CYCLOTOMIC PRIMES
CARL POMERANCE

ABSTRACT. Mersenne primes and Fermat primes may be thought
of as primes of the form ®,,(2), where ®,,(x) is the mth cyclotomic
polynomial. This paper discusses the more general problem of
primes and composites of this form.

1. INTRODUCTION

Studied since antiquity, we have the Mersenne primes. These are
prime numbers 1 less than a power of 2, so of the form 2" — 1. To
be prime it is necessary that n = p is prime, but this is not sufficient,
eg. p = 11. The first 4 of these primes were known to Euclid and
they played a key role in his work on perfect numbers. We now know
more than 50 Mersenne primes, the largest at present being 27 — 1 with
p = 82,589,933, see [8]. Evidently it takes some doing to check the
primality of numbers this large!

It is widely believed that there are infinitely many Mersenne primes,
and also that there are infinitely many primes p with 27 — 1 composite.
Though both assertions are still unsolved, there is a conditional proof
of the second one based on the prime k-tuples hypothesis: If p = 3
(mod 4) is prime with p > 3 and ¢ = 2p + 1 is prime, then 2? — 1 is
composite. Indeed, the conditions imply that ¢ = 7 (mod 8) so that
(2/q) = 1. This implies that ¢|2@~1/2 —1 = 2P — 1, and the condition
p > 3 implies that ¢ < 2P — 1. Thus ¢ is a proper divisor of 2P — 1
implying the latter is composite. For example, 23 |2 — 1. It remains
to note that the prime k-tuples hypothesis implies there are infinitely
many primes p = 3 (mod 4) with 2p + 1 prime.

Also studied for centuries are the Fermat primes. These are primes
that are 1 more than a power of 2, so of the form 2" + 1. To be prime
(and > 2) it is necessary that n itself is a power of 2. Again, this is not
sufficient. Fermat knew that 22" + 1 is prime for £ = 0,1,2,3,4 and

Mathematics Department, Dartmouth College, Hanover, NH 03755, USA. email:
carlp@math.dartmouth.edu
Date: October 11, 2024.
2010 Mathematics Subject Classification. 11N32, 11N25.
Key words and phrases. Mersenne prime, Fermat prime, cyclotomic polynomial,
abc conjecture.
1



2 CARL POMERANCE

he conjectured that it is always prime. However, Euler showed that
641|2%° + 1. It is now known that 22" + 1 is composite for all larger
values of k up to 32, and also some sporadic larger values as well. It is
conjectured that all but finitely many are composite and that perhaps
22" 4 1 is the largest Fermat prime. Nothing has been proved here,
even conditionally.

What Mersenne primes and Fermat primes have in common is that
they are cyclotomic primes. These are primes of the form ®,,(2), where
®,, is the mth cyclotomic polynomial. This is the minimal polynomial
in Q[x] for €2™/™ and it has degree p(m), Euler’s function. We have
the twin identities:

2" —1=[] @alx), Ppm(z) =[G — 1)
d|m d|m
Note that if p is prime, then ®,(x) = (2 —1)/(z — 1), so that ®,(2) =
27 — 1. Further ®piii(z) = (22 —1)/(22" — 1) = 22" 4+ 1, so that
Doi1(2) = 22" 4+ 1. We also have the Wagstaff primes, see [15], which
are primes of the form ®,,(2) = (27 + 1)/3, where p is an odd prime.
So, a cyclotomic prime is a prime of the form ®,,(2). We can ask if
there are infinitely many of them and also if there are infinitely many
numbers of this form that are composite. It turns out that there are
infinitely many composites for fairly trivial reasons. The substance of
this paper is to show that there are infinitely many nontrivial compos-
ites. We make this precise in the next section.

2. BASICS AND STATEMENT OF RESULTS

Let
Om = Dp(2).

We say a prime factor p of ¢, is primitive if it does not divide any ¢y,
for k < m. Otherwise we say p is intrinsic. For an odd prime p let £(p)
denote the mutlplicative order of 2 in (Z/pZ)*. We have that p is a
primitive prime factor of ¢, if and only if ¢(p) = m. Further, ¢,, has
an intrinsic prime factor p if and only if m = p?/(p) for some positive
integer j, in which case p is the largest prime factor of m and p|| ¢,.
If m is of this form, let §,, = p, and otherwise let §,, = 1. Thus, every
prime factor of
is primitive.

We know that for each m ¢ {1,6}, there is at least one primitive
prime factor of ¢,,; this is Bang’s theorem. The numbers ), are pair-
wise coprime and except for m = 1 or 6, they are all > 1 (cf. [17]).
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Due to the factorization
4t +1 = (22° + 22 + 1)(22* — 22 + 1),

there is a further generic factorization of ¢, beyond 6,,v,, when m =4
(mod 8). Note that

24k‘+2 + 1 _ 4(2k‘)4 _|_ 1 — (22k‘+1 _|_ 2k’+1 + 1)(22k’+1 _ 2k+1 + 1)’
which leads to the factorization

(1) Yspya = ged(Wspra, 2257 4+ 2570 1 1) ged (gppa, 22 — 28 4 1)

cab b=
= Vg ya¥shta

Further, this factorization is nontrivial for £ > 3, a result due to
Schinzel [18]. The factorization (1) is known under the name Au-
rifeuille, see [3].

Note that

(2) O € [270M71, 200WH),

see [9, Theorem 3.6], [17, Theorem 4.3].
To state our results, consider the sets

Ci={tYm :m#4 (mod 8)}, Cy={¢,, :m=4 (mod 8)}.

Theorem 1. The set C contains infinitely many composite numbers.
The set Cy contains infinitely many numbers that are not the product
of two primes.

The proof uses the deep result that for some 6 with 1/2 < 6 < 1,
there are infinitely many primes p such that p — 1 has a large prime
factor ¢ > p’. We can also prove a slightly stronger result conditional
on the abc conjecture.

Theorem 2. Assume the abc conjecture. The set C7 contains infin-
itely many numbers divisible by at least 2 distinct primes. The set Cy
contains infinitely many numbers divisible by at least 3 distinct primes.

We remark that the abc conjecture has been used for similar purposes
in [19] and [2, Theorem 3|.

Throughout the letters p, ¢ will always denote prime numbers. We
also let P*(n) denote the largest prime factor of n > 1, and we let

Pt(1) =1.
3. PROOF OF THEOREM 1

Denote by 7 (z; d, a) the number of primes p < x with p = a (mod d).
Our principal tool is the following theorem. Let 6 = 3/5.
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Proposition 1. We have
Z 7(z;4q,29 + 1)logg > =  and Z m(x;8¢q,4q + 1)logq > x.

g>zf q>zf

The analogous result for 7(x; ¢, 1) is well known with varying values
of “0” in the literature. The current champions are Baker and Harman
[1], who essentially have § = 0.677, though they do not state their
result in the same way. Probably the techniques of their paper would
allow the same value of # in Proposition 1, but we do not pursue the
optimal value at this point. Other results in their paper have been
recently strengthened (see [12]); conjecturally any value of § < 1 may
be used.

We now sketch a proof of Proposition 1. With A the von Mangoldt
function, we have

> w(w;dd,2d + DAd) = > Z A(d) + O(x/ log )

d<z pE3(m0d4)d\ p—1)/
p<z

= > log(p—1)+ O(x/logx)

p=3 (mod 4)
p<lzx

1
=32 + O(x/logx).

Further, by the Bombieri-Vinogradov theorem plus a small additional
argument using the Brun—Titchmarsh inequality (see [14]) to clean up
the boundary cases, we have

1
Z m(z;4d,2d + 1)A(d) ~ 7% T oo
d§I1/2
Thus,
1
Z m(x;4d,2d + 1)A(d) ~ 7% T oo
d>z1/?

The contribution to this last sum when d is composite is o(x), so we
have

1
Z m(x;4q,2q + 1) logq ~ i — 00.

g>zl/2
By the Brun—Titchmarsh inequality,
2z
Y wlwidg,2g+1)logg < ) - o8d
x1/2<q§x6 x1/2<q§x9 @(4(]) 1Og(x/4Q)

~ zlog(h/4) < 0.23z.
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Thus, with the prior display, we have
> w(w;dg,2q+ 1) log g >
g>xz?

which shows the first assertion in Proposition 1. The second assertion
follows in a similar manner.

Since no prime p < x is divisible by 2 different primes ¢ > z%, we
have the following result.

Corollary 1. We have
Z 1> z/logz and Z 1> x/logx.

p=3 (mod 4) p=5 (mod 8)
Pt(p—1)>a? P (p—1)>a?
p<z p<z

An elementary argument shows that the number of primes p with
l(p) =k is < k/logk, it follows that the number of primes p < z with
{(p) < p*4 is < 20%. We thus have the following result.

Corollary 2. The number of primes p < x with p = 3 (mod 4),
Pt(p—1) > p’ and PT(p—1) | (p) is > w(z). Similarly, the number of
primesp < x withp=>5 (mod 8), PT(p—1) > p’ and P*(p—1)|{(p)
is > m(x).

Indeed, if P*(p—1) { p—1, then £(p) | (p—1)/P* (p—1) < p~? < p4,
so there are few choices of such p. (Note that there is a similar argument
in Goldfeld [7].)

Let m.(x;d,a) denote the number of primes p < z with p = a
(mod d) and also with ¢(p) > p4.

Corollary 3. For all sufficiently large x the number of primes q¢ > x°
such that m,(x;4q,2q+1) > 0 is > 2. Similarly, the number of primes
q > 2% such that m,(x;8q,4q + 1) > 0 is > 2.

Proof. From the above we have

Z (249,29 + 1) > x/log x.

q>xf
The Brun—Titchmarsh theorem shows that
z zloglog x
> m(234¢,29 + 1) < > < T8 g2 :
, qlogx (log x)
x? <g<z%(log z)? z?<q<z?(log x)?

Subtracting this estimate from the prior one, we have

Z 7. (2;4q,2q + 1) > x/log x.

g>x? (log x)2
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Since m,(z;4q,2¢+1) < x/q < 2179 /(log 2)? for ¢ > 2%(log 2)? we have
Z 1> 2%logx

g>z%(log x)?
mx(x;4q,2¢+1)>0
and the first claim follows. The second one is proved by the analogous
argument. ]

Proof of Theorem 1. Consider primes p < z with PT(p— 1) = ¢ > 27,
p =3 (mod 4), and with ¢ | £(p). There are at least 2% distinct values
of ¢ that arise this way. For each such ¢ there is a prime p < x such
that ¢ | £(p), let py be the least one, and let ¢(p,) = kqq. Then pg | 1p,q
and the numbers k,q are distinct as ¢ varies. Note that since p = 3
(mod 4), we have k,q % 4 (mod 8). By (2), ¥, > 2°%19 /g, so that
for large x, p, is a proper divisor. This proves that C; contains infinitely
many composite numbers 1),,, and in fact, the number of such ,, with
m < x is > 2 for all sufficiently large z.

We can repeat this argument for p = 5 (mod 8). Note that in this
case we have (2/p) = —1 so that k,g = 4 (mod 8). It follows from
(2) that 1/};;(1 > 2¢ka0)/2 /¢ and the same for Uy q» SO We again have for
sufficiently large = that p, is a proper divisor. This concludes the proof
of the theorem. 0

4. CONDITIONAL RESULTS

For a positive integer n let rad(n) denote the largest squarefree di-
visor of n. The abc conjecture asserts that for each fixed € > 0, there
are at most finitely many coprime positive integer triples a, b, c with
a+b = c and rad(abc) < c!¢. In this section we will prove Theorem 2,
which is conditional on the abc conjecture, and also discuss some other
conditional results.

Proof of Theorem 2. First suppose that m #Z 4 (mod 8). We know
from Theorem 1 that there are infinitely many such m with 1, com-
posite, and in fact, there are more than 2? such m < z when z is
large. Further, each such m is of the form k,q where ¢ > 2 and Yhyq
is divisible by a prime p = p, < x and ¢(p) = k,q. The only way for a
composite number not to be divisible by at least 2 distinct primes is if
it is a prime power, namely p’ where j > 2, so suppose that ¢ 4 = p’.
Consider the abc equation 1 + (2F4 — 1) = 2% Since ty,q > dr,q¢/4;
we have
rad(abc) < 2pq2*a9 /¢y, .

Assuming the abc conjecture this would be impossible for large ¢ if
there is some fixed € > 0 such that ¢y 4 > 2% (since 2pg = O(2?) =
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20(ka9)) Using (2) this would follow if (k,) > 2¢k,. We now show that
we may assume this is indeed the case.

Recalling that ¢(p) = k,q, write j = (p —1)/q, so that k,|j. And
so if p(k,)/k, < 2¢, then (5)/j < 2¢. For a given value of j < z'~¢
we consider primes ¢ < x/j such that jg + 1 is prime. By Brun’s or
Selberg’s sieve, the number of such ¢ is < x/(¢(j)(logz)?). In the
proof of Theorem 1 we showed there are > (.02 + o(1))z/log x pairs
q,p. Let

J={j <20 9(j) /i < 26},
We will show that .. ;1/¢(j) < elogx, so with € small enough, this
will be negligible in comparison with (.02 + o(1))logz. This would
follow from Erdds [5, Theorem 1] (also see [11, Theorem BJ), but we
prefer to use the simpler approach in [10, Section 3].
We have (7/¢(5))? = > _a1; M(d), where h is multiplicative, supported

on the squarefrees, and has h(p) = (2p — 1)/(p — 1)®. Then
n; (#)2 = d;h(d) 2] < z];[ (1+ @) < 4.5z

Thus, for any § > 0,

Z 1< 4.56%z.

n<z
@(n)/n<é

A partial summation argument then shows that

1
E — < 4.56%log(ez),
n<z n
¢(n)/n<s

so that writing 1/p(n) = 1/n-n/e(n),

1 2
—— < 24.56%1og(ez) = 98 log(ez).
> < o0 log(es) = 96 og(e:)

n<z
%5<<p(n)/n§(5
1
)

1
Z —— < 36¢elog(ex).
= )

We apply this with 2z = 2'7% and at § = 2¢, €, 2¢, ... getting

Thus if € = ¢y is small enough, we would have the number of ¢,p
pairs with ¢(j)/j < € being < .0lz/logz. But we have seen in the
previous section that the total number of ¢,p pairs generated is >
(.02 + o(1))x/logx. Thus, we can discard those with ¢(j)/j < ¢ and
still be left with > z/log z pairs. So, we will have ¢(j)/j > €y, which
implies that p(k,)/k, > €. Thus, the abc conjecture is in play to show
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that the equation 1+ (27 — 1) = 2% with ¢, , a power of p cannot
occur when z is large.

The situation for kg = 4 (mod 8) is completely analogous, we sup-
press the details. O

We remark that a variant of this argument can show that there are
infinitely many m where 1, is not square-full, and the same goes for
Uggora and Vg

We mentioned in the introduction that the prime k-tuples conjecture
can be used to show that there are infinitely many primes p with ¢, =
2P — 1 composite. We add here a couple of thoughts. First, since we
know that the only pair of consecutive numbers which are nontrivial
powers is 8 and 9 (a result of Mihailescu [13]), it follows that 2P — 1
cannot be a nontrivial power, so in this case, the abc conjecture is not
necessary. Second, using the Hardy—Littlewood version of the k-tuples
conjecture, we have the number of primes p < x with 2” — 1 divisible
by at least 2 different primes is > z/(log z)>.

This last result can be improved assuming Artin’s primitive root
conjecture. If 2 is a primitive root for p, we have p a prime factor of
¢p—1 and so ¢,_1 is composite. Following Hooley’s GRH conditional
proof of Artin’s conjecture, we have > x/logz primes p < z which
have 2 as a primitive root. Further, the proof is amenable to insisting
that p = 3 (mod 4) and also the same holds when p =5 (mod 8). So
the GRH implies there are quite a few cyclotomic composites. And as
above, the abc conjecture can be used to show these composites are
not prime powers. This result can be improved a little by considering
primes p < kx with ¢(p) = (p — 1)/k for various small values of k
and using sieve methods to show that (p — 1)/k = (p’ — 1)/k’ has few
solutions when k # k' are small. Thus, with a little work it may be
possible to show, assuming the GRH, that there are > xloglog x/ log
integers [ < x of the form ¢(p) for some prime p < xlogz.

5. STATISTICS AND SURMISES

Concerning Table 1, Gallot [6] previously enumerated the cases where
¢m is prime for m < 6500. Our calculations agree with his. In our
work we used Mathematica and in particular their PrimeQ function,
which we understand is a probabilistic test. So, it is possible that
some of the prime declarations made are false, but this seems unlikely,
given that there are not very many of them. One of the larger primes
unearthed here is ¢gp 287 which has 17,090 decimal digits. Note that
when Prime(Q) declares a number is not prime, this conclusion is not
in doubt. Since Prime( is notably slower than checking if the Fermat
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TABLE 1. Counts for m < 2% with ¢,, prime, v, prime,
Yt prime, ¢ prime

k  #m with ¢, prime 1., prime 1 prime 1), prime
1 1 1 0 0
2 3 3 1 0
3 7 6 1 0
4 14 13 2 0
5 23 25 4 1
6 33 36 7 5
7 49 52 13 8
8 64 68 20 16
9 81 86 24 25
10 99 106 30 33
11 122 129 34 43
12 140 147 44 54
13 167 174 50 59
14 195 202 61 64
15 221 228 72 74
16 255 262 85 83

congruence 3" = 3 (mod n) holds, we first used that and confirmed the
few primality assertions with PrimeQ. (We used the base 3 since every
¥, is either a prime or a base 2 pseudoprime. See [16] where these
thoughts are developed.) Many of the large primes uncovered here
have indeed been certified (including ¢gp2s7) in the ongoing project
factordb.com. (Thanks are due to Yves Gallot for informing me about
this.)

Heuristically there are at most finitely many examples where iy,
is prime. Is 1197.7 the largest such example? It is a prime of 226 decimal
digits. There are several examples where both ;" and 1 are prime.
The largest that we found in our calculations to 26 is m = 1132, where
the two primes each have 85 decimal digits. Probably there are at most
finitely many of these “twin cyclotomic primes”.

The counts in Table 1 look to be proportional to k?, and this is
supported heuristically as well. Indeed, one can model 1, as a random
number near 29(™ which has all prime factors larger than m. So the
“probability” that it is prime (given that m # 4 (mod 8)) is about
e’logm/p(m)log2. The sum of these quantities up to 2'° is about
223.4, and up to 2% is about 254.4, which are not bad matches with
the table.

One can enlarge further the realm of cyclotomic primes to look at
the primitive parts of a” — 1, where a > 2. Also one can look at the
Fibonacci sequence, as well as other Lucas sequences, for example see
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Drobot [4]. We suspect our methods carry over, but we leave this topic
for another day, and perhaps another person.
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APPENDIX

Here we list the values of m corresponding to the counts in Table 1.

Values of m with ¢,, prime:

2,3,4,5,6,7,8,9, 10, 12, 13, 14, 15, 16, 17, 19, 22, 24, 26, 27, 30, 31,
32, 33, 34, 38, 40, 42, 46, 49, 56, 61, 62, 65, 69, 77, 78, 80, 85, 86, 89, 90,
93, 98, 107, 120, 122, 126, 127, 129, 133, 145, 150, 158, 165, 170, 174,
184, 192, 195, 202, 208, 234, 254, 261, 280, 296, 312, 322, 334, 345, 366,
374, 382, 398, 410, 414, 425, 447, 471, 507, 521, 550, 567, 579, 590, 600,
607, 626, 690, 694, 712, 745, 795, 816, 897, 909, 954, 990, 1106, 1192,
1224, 1230, 1279, 1384, 1386, 1402, 1464, 1512, 1554, 1562, 1600, 1670,
1683, 1727, 1781, 1834, 1904, 1990, 1992, 2008, 2037, 2203, 2281, 2298,
2353, 2406, 2456, 2499, 2536, 2838, 3006, 3074, 3217, 3415, 3418, 3481
3766, 3817, 3927, 8370, 9583, 9689, 9822, 9941, 10192, 10967, 11080,
11213, 11226, 11581, 11614, 11682, 11742, 11766, 12231, 12365, 12450,
12561, 13045, 13489, 14166, 14263, 14952, 14971, 15400, 15782, 15998,
16941, 17088, 17917, 18046, 19600, 19937, 20214, 20678, 21002, 21382,
21701, 22245, 22327, 22558, 23209, 23318, 23605, 23770, 24222, 24782,
27797, 28058, 28973, 29256, 31656, 31923, 33816, 34585, 35565, 35737,
36960, 39710, 40411, 40520, 42679, 42091, 43830, 43848, 44497, 45882,
46203, 47435, 48387, 48617, 49312, 40962, 49986, 50414, 51603, 51945,
53977, 55495, 56166, 56898, 56955, 57177, 58315, 58534, 58882, 60287

Values of m with v, < ¢,,, and v, prime:
18, 20, 21, 54, 147, 342, 602, 889

Values of m with 1/ prime:

4, 12, 20, 28, 36, 44, 60, 68, 76, 84, 100, 108, 116, 132, 140, 180, 204,
220, 228, 252, 276, 340, 356, 484, 588, 628, 652, 700, 756, 924, 1132,
1292, 1452, 1516, 2300, 2484, 2604, 2964, 3116, 3276, 3420, 3540, 3940,
3988, 4892, 5100, 5268, 5908, 6620, 7812, 8964, 9084, 9324, 9468, 10308,
11980, 12188, 12204, 13724, 13860, 15252, 17052, 18476, 20676, 21916,
24252, 25004, 25508, 28692, 29460, 29492, 31692, 34236, 34380, 35700,
38428, 40564, 41316, 45028, 46076, 50332, 51148, 51204, 56588, 58796
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Values of m with 1), prime:

28, 36, 44, 52, 60, 84, 108, 116, 132, 140, 172, 188, 196, 212, 220, 252,
260, 276, 202, 316, 348, 372, 420, 444, 452, 516, 604, 668, 812, 868, 924,
956, 964, 1044, 1132, 1204, 1276, 1412, 1468, 1500, 1540, 1564, 1828,
2124, 2172, 2228, 2252, 2452, 2532, 2716, 2764, 2868, 3484, 3852, 4844,
5316, 5468, 6164, 7828, 9516, 9684, 10924, 12164, 15860, 19516, 20588,
21292, 24180, 25100, 25212, 28612, 30988, 31460, 32340, 34404, 38132,
42660, 43084, 46292, 46980, 52740, 56668, 60676
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