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Synopsis:

1. On an interesting property of . . .

2. Niven numbers

3. The “105 problem”

4. Digitally delicate primes

5. Primes with missing digits

6. The Sheldon conjecture

1



One of my first papers:

This appeared in the Fibonacci Quarterly in 1975. The

“interesting” property: If you multiply it by 99 it is the same as

appending the digit 1 to the beginning and to the end. It is the

least number with this property, and finding it had been posed

as a problem by J. A. Hunter in the Journal of Recreational

Mathematics.
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Hunsucker and I showed a connection to the Fibonacci

numbers and we raised the issue of the set of bases b for which

the analogous property holds for some n. That is, given a base

b, is there an n such that if n has k base-b digits then

bk+1 + bn + 1 = (b2 − 1)n?

This is the same, essentially, as asking if (bt + 1)/(b2 − b − 1) is an

integer for some t.

In the case of b = 10, we have b2 − b −1 = 89, and we’re asking for

numbers t with 10t ≡ −1 (mod 89). Since 89 is prime and the

order of 10 in (Z/89)× is 44, we have t = 22. That is,

n = (1022 + 1)/89 = 112359550561797752809.
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We proved that the set of bases b for which there is a solution

has density 0. The idea: Suppose p is a prime and p ≡ 11 or 19

(mod 20). Then 5 is a square mod p and −1 is not a square

mod p. So there is a pair u,v of solutions to b2 − b − 1 ≡ 0

(mod p), whose product is −1 mod p, so one of them, say u, is

a square Then b ≡ u (mod p) implies bt ≡ −1 (mod p) is not

solvable, since the order of b in (Z/p)× divides (p − 1)/2, which is

odd. So for a positive proportion of the primes, we remove a

residue class, so the survivors b form a set of density 0.

We also asked if there are infinitely many bases b with a

solution. If b ≡ 3 (mod 4) and b2 − b − 1 is prime, then there is a

solution, so conditionally on Bunyakovsky’s conjecture (that

irreducible polynomials without a fixed prime divisor infinitely

often represent primes), there are infinitely many bases.
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This paper was far from influential, but it got me thinking
about the order function in (Z/n)× and in particular the
difficulty of solving bt ≡ −1 (mod n), especially when n is
composite. This led to my involvement in work on strong
pseudoprimes with Selfridge and Wagstaff, Ron Burthe’s
UGA thesis that on average the least witness for an odd
composite number is asymptotically 2, and a paper with Alford
and Granville leveraging our work on Carmichael numbers to
show that infinitely often the least witness is large.

We say an odd composite n is a strong pseudoprime base b if
with t the largest odd divisor of n − 1, either bt ≡ 1 (mod n) or
b2

it ≡ −1 (mod n) for some i with 2it ≤ (n − 1)/2. We know after
Monier and Rabin that there are at most n/4 bases b (mod n)
for which this holds. If it doesn’t hold for a particular b, then
we say b is a witness for n.
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I was present for the birth of “Niven numbers” in 1977. Erdős

was at a small conference at Miami University of Ohio and he

persuaded the organizers to have me come and join him for a

few days. The conference was low key, mostly with educational

themes. Also speaking was Ivan Niven, who gave a talk

featuring a ridiculously easy problem that he saw in the Sunday

comics of his newspaper:

Find a number between 10 and 20 divisible by the sum of its

digits.

He went on to say that a mathematician would generalize this

by asking for the distribution of numbers divisible by the sum of

their digits or perhaps also generalizing to other bases.
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I felt sure I could prove these “Niven numbers” have density 0,
but I couldn’t. And remarkably, neither could Erdős. Also
attending the meeting was Curtis Cooper from Central
Missouri State U. and he and his colleague Robert Kennedy
wrote several papers on the topic. A few years later I ran into
these two at an AMS meeting at the University of Texas, and
there a very easy proof occurred to me.

Let s(n) be the sum of the digits of n. One can look at how
this is distributed when the numbers n have k digits, k large.
The average digit is 4.5, so by the central limit theorem, s(n) is
usually very close to 4.5k. So, ignoring the density 0 set of
those n where s(n) is not between (4.5 − ε)k and (4.5 + ε)k, we
can focus on just those n divisible by some number in this
interval, whether it is s(n) or not. The number of such n’s is
O(ε10k). QED
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I sketched out a proof for them, and then they published my

proof, thanking me!

That’s okay, the real problem was to find an asymptotic formula

for the number of Niven numbers up to to x. And I later did

this in a joint paper with Mauduit and Sárközy. We found out

late in the game that another trio had similar results, but with

slightly weaker error bounds: De Koninck, Doyon, and Kátai.

There has been recent work at UGA on the sum of the digits d

of a number, or more precisely, the sum of f(d), where f is a

polynomial. Lorenzini and students looked at the dynamical

system where this sum is iterated, getting some nontrivial

results as the base varies.
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Talking about UGA, Pollack and collaborators have recently

been looking at how statistical properties of leading digits fall

out with familiar arithmetic functions. A statistical anomaly,

known as Benford’s law, asserts that the leading digits of

numbers in a data set, like populations of counties, etc., are

not uniformly distributed, with “1” appearing most frequently,

followed by “2”, etc. In fact it is the fractional part of the

(base 10) logarithm that is uniform, so “1” appears with

proportion log 2/ log 10 ≈ 0.301, etc.

With ϕ Euler’s function, do the leading digits of the numbers

ϕ(n) follow Benford’s law? The answer is no. Here ϕ(n) is the

order of the group (Z/n)×. But for λ(n), the exponent of this

group, the answer is unexpectedly yes.
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The “105 problem” of Ron Graham:

Prove there are infinitely many integers n such that (2n
n ) is

coprime to 105.

Note that this condition is equivalent to n having 3 properties:

1. In base 3, n has only digits 0 and 1.

2. In base 5, n has only digits 0, 1, and 2.

3. In base 7, n has only digits 0, 1, 2, and 3.

Based on the three conditions being “independent events”, a

heuristic implies there are infinitely many such n. Recently

Ernie Croot reported on some possible ways to attack this

problem (at the Granville birthday conference in 2022).
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In the late 90s I was thinking of the covering conjecture of

Erdős:

For each B is there a finite set of classes ai (mod mi), where

B ≤m1 <m2 < ⋅ ⋅ ⋅ <mk and the union of these residue classes is Z?

I wondered instead about choosing for the mi’s all of the

integers m in [B,2B], asking what is the largest proportion of Z
that can be removed. Would it be density 1/2, which would be

the case if the m’s are pairwise coprime (which they’re not), or

would it be log 2, if the classes were completely disjoint (which

they’re not)? Or something in between?
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I discussed this problem with Gang Yu, who later took a job at

U. South Carolina and he discussed the problem with Filaseta

and Ford. Later, Konyagin came on board, and the 5 of us

proved, among other things, that the m’s in [B,2B] behave like

they are pairwise coprime.

We had a useful lemma in our paper that the referee pointed

out to us was reminiscent of the Lovasz Local Lemma in

combinatorics. A few years later, Hough used a generalization

of this lemma to answer the Erdős problem in the negative: If

B is sufficiently large, one cannot cover Z with a finite number

of distinct moduli all at least B, one class per modulus.

Nevertheless, covering congruences proved useful in a digit

problem connected with prime numbers.
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Say a prime number p is “base-b digitally delicate” if changing
any one of its base-b digits results in a composite number. Here
are some examples in base 10:
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Cohen and Selfridge proved (1975) that there are a positive

proportion of digitally delicate primes in base 2, and Sun

(2000) gave another proof. These articles were based on the

paper where Erdős introduced covering congruences. Erdős

himself (1979) proved there are infinitely many base-10 digitally

delicate primes.

Tao proved (2012) that for any base, a positive proportion of

the primes are digitally delicate.

One can actually view p as having infinitely many digits, with

an infinite string of 0’s as a preamble. So, say p is “widely

digitally delicate” if changing any one of these infinitely many

digits results in a composite number.
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Filaseta and Southwick proved (2021) that a positive
proportion of the primes are widely digitally delicate in base 10,
and a few other bases. Yet no actual base-10 examples were
known, until recently when Jon Grantham constructed one
with hundreds of digits.

Last year, Filaseta and Juillerat showed in fact that there are
arbitrarily long strings of consecutive primes that are base-10
widely digitally delicate.

Also, Paul Pollack and then undergrad Jackson Hopper found
primes that are so delicate that even altering them in more
ways than changing a single digit renders them composite.

An unsolved problem: Are there infinitely many primes that are
NOT digitally delicate? Or even not widely digitally delicate?
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Talking about digits of primes, must all large primes contain
every digit? Clearly no in base 2 iff there are infinitely many
Mersenne primes! What about base 10?

In 2019, Maynard showed that for any base-10 digit a, there
are infinitely many primes that do not have a in their decimal
expansion. In fact, he shows that among all integers up to x
missing a, the chance one is prime is of magnitude 1/ logx.

He very skillfully used the Hardy–Littlewood circle method
and other tools to accomplish this. He also showed that for
each k and sufficiently large bases b one can find the expected
proportion of primes missing k pre-assigned base-b digits.

For a gentle survey, see Granville’s lecture at the JMM:
www.ams.org/meetings/lectures/2023-Booklet-Master-
EBOOK.pdf
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This brings us to the sitcom “The Big Bang Theory”. Here’s
some dialog from a show that first aired in 2010. (One can
also watch this by googling “The alien parasite hypothesis”,
the name of the episode.)

Sheldon: What is the best number? By the way there’s only
one correct answer.

Raj: Five million, three hundred eighteen thousand, eight?

Sheldon: Wrong. The best number is 73. You’re probably
wondering why.

Leonard: No.

Howard: Uh-uh.

Raj: We’re good.
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Sheldon: 73 is the 21-st prime number. Its mirror, 37, is

the 12-th, and its mirror, 21, is the product of multiplying,

hang on to your hats, 7 and 3. Eh? Eh? Did I lie?

Leonard: We get it. 73 is the Chuck Norris of numbers.

Sheldon: Chuck Norris wishes. In binary, 73 is a palindrome

one zero zero one zero zero one, which backwards is one zero

zero one zero zero one, exactly the same. All Chuck Norris

backwards gets you is Sirron Kcuhc.
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About 5 years ago, with Chris Spicer, we proved that 73 is

indeed unique with the twin properties:

1. It is the nth prime p where n is the product of the digits

of p. (The product property)

2. If one reverses the digits of p one gets the mth prime, where

m is the reverse of n. (The mirror property)

Note that just the product property shows it’s a finite problem,

since if p has k digits, then π(p) is of magnitude 10k/k, while

the product of p’s digits is < 9k.

Further, the index n is 7-smooth, so comes from a much

sparser set than the primes.
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Thank you
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