
CYCLOTOMIC PRIMES

CARL POMERANCE

Abstract. Mersenne primes and Fermat primes may be thought
of as primes of the form Φm(2), where Φm(x) is the mth cyclotomic
polynomial. This paper discusses the more general problem of
primes and composites of this form.

1. Introduction

Studied since antiquity, we have the Mersenne primes. These are
prime numbers 1 less than a power of 2, so of the form 2n − 1. To
be prime it is necessary that n = p is prime, but this is not sufficient,
e.g., p = 11. The first 4 of these primes were known to Euclid and
they played a key role in his work on perfect numbers. We now know
more than 50 Mersenne primes, the largest at present being 2p−1 with
p = 136,279,841, see [11]. Evidently it takes some doing to check the
primality of numbers this large!

It is widely believed that there are infinitely many Mersenne primes,
and also infinitely many primes p with 2p− 1 composite. Though both
assertions are still unsolved, there is a conditional proof of the second
one based on the prime k-tuples hypothesis: If p ≡ 3 (mod 4) is prime
with p > 3 and q = 2p + 1 is prime, then 2p − 1 is composite. Indeed,
the conditions imply that q ≡ 7 (mod 8) so that (2/q) = 1. This
implies that q | 2(q−1)/2 − 1 = 2p − 1, and the condition p > 3 implies
that q < 2p − 1. Thus q is a proper divisor of 2p − 1 implying the
latter is composite. For example, 23 | 211 − 1. It remains to note that
the prime k-tuples hypothesis implies there are infinitely many primes
p ≡ 3 (mod 4) with 2p+ 1 prime.

Also studied for centuries are the Fermat primes. These are primes
that are 1 more than a power of 2, so of the form 2n + 1. To be prime
(and > 2) it is necessary that n itself is a power of 2. Again, this is not

sufficient. Fermat knew that 22k + 1 is prime for k = 0, 1, 2, 3, 4 and
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he conjectured that it is always prime. However, Euler showed that
641 | 225 + 1. It is now known that 22k + 1 is composite for all larger
values of k up to 32, and also some sporadic larger values as well. It is
conjectured that all but finitely many are composite and that perhaps
224 + 1 is the largest Fermat prime. Nothing has been proved here,
even conditionally.

What Mersenne primes and Fermat primes have in common is that
they are cyclotomic primes. These are primes of the form Φm(2), where
Φm is the mth cyclotomic polynomial. This is the minimal polynomial
in Q[x] for e2πi/m and it has degree ϕ(m), Euler’s function. We have
the twin identities:

xm − 1 =
∏
d |m

Φd(x), Φm(x) =
∏
d |m

(xd − 1)µ(m/d).

Note that if p is prime, then Φp(x) = (xp− 1)/(x− 1), so that Φp(2) =

2p − 1. Further Φ2k+1(x) = (x2
k+1 − 1)/(x2

k − 1) = x2
k

+ 1, so that

Φ2k+1(2) = 22k + 1. We also have the Wagstaff primes, see [19], which
are primes of the form Φ2p(2) = (2p + 1)/3, where p is an odd prime.

So, a cyclotomic prime is a prime of the form Φm(2). We can ask if
there are infinitely many of them and also if there are infinitely many
numbers of this form that are composite. It turns out that there are
infinitely many composites for fairly trivial reasons. The substance of
this paper is to show that there are infinitely many nontrivial compos-
ites. We make this precise in the next section.

2. Basics and statement of results

Let

φm := Φm(2).

We say a prime factor p of φm is primitive if it does not divide any φk
for k < m. Otherwise we say p is intrinsic. For an odd prime p let `(p)
denote the mutlplicative order of 2 in (Z/pZ)×. We have that p is a
primitive prime factor of φm if and only if `(p) = m. Further, φm has
an intrinsic prime factor p if and only if m = pj`(p) for some positive
integer j, in which case p is the largest prime factor of m and p ‖φm.
If m is of this form, let δm = p, and otherwise let δm = 1. Thus, every
prime factor of

ψm := φm/δm

is primitive.
We know that for each m /∈ {1, 6}, there is at least one primitive

prime factor of φm; this is Bang’s theorem, see [3]. The numbers ψm
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are pairwise coprime and except for m = 1 or 6, they are all > 1 (cf.
[22]).

Due to the factorization

4x4 + 1 = (2x2 + 2x+ 1)(2x2 − 2x+ 1),

there is a further generic factorization of φm beyond δmψm when m ≡ 4
(mod 8). Note that

24k+2 + 1 = 4(2k)4 + 1 = (22k+1 + 2k+1 + 1)(22k+1 − 2k+1 + 1),

which leads to the factorization

φ8k+4 = gcd(φ8k+4, 2
2k+1 + 2k+1 + 1) gcd(φ8k+4, 2

2k+1 − 2k+1 + 1)(1)

=: φ+
8k+4φ

−
8k+4.

By dividing out an intrinsic prime factor if it exists, we have

ψ8k+4 =: ψ+
8k+4ψ

−
8k+4.

Further, this factorization is nontrivial for k ≥ 3, a result due to
Schinzel [23]. The factorization (1) is known under the name Au-
rifeuille, see [5].

Note that

(2) φm ∈ [2ϕ(m)−1, 2ϕ(m)+1),

see [12, Theorem 3.6], [22, Theorem 4.3]. Also, using [5, eqs. (13), (14)]
it is not hard to show that

(3) φ+
8k+4, φ

−
8k+4 � 2ϕ(8k+4)/2,

where the notation indicates the 2 items on the left side are of the same
magnitude as the item on the right side.

To state our results, consider the sets

C1 = {ψm : m 6≡ 4 (mod 8)}, C2 = {ψm : m ≡ 4 (mod 8)}.

Theorem 1. For sufficiently large values of x, the set C1 contains more
than x3/5 composite numbers ψm with m ≤ x, and the set C2 contains
more than x3/5 numbers ψm with m ≤ x that are not the product of two
primes.

The exponent 3/5 in the theorem is not optimal, this is discussed
below. The proof uses the deep result that for some θ with 1/2 < θ < 1,
there are infinitely many primes p such that p − 1 has a large prime
factor q > pθ. We can also prove a slightly stronger result conditional
on the abc conjecture.



4 CARL POMERANCE

Theorem 2. Assume the abc conjecture and that x is sufficiently large.
The set C1 contains ≥ x3/5 numbers ψm divisible by at least 2 distinct
primes with m ≤ x, and the set C2 contains ≥ x3/5numbers numbers
ψm divisible by at least 3 distinct primes with m ≤ x.

We remark that the abc conjecture has been used for similar purposes
in [24] and [4, Theorem 3]. We also remark that this theorem gives
an abc-conjecture-conditional solution of a problem of Schinzel [23, p.
561].

Throughout the letters p, q will always denote prime numbers. We
also let P+(n) denote the largest prime factor of n > 1, and we let
P+(1) = 1.

3. An elementary approach

Here we prove a somewhat weaker version of Theorem 1 where the
exponent 3/5 is replaced with 1/2. Let x be large and consider primes
p ≤ x. It follows from Erdős–Murty [8, Theorem 1] that the number of
such primes p with `(p) > 5x1/2(log x)2 is ∼ x/ log x. For any positive
integer d let Ld(x) denote the set of primes p ∈ (x/2, x] with

p ≡ 3 (mod 4),

`(p) = (p− 1)/d,

`(p) > 5x1/2(log x)2.

It follows that

(4)
∑

d≤ 1
5
x1/2/(log x)2

#Ld(x) ∼ x

4 log x
.

Thus, for large x there is some number d0 ≤ 1
5
x1/2/(log x)2 with

#Ld0(x) > x1/2.

Consider now the values of m = `(p) = (p−1)/d0 for p ∈ Ld0(x). They
are all distinct, bounded by x, and 6≡ 4 (mod 8). For large x, ψm is
easily seen to be > x (using m > x1/2 and (2)) and p |ψm. It follows
that ψm is composite. Thus, C1 contains more than x1/2 composite
numbers ψm with m ≤ x.

By changing 3 (mod 4) above to 5 (mod 8) and using (3), the anal-
ogous argument shows that at least one of ψ+

m, ψ
−
m is composite, so C2

contains more than x1/2 numbers ψm with m ≤ x which are not the
product of two primes.
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4. Proof of Theorem 1

Denote by π(x; d, a) the number of primes p ≤ x with p ≡ a (mod d).
Our principal tool is the following theorem. Let θ = 3/5.

Proposition 1. We have∑
q>xθ

π(x; 4q, 2q + 1) log q � x and
∑
q>xθ

π(x; 8q, 4q + 1) log q � x.

The analogous result for π(x; q, 1) is well known with varying values
of “θ” in the literature. The current champions are Baker and Harman
[2], who essentially have θ = 0.677, though they do not state their
result in the same way. Probably the techniques of their paper would
allow the same value of θ in Proposition 1, but we do not pursue the
optimal value at this point. Other results in their paper have been
recently strengthened (see [15]); conjecturally any value of θ < 1 may
be used.

We now sketch a proof of Proposition 1. With Λ the von Mangoldt
function, we have∑

d≤x

π(x; 4d, 2d+ 1)Λ(d) =
∑

p≡ 3 (mod 4)
p≤x

∑
d | (p−1)/2

Λ(d) +O(x/ log x)

=
∑

p≡ 3 (mod 4)
p≤x

log(p− 1) +O(x/ log x)

=
1

2
x+O(x/ log x).

Further, by the Bombieri–Vinogradov theorem plus a small additional
argument using the Brun–Titchmarsh inequality (see [17]) to clean up
the boundary cases, we have∑

d≤x1/2
π(x; 4d, 2d+ 1)Λ(d) ∼ 1

4
x, x→∞.

Thus, ∑
d>x1/2

π(x; 4d, 2d+ 1)Λ(d) ∼ 1

4
x, x→∞.

The contribution to this last sum when d is composite is o(x), so we
have ∑

q>x1/2

π(x; 4q, 2q + 1) log q ∼ 1

4
x, x→∞.
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By the Brun–Titchmarsh inequality,∑
x1/2<q≤xθ

π(x; 4q, 2q + 1) log q ≤
∑

x1/2<q≤xθ

2x log q

ϕ(4q) log(x/4q)

∼ x log(5/4) < 0.23x.

Thus, with the prior display, we have

(5)
∑
q>xθ

π(x; 4q, 2q + 1) log q ≥ 0.02x

for all large x, which shows the first assertion in Proposition 1. The
second assertion follows in a similar manner.

To achieve a cosmetically more appealing version of our results, note
that since ∑

xθ<q≤xθ(log x)2

1

q
� log log x

log x
= o(1),

the Brun–Titchmarsh theorem implies that in both parts of Proposi-
tion 1 we may replace q > xθ with q > xθ(log x)2.

Since no prime p ≤ x has p−1 divisible by 2 different primes q > xθ,
we have the following result.

Corollary 1. We have∑
p≡ 3 (mod 4)

P+(p−1)>xθ(log x)2
p≤x

1� x/ log x and
∑

p≡ 5 (mod 8)

P+(p−1)>xθ(log x)2
p≤x

1� x/ log x.

An elementary argument shows that the number of primes p with
`(p) = k is � k/ log k, so it follows that the number of primes p ≤ x
with `(p) ≤ x1−θ/(log x)2 is � x2(1−θ) = o(π(x)). (Note that there is a
similar argument in [10]. Also here one could appeal to [8, Theorem 1].)
However, a prime p counted in either part of Corollary 1 either has
`(p) ≤ x1−θ/(log x)2 or `(p) > xθ(log x)2. Hence we have

(6)
∑

p≡ 3 (mod 4)

`(p)>xθ(log x)2

p≤x

1� x/ log x and
∑

p≡ 5 (mod 8)

`(p)>xθ(log x)2

p≤x

1� x/ log x.

Thus, using the notation of the previous section we have the improve-
ment on (4): ∑

d≤x1−θ/(log x)2
#Ld(x)� x

log x
,

and an analogous result holds for primes p ≡ 5 (mod 8). Thus, by the
same argument as in the previous section, we have Theorem 1.
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5. Conditional results

For a positive integer n let rad(n) denote the largest squarefree di-
visor of n. The abc conjecture asserts that for each fixed ε > 0, there
are at most finitely many coprime positive integer triples a, b, c with
a+ b = c and rad(abc) < c1−ε. In this section we will prove Theorem 2,
which is conditional on the abc conjecture, and also discuss some other
conditional results.

Proof of Theorem 2. We follow the proof of Theorem 1 showing that
most of the composites generated are not prime powers. First note
that using that ϕ(p − 1)/(p − 1) has a continuous, strictly increasing
distribution function on [0, 1/2] (see for example Kátai [14], Elliott [7],
and Hildebrand [13]) there is a positive number ε such that if we add
the condition ϕ(p − 1)/(p − 1) ≥ ε under each of the sums in (6), we
obtain the same inequalities, albeit with possibly smaller constants.

First suppose that m 6≡ 4 (mod 8). As in the proof of Theorem 1
there is a value of d ≤ x1−θ/(log x)2 with� x/d log x primes p ≤ x with
p ≡ 3 (mod 4), `(p) > xθ(log x)2 and ϕ(p−1)/(p−1) ≥ ε. Further, for
each such m = (p− 1)/d we have that ψm is composite. We now show
assuming the abc conjecture that for all sufficiently large x, ψm cannot
be a prime power. Suppose it is a prime power, namely ψm = pi with
i ≥ 2. Consider the abc equation 1+(2m−1) = 2m. Since ψm ≥ φm/p,
we have

rad(abc) = 2p rad((2m − 1)/ψm) ≤ 2pq(2m − 1)/φm,

where q = P+(m). Assuming the abc conjecture this would be im-
possible for large m if there is some fixed δ > 0 such that φm > 2δm

(since 2pq = O(x2) = 2o(m)). Using (2) this follows since ϕ(m)/m ≥
ϕ(p− 1)/(p− 1) ≥ ε. Thus, we have our claim.

The situation for m ≡ 4 (mod 8) is completely analogous; we sup-
press the details. �

We remark that a variant of our proof can show that for asymptot-
ically all m, ψm is not square-full, and the same goes for ψ+

8k+4 and
ψ−8k+4.

We mentioned in the introduction that the prime k-tuples conjecture
can be used to show that there are infinitely many primes p with ψp =
2p − 1 composite. We add here a couple of thoughts. First, since we
know that 8 and 9 form the only pair of consecutive numbers which
are nontrivial powers (a result of Mihăilescu [16]), it follows that 2p−1
cannot be a nontrivial power, so in this case, the abc conjecture is not
necessary. Second, using the Hardy–Littlewood version of the k-tuples
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conjecture, we have the number of primes p ≤ x with 2p − 1 divisible
by at least 2 different primes is � x/(log x)2.

We can prove there are more cyclotomic composites assuming Artin’s
primitive root conjecture. If 2 is a primitive root for p, we have p a
prime factor of ψp−1 and so ψp−1 is composite for p large. By Hoo-
ley’s GRH conditional proof of Artin’s conjecture, we have � x/ log x
primes p ≤ x which have 2 as a primitive root. Further, the proof
is amenable to insisting that p ≡ 3 (mod 4) and also the same holds
when p ≡ 5 (mod 8). So the GRH implies there are quite a few cy-
clotomic composites. And as above, the abc conjecture can be used to
show these composites are usually not prime powers. This result can be
improved a little by considering primes p ≤ kx with `(p) = (p − 1)/k
for various small values of k and using sieve methods to show that
(p− 1)/k = (p′ − 1)/k′ has few solutions when k 6= k′ are small. Thus,
with a little work it may be possible to show, assuming the GRH, that
there are � x log log x/ log x integers l ≤ x of the form `(p) for some
prime p� x log x.

6. Statistics and surmises

Concerning Table 1, Gallot [9] previously enumerated the cases where
φm is prime for m ≤ 6500 and Noe [18] extended this to 105. Our cal-
culations agree with theirs. In our work we used Mathematica and
in particular their PrimeQ function. This function is discussed in [1],
where it is said to be based on the Baillie–PSW primality test. This
is not a rigorous primality test, though no counterexamples are known
(and there is a reward for the first one to be identified). In fact, I have
a heuristic argument that there are indeed infinitely many counterex-
amples, see [21]. So, it is possible that some of the prime declarations
made are false, but this seems unlikely, given that there are not very
many of them. One of the larger primes unearthed here is φ60,287 which
has 17,090 decimal digits. Note that when PrimeQ declares a number
is not prime, this conclusion is not in doubt. Since PrimeQ is no-
tably slower than checking if the Fermat congruence 3n ≡ 3 (mod n)
holds, we first used that and confirmed the few primality assertions
with PrimeQ. (We used the base 3 since every ψm is either a prime or
a base 2 pseudoprime. See [20] where these thoughts are developed.)
Many of the large primes uncovered here have indeed been certified
(including φ60,287) in the ongoing project factordb.com. (Thanks are
due to Yves Gallot for informing me about this.)

Heuristically there are at most finitely many examples where ψpi`(p),
with i ≥ 1, is prime. Is ψ127·7 the largest such example? It is a prime
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Table 1. Counts for m ≤ 2k with φm prime, ψm prime,
ψ+
m prime, ψ−m prime

k #m with φm prime ψm prime ψ+
m prime ψ−

m prime
1 1 1 0 0
2 3 3 1 0
3 7 6 1 0
4 14 13 2 0
5 23 25 4 1
6 33 36 7 5
7 49 52 13 8
8 64 68 20 16
9 81 86 24 25

10 99 106 30 33
11 122 129 34 43
12 140 147 44 54
13 167 174 50 59
14 195 202 61 64
15 221 228 72 74
16 255 262 85 83
17 289 296 96 94

of 226 decimal digits. There are several examples where both ψ+
m and

ψ−m are prime. The largest that we found in our calculations to 217 is
m = 1132, where the two primes each have 85 decimal digits. Probably
there are at most finitely many of these “twin cyclotomic primes”.

The counts in Table 1 look to be proportional to k2, and this is
supported heuristically as well. Indeed, one can model ψm as a random
number near 2ϕ(m) which has all prime factors larger than m. So the
“probability” that it is prime (given that m 6≡ 4 (mod 8)) is about
eγ logm/ϕ(m) log 2. The sum of these quantities up to 215 is about
223.4, up to 216 is about 254.4, and up to 217 is about 287.4, which are
not bad matches with the table. It would seem that the counts in the
first column are asymptotically equal to k2, but this is likely not true.
One can sum eγ logm/ϕ(m) log 2 for m ≤ 2k with m 6≡ 4 (mod 8),
finding it to be ∼ ck2, where

c =
5

12
eγζ(2)ζ(3)ζ(6)−1 log 2 = 0.999774 . . . .

So, close to 1, but not 1.
One can enlarge further the realm of cyclotomic primes to look at

the primitive parts of an − 1, where a > 2. Also one can look at the
Fibonacci sequence, as well as other Lucas sequences, for example see
Drobot [6]. We suspect our methods carry over, but we leave this topic
for another day, and perhaps another person.
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Appendix

Here we list the values of m corresponding to the counts in Table 1.

Values of m with φm prime:

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 22, 24, 26, 27, 30, 31,
32, 33, 34, 38, 40, 42, 46, 49, 56, 61, 62, 65, 69, 77, 78, 80, 85, 86, 89,
90, 93, 98, 107, 120, 122, 126, 127, 129, 133, 145, 150, 158, 165, 170,
174, 184, 192, 195, 202, 208, 234, 254, 261, 280, 296, 312, 322, 334, 345,
366, 374, 382, 398, 410, 414, 425, 447, 471, 507, 521, 550, 567, 579, 590,
600, 607, 626, 690, 694, 712, 745, 795, 816, 897, 909, 954, 990, 1106,
1192, 1224, 1230, 1279, 1384, 1386, 1402, 1464, 1512, 1554, 1562, 1600,
1670, 1683, 1727, 1781, 1834, 1904, 1990, 1992, 2008, 2037, 2203, 2281,
2298, 2353, 2406, 2456, 2499, 2536, 2838, 3006, 3074, 3217, 3415, 3418,
3481, 3766, 3817, 3927, 4167, 4253, 4423, 4480, 5053, 5064, 5217, 5234,
5238, 5250, 5325, 5382, 5403, 5421, 6120, 6925, 7078, 7254, 7503, 7539,
7592, 7617, 7648, 7802, 7888, 7918, 8033, 8370, 9583, 9689, 9822, 9941,
10192, 10967, 11080, 11213, 11226, 11581, 11614, 11682, 11742, 11766,
12231, 12365, 12450, 12561, 13045, 13489, 14166, 14263, 14952, 14971,
15400, 15782, 15998, 16941, 17088, 17917, 18046, 19600, 19937, 20214,
20678, 21002, 21382, 21701, 22245, 22327, 22558, 23209, 23318, 23605,
23770, 24222, 24782, 27797, 28958, 28973, 29256, 31656, 31923, 33816,
34585, 35565, 35737, 36960, 39710, 40411, 40520, 42679, 42991, 43830,
43848, 44497, 45882, 46203, 47435, 48387, 48617, 49312, 49962, 49986,
50414, 51603, 51945, 53977, 55495, 56166, 56898, 56955, 57177, 58315,
58534, 58882, 60287, 67235, 67854, 69933, 70129, 70617, 75302, 76912,
78077, 78426, 80160, 81165, 81432, 82569, 82730, 84897, 85474, 85881,
86243, 87005, 94914, 95349, 99992, 100917, 104550, 108535, 109965,
110503, 110845, 111065, 116629, 118080, 119210, 121806, 130002

Values of m with ψm < φm and ψm prime:

18, 20, 21, 54, 147, 342, 602, 889
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Values of m with ψ+
m prime:

4, 12, 20, 28, 36, 44, 60, 68, 76, 84, 100, 108, 116, 132, 140, 180, 204,
220, 228, 252, 276, 340, 356, 484, 588, 628, 652, 700, 756, 924, 1132,
1292, 1452, 1516, 2300, 2484, 2604, 2964, 3116, 3276, 3420, 3540, 3940,
3988, 4892, 5100, 5268, 5908, 6620, 7812, 8964, 9084, 9324, 9468, 10308,
11980, 12188, 12204, 13724, 13860, 15252, 17052, 18476, 20676, 21916,
24252, 25004, 25508, 28692, 29460, 29492, 31692, 34236, 34380, 35700,
38428, 40564, 41316, 45028, 46076, 50332, 51148, 51204, 56588, 58796,
73668, 81900, 84020, 86508, 87420, 92324, 96204, 97524, 97620, 104620,
118748

Values of m with ψ−m prime:

28, 36, 44, 52, 60, 84, 108, 116, 132, 140, 172, 188, 196, 212, 220, 252,
260, 276, 292, 316, 348, 372, 420, 444, 452, 516, 604, 668, 812, 868, 924,
956, 964, 1044, 1132, 1204, 1276, 1412, 1468, 1500, 1540, 1564, 1828,
2124, 2172, 2228, 2252, 2452, 2532, 2716, 2764, 2868, 3484, 3852, 4844,
5316, 5468, 6164, 7828, 9516, 9684, 10924, 12164, 15860, 19516, 20588,
21292, 24180, 25100, 25212, 28612, 30988, 31460, 32340, 34404, 38132,
42660, 43084, 46292, 46980, 52740, 56668, 60676, 68748, 69828, 72948,
74220, 75484, 84900, 87940, 106412, 110116, 115292, 129836
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USA
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