, we may assume ψm is
not a prime power, and since it is composite, it must be
divisible by at least 2 distinct primes.
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Hooley has shown, using the Generalized Riemann Hypothesis

(actually, the RH for the zeta functions of Kummerian fields)

that a positive proportion of primes p have 2 as a primitive

root. A routine variant shows this is true as well for primes

p ≡ 3 (mod 8). This then gives � x/ logx values of m 6≡ 4

(mod 8) with ψm composite, and we can do even a little better

than this. Similarly for the other case.
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We have seen that assuming the prime k-tuples conjecture,

there are infinitely many primes p with 2p − 1 composite. In

fact, it is divisible by at least 2 different primes, since otherwise

2p − 1 and 2p would be two consecutive powers, contradicting

Catalan’s conjecture (= Mihăilescu’s theorem).
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We showed earlier by a simple argument that `(p) > x1/2/ logx

for almost all primes p ≤ x. For each such p ≡ 3 (mod 4) we

have ψ`(p) composite, and for each such p ≡ 5 (mod 8) we have

that not both ψ+
`(p) and ψ−

`(p) are prime. We worked harder to

show that there are in fact many values of m 6≡ 4 (mod 8) with

ψm composite, and similarly for the other case.

However, there are � x/ logx values of p in play. Surely there

should be many distinct values of `(p) among all these p’s!

This seems hard to prove other than by the means mentioned

above. It is amusing that if there are not so many distinct

values of `(p), then there are values of m with many distinct

primitive prime factors of ψm. So, we have the following result.
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Theorem: Either there are � x/ logx values of m ≤ x with

m 6≡ 4 (mod 8) and ψm composite or the number of primitive

prime factors of ψm is unbounded as m varies.

Of course, both must be true!
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Additional problems, some tractable:

Show there are infinitely many m ≡ 4 (mod 8) with both ψ+
m

and ψ−m composite.

Generalize these results to Φm(a) where a > 2.

Generalize to the Fibonacci numbers, and similar Lucas

sequences.

There must be an elliptic curve analogue . . .
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The digs at Mersenneacus

Thank you!
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