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§1. ZIntroducktion,

The last decade has seen an exponential increase in activiey
coneexning the related algorithmic problems of factoring integers and
computing discrets logarithms in Ffinite fields. Since anm "answer™ to an
instance of one of these problems can be very easily verified, it is
possible to profitably employ an efficient algorithm that has not heen
rigorously analyzed. In fact every practilcal f%ctorizatinn or discrete
logarithm algorithm that purports to be sub-exponential in ite worst case

has only heuristic analyses.

In factoring, the fastest known algorithms all share a heuristic

worst case running time of L(N)l*o(l) to factor N , where

L(N) = exp(slog N loglog N)
and log denctes the natural logar%ﬁhm; see Coppersmith, Odlyzko,
Schroeppel (7], Lenstra [12], Pomeranca f16), and Schnorr, Lenstra [17].
The fastest rigorously proved factoring algorithm has expected running

time L(l\l)‘/ﬁl2 + D(l), see Pomerance [16].

*Supported in part by an NSF grant.
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120 C. Pomerance

For discrete logarithms in GF{(gq) {the finite field with ¢
elements), the fastest known algorithms to compute a discrete logarithm

1+o0(l
from scratch have heuristie running time L{g) ol

if g 1is prime and
heuristic running time exp{0({log q)llS(loglog q)2f3)} if q 18 & power
of 23 see Coppersmith [6), Coppersmith, Odlyzko, Schroeppel {7], and
Oodlyzke [15]. For the case of q prine, Adleman {[1] has sketched a
rigorous argument that éiscrete logarithms may be computed in time L(q}c
for some constamt ¢ . Although this exponent ¢ was not computed, using
the tools cited in Aéleman's paper, an upper bound of 242 + o{1) may be
inferred. Using the tools in Pomerance [1&], a value of c = /572 + o(1)
may be obtained. For OF(q) with g a pover of 2, Hellman, Reyneri {21]
have given a rigorous treatment similar to Adleman’s obtaining an upper

bound of L(q)le +oll) . (Thanks are due ro K. McCurley for thias’

reference.)
The case when g = p" is a non-trivial power of an odd prime has
been less well studied., For p rwelatively small, the technigues for
GF(Z“) carry over essentlally intact. For n = 2 wo have the recent
work of ElGamal [9]. oOdlyzko [15] pointa ouk that this method cqube
extended to the case n bounded., I do not consider these field;nﬁere.
In this paper, I shall present and rigorously analyze two similar
random algorithms, one for factoring and one for computing Aisc:ete
logarithms in OGF(q) whera q ia prime or a power of 2. The factoring
42 + o(1)

algorithm will have expected worst case running time L{N} and

the discrete logarithm algorithm will have expected worat case running

time L(q)’/2 + o(b) for a preprocessing stage and expocted worst case

running time L(q)Jl/z +o(1) for the actual discrete logarithm

calculation.

Both methods are quite similar to previously considered algorithma.
In particular, the factoring algorithm is a variant of pixon'ta randon

eanareas marhad 181, which itself ia based on ideas of Morrison, Brillhart
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{14) and earlier writers. Here the random aquares method is augmented
with Lenatra's elliptic curve Ffactoring method {12] and Wisdemann's
coordinate recurrence method {20} for sql;ing a sparse system of linear
equations over a finite fileld. The discrete logarithm algorithm is based
on the index calculus method of Western, Hiller [19] (see [15] for furthe
refaerences). Again, the new ingredients are the elliptic eurve method (i
the case q prime} and the coordinate recurrence method.

It is perhaps paradoxical that the elliptie curve factoring methed
can be used as a subroutine in a rigorously analyzed algorithm while it
itself has not been completely rigorously analyzed. The point le that th
algoritﬁms described here are random, so a subroutine need not work on al
inputs. What will be shown is that a somewhat weakened form of the
elliptic curve method works falrly rapidly for most inputs. The argument
uses a new result of Friedlander, Lagarias [10] in analytic number theory

That it might be possible to rigorously employ his elliptiec curve
method as a subroutine in the random squares algorithm was suggested by
Lenstra [12]. This method has already been used in the heuristic analyse
of some discrete logarithm algorithms, see Coppersmith, Q§%xzkb,
Schroeppel {7]. e

In [18], Seysen describes a random factoring algorithm that under th
sole assumption of the Extended Riemann Hypothesis (ERH} can be proved to

4372 + o{l)

have expected running time L{N) It is likely that by using _

some of the methods of this paper that the expected running time for

1 + o(l)

Seysen's algorithm can be reduced to L{N) st1ll under the

assumption of the ERH,
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§2. A rigorous version of the elliptic curve factoring method. 1 - (1--1:‘.1)1“%4(p’w”('/p log v

If wv,w 2 2, let Thus 4f h 1s a large constant times +p (log I hglp,w)  we will

{wl ej expect success with at most h dterations. Since the IU““illg time far
k(V)W) = I j

=2 one iteration is of order log v arithmetic ope (a1 L]

j L4 2 perations med N, ¢

a - p—
where ej is the largest integer with Jj 3 S v + 2/v + 1. One iteration
-choose an optimal w we essentially wish to minimize the expression

of the elliptic curve msthod to factor W- with parameters v,w is as R 2
ip WI¢O(p,w) (ignoring the factor log“v).

follows {cf. Lenstra [12}, paragraph (2.4)}.
' Let

Step 1. Choese a, x., y. at random in ZIZ/N and let
L AR
P(x,w)a #{m £ x: no prime factor of m exceeds wh.

23 _
b = Yo T %g T 2%y Then P : = (xo,yo)
2 3

is on the curve E : y = % + ax + b,

If one conjectures that J;l¢0(p,w) is about the same as p/Y{p,w), it

is easy to choose an optimal w . Indeed, it is known that the expression

Step 2. Attempt to compute k{v,w}P mod N on E by the addition
Y1/2 + o(})

wip(p,w) for a fixed number p > 3 is minimized for w = L{p)

YZ + o(l1)

procedurs described in {12].
nd the value of the fraction For this w 1s L{p) . That is,

The additien procedure mimics addition of points on elliptic curves module . _
rom the eonjecture that vp/y,(p,w} die about the same as p/¢{p,w)

a prime., Since N is presumably not prime, the procedure of Step 2 may
ne can deduce that the elliptic curve method is expected to factor N in

break down. But this is good, for as shown in {12], if the additlon L(p)¢5 + o(1)

ima if N 4is divisible by at least 2 distinct primes and

procedure breaks down, a non-trivial divisor of N i= mecessarily
' _Fs least prime p exceeds 3. (Of course, one does not know P in

revealad. -
dvance. The protocol fer implementing this optimized version of the

If Step 2 is completed, then the algorithm has been unsuccessful in
;elliptic curve methed involves a gradually increasing value of the
factoring N . However, one then can go back to Step 1 and repeat the .

arameter v in later iterations, always choosing w = L(v)”l,2 . When

procedure gaining a new chance ta facter N. If n, w 2 2, lst

he prime p 4s finally trapped, we find that we probably have spent time

¢0(n,w)= #{m & (n—#g,an;): no prime factor of = exceeds w}. (p)JE + o(l)

doing so.)

The following result is Corollary (2.8) in [12}.
Although this optimized version of the elliptic curve method is based

THEOREM A (lLenstra). TFhere is an effectively computable constant on an unproved hypothesis, Theorsm A is just that, a theorem. Although

1> cy 3 0 wleh the followfng preperty., ZLet W, v be Integers he unproved hypothesls seems very difficult and is far From resoclution,

excesding ) such that N has at least two distinct prime fsctors and ‘wa do have theorems that point in this direction. The following result is

such that the smallest prime facter p of N satisfiss 3 {p 3 v. Ifwu ‘a speclal case of Theerem 6 in {10].

fs such that ¢0(p,w) 2 3, rhen the success probabiiity of obtaining a :
THEOREM B (Friedlander~lLagarias)., For any fixed € ¥ O there {s a

noa-trivial Ffactorization of W with at most h Iterations of the i
positive constant c(e) sweh that untformly for all x 2 2, y with

elliptic curve method with parameters v,w J1Is at least 576 + ¢

y 2 exp{{log x) }» the exceptional set of Integers wn S % for which
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— . l -~ 1 leg x — S x 2 x 1/6
Pm + % Vo, y) - 9lm = 5 V%, y) > g e (log v V% {2.1) Np(x) < ey 5 exp{ - 5 (log 27

.

/6}

1 1
fails has cardinality at most cole)x » exp{~ 5(108 ) if x 1is large. 1In general let Ni(x) dencte the number of primes

p € (x}4i, xlélql] for which (2.3) fails where 1 is any integer with

luti
Remarks. Here p denotes Dickman'’s function, the continuocus so on .

I

¢ vx. For Llarge x we have
on [0,©} of the differential-delay equation x 1 « 1/6
Ni(X) < ey <5 exp{- 3 log = }
up'fu) = —p{u-1), p{u)=1 for O € u £ 1. 4 4

; for all such i . Now
It is known (de Bruiin {4]) that

(2.2}

plu) = exp{—~{1 #+ o{1))u log u}. w(x) ~ #S(x) = i Ni(x) + 0(vx) ,

Theorem B does indeed point towards the unproved hypothesis mentiloned and se a simple calculation gives our result.

~ Log x x for x
above, since from de Bruijn {6], we have ¢{x,y} p(log y) i We are now in a position to prove the major result of this section.

satisfying the hypotheses of the theorem,

6/7 TUROREM 2.1, There 1= a rendom algorithm which on fnput of an Integer
= log{x/4)) } and for m
We shall apply Theorem B with y = exp{{log

i through primes in (x/4,x] Let 8S(x) denote the set of primes N 22 and a parameter v 2 2 will produce Integors ¥, R with N = FR
running 24 3%

and the complete prime factorization of T . Horeover, with probability
3 < p $x For which
6/7 1 177 3, $2.3) at leagt L - (log N}/N no prime in S(v) dfvides R , The running time
— Yo(ps exp{{log »)°''}) > exp{- g (log )7 loglog x} 4 ' 617
/o 3 O{{log W) exp{2(iog v) .
7 < then
THEOREM B'. Jr =(x) denotes the number of primes p % X, Proof. By dividing out any factors 2, 3 from N, we may assume
Ia M8y
a{x) — #8{x) = O{x .+ exp{- 2 (log x : (6,N) = 1. Thie can be accomplished in at most O(lag N) arithmetic

4 o 3
perations, that is, in time O (log N}7).
Proof. %et N (%)} denote the number of primes p &€ {(x/ yx} for N is,

Lat
which (2.3) fadls. For p in this range, we have

&7 1 1 1/7
o 6/7 w = (log v) "'}, h =1 4+ {~= (1 I(log N) Lea YTy 0a1 '
Jp > % ¥x , exp{(log 936!7} > exp{(log(x/4)) "'} exp{ v 5 og v)(log exp{5 og v oglog v

In light of (2.2), if x 4is large enough, then the right side of {2.3) ia
6/7}

where =1 is as in Theorem A. We apply the slliptic curve method with

. Thus,

smaller than the right side of (2.1 with y = exp{(log(x/4)} parameters wv,w ta N repeatedly until either we obtain a non-trivial

for large =, if p d1s counted by Nl(x), then p does not satisfy factorization of N or we have done h ftecations, whichever comes

{2.1). Thus first. This can be aeccomplished in at most o(hw log v} arithmetic

5!

operations mod N, that 1s, in time
677

1 1/
Nl(x) < ey X - exp{ - 5(1og ')

0({log N)3exp{2(log v) P,

for some absclute constant ¢ and for all large x.

2

Next, we lot “2(X) denote the number of primes p & (x/16, x/4] If N is not a prime power and has a prime factor p 1in 8(v), then

for which (2.3) fails. Then Nz(x) < Nl(x,é)’ so thak the probability that the above procadure produces a non~trivial
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factorization of N d1s at least

h¢0(p.w>1</5 log v)
1 - (l—cl) > 1 -

Indead, by Theorem A, the probability 4s at least the first expreseilon and-

since p € S{v), we have

h {p,w)
_L— 2 :}- l°g N 3
/p log v 1
50 that
(s} [(/5 1og v) < log
hy (p,w e log v 1 1
G - s
1 - (l—cl) z2 1~ (l-cl) » 1 o

If N has been factored, we apply the same procedure to the fackors,
If in turn, one of them factors, we again repeat the procedure on its
factors, and so on. Since N 1is the product of at most log N primes,

the time for all of these applications of the elliptic curve method is at

moest

6/7

0((log M)* expl2¢log v &' 7).

With probability at least 1 = {log N)/N, each facter m of N which

the above procedure doas not factor is either a power of a prime in S{v)

or is not divisible by any prime in S(v}. For each such m write mn

in the form X%® where k,a are integers and a is maximal. This can be

4
accomplished in time O{{log N} }. If k > v, then stop working on the

factor m of N . If k £ v, apply the primality test in [2] to k ,

taking time at most
cslogloglog(lOV)

0{{log v} )

a
for some constant L Let F denote the product of all such k  for

which k has been proved prime and let R = R/F. Then with probability

at least 1 = {log N}/N no prime in S{v) divides R .
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§3. Factoring with random squares.

Tt has long been known that 4f N -is divisible by at least 2
distinet odd primes, then factoring N dis random polynomiel time
equivalant to producing randem solutions to the congruence x2 = y2 mod N.
Indeed, if x2 L) y2 mod ¥ 1s a random solution, then (x-y,N} 1is a
non—trivial fackor of N with probabiliky at least 172, Conversely, if
the complete prime factorization of N is known and y 418 a random
residue mod N, then it is a simple matker using the elementary theory of
congruences to make a random choice in the set of x mod N with
x2 ] y2 mod N.

This econcept is exploifted successfully in several of the practical
factoring algorithms, principally the continued fraction method {14] and
the guadratic sieve [16]. Howaver, these practical algorithms suffer two
theoretical deficiencies. One, we cannot prove the congruences
xz = yz mod N that are produced are truly random. Two, we cannot prove
the methods are likely even to producs any congruences x2 a yz mod N,
random or not. It should be stressed, however, that these deficiencies
probably 1lie in our current methods of proaf or in our ingenuity, not
in the algorithme themselves which almost certainly work as claimed.

The random squares factoring method of Pixon {8] is a particularly
simple and randomized version of the continued fraction method (from which
the continued fraction has been removed!) that is amenable to rigorous
analysis., By trading the practical advantages of the continued fraction
methed or the quadratic sileve for rigor, the true value of the vandonm
squares method lies in the theoretical analysis of the complexity of
factoring, not in actually doing so.

The random squares method with parameter v to factor N may be

described briafly as follows, Let Q(A) denote the leaat non-negative

residue of A mod N. 1In stage 1, one continues to choose random integers



C. Pmnernuf:e Fast, Rigorous Factorization and Discrete Logacithm Algorithms 129

128

A until w{v) + 1 values of Q(A) are found which completely factor with In [8], Dixon used trial division by the prim
esa up to v as the

the primes up to v In stage 2, a non-empty subset Q(Al)""‘Q(Ak) of subroutine in stage 1 and Gaussian elimination as the subroutine in stage

2
S ¢ 4
% 2 and was sble to show that with v chosen appropriately the running time

the stage 1 successes is found whose product is a square, say
3/2 + of1)

is < L{N) In {16] 1t was shown that with these subroutines

y 8 A, ... A mod N, then clearly xz E y2 mod N,
1/2 + o(1)

3 k

It is not hard to show that if N {1s divisible by at least 2 the optimal cholcs of v is L(N)

2 + ofl)

and the running time is

exactly L{N) Furthermore, in {16] it was shown that if the

distinct odd primes and if each (Ai,N) a 1, then (x-y,N} 1is a

non-trivial factor of N with probability at leaat 1/2 (ses Leama 3 in Pollard-Strassen factorization method with the earl bort st
tly abort strategy is

used in stage 1 and the Coppersmith-Winograd elimination method fs used

[8]). Indeed, among the various residues A mod N fox which
V275 + (1)

in stage 2, then the optimal cholce of v is  L(N)
¥53/2 + o(1)

Q(A) = Q(Al) at least half of these choices give a value of y mod N
and the

{when substituted for Al in the dafinitien of ¥} which lead to a running time is exactly L{N}

Since the algorithm is "indifferent" to In this section we shall show that if the algorithm of Th 2.1
sorem 2.

non-trivial factorization of N .

is used in stage 1 and a new elimination method of Wisdemann [20) 1s used
v1i2Z + o(l)

which value of A gave the quadratic residue Q(Al) in stage 1, at least

in stage two, then the optimal choica of v is L{N)
JE + ofl)

in stage 2 lead
and the

half of the instances of the algorithm which use Q(Al)

to a non-trivial factorization of N running time ig exactly L(N)

To further specify the random squares method one must also describe Towards this end
ud, we begin as follows. Let ¢1(x,y,z) denote the

the subroutines used to accomplish the main tasks of otage 1 and stage 2. number of integers n € x divisible solaly by pri h
primes p such that 1f p > z,

That is, in stage 1 we must specify which method is used to recognize then p € §(y),

which values of Q(A) produced factor completely with the primes up to v .
a

LEHMA 3.1. 7F y = L(x) wEEA 8 > 0 Fixed and z = axp{64(loglog X)6}

’

Further, in stage 2 we must specify which method is to be used to find the

we have
non-empty subset. Once these subroutines are specified, the parameter v 1 D
. - =+ o(l
Yo(R,y,2) ~ Plx ~pf ¥ f Ao x 2a
1 2 ¥y ( :J') P a loglog ” X = x -+ E{x)

is then chosen so as te minimize the running time.

In [14] 1t was shown that the problem of finding the non-empty subset P £
roof. The equality follows from (2,2) and the latter asymptotie

in stage 2 iz really a problem in limear algebra. Indeed if relation foll Lth c
ows @& ar
a(v) a, xom the main result in Hildebrand [11] or from
Q{A) = ifl Py Maler [13]. It remains to show the first asymptotic relation. Let
= 1 log x
is the prime factorization of a stage 1 success, where P denotes the ¥ {log x)flog y = a i;g%;g—; + Pirst note that
i-th prime and the exponents a are non-negative integers, then a linear
1 0 £ ¥(x,5) - ¥, 0e,y,2) € 3 s, W

pE(z,y],pes(y) P

o~ ¥ (i p(u ~ EEE_B)) (1 + o(u log u
Pa(z,y],pﬁs(y) P log y log x )

dependency among the vectors {al....,aﬂ(v))mod 2 corresponds to a

non-empty subset of the numbers Q(A)} whose product is a square. Since

we have #(v) + 1 such vectors, a linear dependemcy must exiat.
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{3.1)

o

u log u)) 3
- 1
< p{u~1) x( + O( log x pE(z,y].p¢S{}')

where again we use the papers [11]}, {13].

Using partial summation and Theorem B' we have

Y1
1+ f =5 z Bde
(PE(z,y1§;¢S(y) 2 ¥ pe(e,t),pes(y)

o=
1]
R L]

z
pez,y],pgs(y)

_ .
1) + [ =L > 1)dt
(p5y,§¢(y) 2 Y pse,pgs(y)

"
“ I

Y1 1 1/6
olexp{- % (log y)lls}) + o(i = exp{~ 3 {log £)7 T}dt)

1/6
o((1og 2 Coxpt- % (log 2)7' 1)

5 B

- (loglogx) ) . (3.2)
log x

Further from Lemma 3 in Alladi [3] it follows that

p{u-1) ~ p(ulu leg u as u D@ .

Putting this estimate and (3.2) inte (3.1) it follows that

5
(log u)(loglogx) )
by x,y,2) = dlxy) + 0 (9(“> x 22 log x

11/2
- 00y (1 N 0(&&25525_31____ ) ,

/2
{log =) !
which proves the first asymptotic relaticn of the lewma.

Let w{N) denote the number of distinet prime factors of N and let

t(N) denote the number of natural divisora of N .

Lemma 3.2 fet % 2 1, Ilet & be an arbitrary set of primes, let N 7 1

X {2y
be an fnteger not divisible by any prime In 5, let T{x) denate the se

7 &
of fntegers m £ x aot divisible by any prime outside of S , and le

(0= {n € (LN} o(m) = mod N € TG0} .

Then

— 4 -2
Wi} | " 2 (4T(vx2Y (T _ w(ed)y T
2 fT{x) 2 #TN(X) T (/)
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Proof. This result is a mild generalization of Lemma 3.1 in [16] where
the set 8§ consists of all ths primes in an interval. That lemma ias
itaelf a generalization of Lemma 2 in Dixon [8]. The proof of the lemma

at hand follows from the samse argument.

Theorem 3.3. Zer a > 0 be fived. IF N > 1 1s an Integer not
divisible by any prime wp ro L{N® and § 1= the set of primes
p 2 LN o SCLON) together with all of the primes up to
exp{64(loglog N)G}, then

- Ei + ofl)
# TN} = N .oy f ,

using the notation of Lemma 3.2.

Proof. From Lemma 3,1 we have

- E% + ofl) - Zi + o(l)

¢ T(N) = N + L{N) v OT(VNY = JF - LOW) .

Thus our rasult will follow from Lemma 3.2 if we show

1
_ = 7+ o1}
oDy ae) - AW Ly R . (3.3)

EET(V/N)

2% _

From the hypothesis that N has no prime factor up to L(N)a, it

follows that

log ¥

<
w(N) < Toglog K ’

B

80 that the first equaldity in (3.3) is immediate,

Since L
_ - ~7a Y ell)
Lol 20 V) = VR - Ly B

£ET(VN}
from Lemma 3.1, we have half of the secend equality in (3.3). To complete
the proof it is sufficient to cite Lemma 3,2 in [16], where a guantity

greater than or equal to EtET(JE) T(t) is majorized by the expression

- - = %+ ofl)
VN o« L{ND) .
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The following algorithm is the main goal of this seckion. The letter The second stage of the algorithm invelving the cocrdinate recurrence

_)
mothod is also probabilistic. Since each vector v(A) has at most
o(1)

"RM stands for the random sguares method, "E" atands for the elliptic

0((log N)/loglog N} = L{N)
2a+oll)

non-zero entries, the running time for

V2 + o(l)

curve mathod, and "C" the coordinate recurrence method.

this stage will be L{N) = L{N) with a8 = V172,

Algorithm REC 3 9
Note that Algorithm 1L in [20] involves solving Ax = b where A ds a
lLet a > O be fixed. On input of an integer N > 1, first use trial
non-singular square matrix, If this procedure 1s applied when A is

division ko test N for prime factors up to v = L(N)a. 1f this
possibly singular, then the algorithm will either solve the equation for

procedure produces a non—-trivial factorization of N , then stop. 3 5
x or find a non-trivial sclution to Ax = 3. We use this algovithm

Otherwise, let =z = max{3, exp{64(loglog N)s}}. HWe iterate the following
as follows. Take the first =(v) vectors and from the matrix A by

procedure until we have ={v} + 1 successes. The procedure is to choose 5
writing these vectors as columns. Let b be the #{v) + 1l- st wvector

a random finteger A € [1, ¥-1], remove any prime facters up to =z from
written as a column. Thus we shall either find a linear dependency

Q(A) = Az mod N by trial division, and if the unfactored peortiocn exceeds
involving the #(v) + 1 ~ st vector or we shall find a linear dependency

1, apply the algorithm of Theorem 2.1 with parameter w = L(N® o this
among just the first w(v}) vectors. In either case, we have found the

unfactored portion of Q{A). A Mguccess" 1s defined as a pair A, Q(A)
requisite linear dependency.

for which this procedure outputs the complete prime factorizatiom of Q(A) aL{N)a

The integer x may be as large as L(N) . However, it is only

and none of these primes exceeds v . a + a{l)

> necessary to compute x mod N. This can be done in time  L(N}
For each of the #(v} + 1 successes A, Q(A), let w{A) denote the

#v) a by first €inding the prime Factorization of x and then computing x mod
vactar (a_,...,a Jmod 2 where Q(A)} = 1 P and By denctes the
1 w{v) 1=1 N. An alternative is to follow the algorithm desecribed in [14].
i-th prime. Use the coordinate recurrence method of Wiedomann [20]
5 R The coordinate recurrence method (Algorithm 1 of [20]) 1
(Algorithm 1) to find a subset v(Al),...,v(Ak) of the #{v) + 1
5 probabilistic. According to Proposition 3 in [20), the expected number of
* vectors with 3(A Y+ .o+ w(A ) = 3 ., Let x be an integer with
1 k jterations of Algorithm 1 before a linear dependency is found is of order
2
x° = @A) ... Q(A,) and let y = A ... A moed N. Compute {x-y,N). If
L Ak 1 k log w{v) = L(N)o(l). Note that we might use Algorithm 2 in [20]. This

this is a non-trivial factor of N , the algorithm has been successful. 2a + ol{l)
has deterministic running time L{K)} , but requires more space -

2a + o(1) a + o(l)

From Theorems 2.1 and 3.3 we see that we shall expect to iterate the L{N) against L{N) for Algorithm 1,

a + - + o(l)

%a Assuming we successfully find the linear dependency, the probability

procedure with the random A's precisely L(N) times to

Algorithm REC will produce a non-trivial factor of W 48 at least 1/2,
achieve the reguisite number of successes. gince each iteration of this

provided N 3is divisible by at least 2 distinct odd primes - see the
procedure has running time L(N)o(l), the expected time for the collection_ y P

a + El + o{l) discussion earlier im this section.
a

of all of the factored Q(A)'s is L(N) . Thus a cholce of

Summing up we have the following amalysis of Algorithm REC.
a = J1/2 will minimize the expected running time of this stage of the

3+
algorithm - it 1s L(N)V’2 o) f
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Theorem 3.4, Fith a = JL]2 , the expected running time of

Y2 + o(1)

Algorithm REC s L(N} and the space regquired Is

Y112 + o1} If N is divisible by st least 2 distinct odd

L{N)
primes, the probability that Algorithm REC will produce s non-trivial

factor of N Zs ar leasr 1/2.

§4. Discrete logarithms in GF{(p).

Let p denote a fixed prime exceeding 3., In this section we shall
see how a certaln natural analog of Algorithm REC from section 3 can be
usad to compute discrete logarithms in GF(p)}. The general.idea iz as
follows (cf, Adleman {1), Western-Miller [19]}). Suppose g 1is a
primitive element in OF(p}, x € GF(p)¥, and we wish to compute luggx,
that is, some number y mod {p-1) with gy ax, Let v 22 beas
parameter. Suppose the least positive residue of gB in GF{(p) factors

completely over the primes up to v !

LIg2) ay
g & I p,” mod p.
i=1

Taking the logg of both sides we obtain

#{v)
-1%. 4.1
e ® L ailoggpi mod{p-1) { )
1=1
Stage one 1s to choose random exponents e € {1,...,p-1} wuntil so many

valuas are found with ge mod p factoring completely with the primes up
toe v t%at the corresponding system of equations of the form (4.1) for
the unknown quantities loggpi mod(p-1) for 1 =1,...,7(v} has Full
rank, {(What it meens for a system of linear equations over Z/{p-1) to
have Full rank is that when considered over 2/q, the system has full
rank for each prime factor ¢ of p-1.)

Stage two is to solve the system of equations of the form (4.1} for

the guantities 1oggpi mod(p=1) for 1 = 1,..,n{v}.
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If x d1a one of the primes up to v , or more generally, if =x

" factors completely with the primes up te v , then it is an easy matter to

writa 1oggx mod{p-1) as a linear combination of the now known quantities
loggpi mod{p-1)} and sc compute it. Probably, though, x wil; net be in
this form in which case we enter stage three of the algorithm. This
invelves choosing random exponents e until one ig found with the least

positive residue of gex factoring completely with the primes up to v !

a{v) b
e i
gx® 1 By mod p
i=1
Thus
w{v)
1 2 e +
oggx e ifl bil°ggpi

and we are done.

Stages one and two comprise a precomputation part of the algorithm.
If we next want to compute loggx‘ for some othar =x' € GF(p), we
neod only stage 3 fqt x' eince we already know the logarithms of the small
primes.

This general algorithm is known as the index calculus algorithm (the
word index is synonymous with discrete logarithm). As with the random
squares method, the version of the index calculus algorithm presented here
will use the elliptic curve method and the coordinate recurrence method as
subroutines: The only difficulty in the analysis will concern showing
when the system of equations of the form (4.1} is expected to have full
rank. To sclve this problem, we shall amend the index caleulus algorithm
slightly by also considering values of gepi mod p  for random exponents
e and for the various . Weo begin with the following simple lemma, the

main idea of which appears in [11].
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LEHMA 4.)l. Zet V ke a vector spsce over a field ¥ with

dim V =k and 0 ¢ &k ( ®», Letr $ ba s finite set of vectors in V and

ler bl,...,b1 be a basis of V . Zletr L = [2 1og2k} + 3 wheore log2
<

refers to the binary logarithm. Fith the uniform distribution over 8 ,

say we make 2k} Independent chofees of elements from S (wdth

replacemsent), labeling the chosen vectors vl,....vk&, wl,...,wk&. Let

V' be the swbspace of V spanned by vl,..,vk» and the vecters

b for § =1l,...,% and 1 = 1,...,%. Then with probability

ERR C RS DY X¥1
at least 1 - L/(2k)}, V' =V,

Proof. Let VO = {0} and for 1 = 1,...,k, let Vj denote the subspace

1""'Vj»' Then the probability that

- 5 (4.2)

of V spanned by v

1
)_
!?(Sﬂ\’k)_z

is at least 1 - k - Zﬁﬁ. Indeed, if (4.2) fails, then for any fixed

$ =0,...,k-1, the probability that each of vjh+1""'v(j+l)h iz in Vj
ia less than 2~&. But if one of these vectors is not in Vj + then

dim Vj+1 > dim Vj. Thus, 1f (4.2} fails, then with probability at least

1-% - 2% we have 0 < dim V, € .er < din Vp, 8o that V| = V. But if

Vk e V, then (4.2} obviously holds. This proves our assertion about the

probability that (4.2} holds,
Assume now that (4.2) holds. Let Wj be the subspace of V spanned

i e ¥, 04,4, Fix an
by Vk and the vectors bj + ¥ g-1) 4t for N ¥ ¥

4 =1,...,% Then with probability at leaskt 1 — Z_A we have bj [ Wj.
[~ t
Indeed, if w(j—l)i+i Vk, hen
+ C W
by € sean(Vis by 4 M0y yea? ©
Further, from {4.2) the probability that at least one of w(j-l)&+i € Vk
for 1 = 1,...,4 d1s at least 1 - 2_&. Thus our assertion follows.

Thus with probability at least 1 - 2k - 2~L we have both {&4.,2) and

bj [ Wj for each 3 = 1,...,k. In this case V' contains the basis
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bl""’bk’ so V' =V, It remains to note that

1=k - 2751 - e,

Romark. Tt should be clear from the proof that if wa allow repsated
elements in S5 so that 8 15 now a multl-set the same result holds.
More generally the same result holds if we replace the uniform

distribution on $ with an arbitrary distribution.

We are now.in a position to consider tha following algorithm. The
letter "I" stands for the index calculus algorithm, "E" stands for the

alliptic curve method, and "C" the coordinats recurrence method.

ALGORITIM IEC

On input . of a prime p > 3, a primitive element g mod p, a non-zero
residue x mod p, and a parameter v = L(p)a where. a > 0 is fixed, do
the following. Let 2z = max{3, sxp{64{loglog p)s}}, lat &k = w{v), and
let 4 = {2 logzk] ¥ 3, Iterate tﬁe following proceduré until we have kf
successes. The procedure is ko choose a random integer e € {1,...,p-1},
form gemod p, remove any prime factoxs up to 2z by trial division, and
if the unfactored portion exceads }, continue with the alpgorithm of
Theorem 2,1 with parameter v . A "success” is defined as a pair o ,
gamod p where this procedure outputs the complete prime factorization of
ge mod p  and no prime involved sxceeds v . Next, fo; J=1,...,k
continue with the same procedure applied to (pjge)mod p for random
cholces of e wuntil we have } successes for each j . Here, pj
denotes the j~th prime. This concludes stage one of the algorithm.

Next, let yj = log pj mod{p~1}. Each success among the First

k) d1s of the form

k ay
g8 1 p;” mod p
i=1

and each success among the latter kb is of the form
e k bi
pjg 2 n Py mad p.
i=1
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The former relations lead to equations of the form

k
es I a,y; mod{p-1)
i=1-

while the latter zelations lead to equations of the form

a E —yj + biyi mod{p-1) .

1 .

oo

i
We use the coordinate recurrence method (20} to solve thesa equations for
Yyareea¥pe This concludes stage two of the algorithm,

¥inally, choose random exponents e untll one is Found (using the

same procedure as in stage one) with (xga)mcd p facteoring complately with

the primes up to v . If
k [

xge L} I pii mod p,
iel
k
then log x 3 -a + L ey, mod(p~1). This concdludes the third and final
B 1=

stage of the algorithm.

Remarks. If e 1s a random variable with uniform distribution in
{1,...,p~1} then so is xg® mod p for any fixed x P O mod p. Thus from
Therorem 2.1 and Lemma 3.1, the probability that the procedure just
described will produce the complete prime factorization of (xge)mod p

1
- + o1}

with no prime involved exceeding v is L{p) + Thus the expectad

1
a + Ta + o{l)

running time of stage 1 is L{p) and the expected running

Ei + of{l)
time of stage 3 1a L(p) '

Some comment is needed for stage two. First, from Lemma 4.1, the
system of equations has full rank with probability at least 1 - 1/(2K)}.
Second, the coordinate recurrence method must be applied in a finite field
and Z/{p~1) 1s mot one. There are two exits from this dilemma. One

is to apply algorithm REC from sectien 3 to p-l, completely factoring it

Fast, Rigorous Factlorization and Discrete Logaritlim Algorithms 139

in expected time L(p)‘f2 * O(l). Next, for each prime q that divides

p-1 we apply the coordinate recurrence method to the system of equations
conaidered over ZIfq. If qzlp-l then we use a Hensel lifting argument
to solve the system of equations over Z./q2 (again by the coordinate
recurrence method over Z/q), and se on if a higher power of q divides
p~l. Solutions over the various Ifqa are then glwed together with the
Chinese Remainder Theorem to farm the solution aver L/(p-1).

The other way to solve the system via the coordinate recurrence
mathod does not invelve txying especially hard to factor p-1. IF thias
method 1s applied to a system over a non-field it could well break down
vhen it tried to inverk a nonrinvertible element, In our case this swold
Just produce & non-trivial factorization of the modulus. The coordinate
recurrence method can then bs begun again for the various factors of p-1.
If the method does not break down with a particular modulus, it is
expected to produce ‘the reguired solution.

Since the system of equations is sparsa, the expected running time to

2ato(1) and the space is L(p)a+°(l)

solve the system of aquations 1ia L{p)
It is eclear that to minimize the time for stage one we should choose
a = ¥1/2 . This leads to a running time of L(p)‘l2 * o(1) for stage one

and the same running time for stage two. We sum up our results in the

following theorem.

THROREM 4.2. Suppose p > 3 is prime, Algorithm IEC with parametsr

112
L(p)J / Is expected to complere preprocessing for the discrere logarithm

2 o) and In space L(p)"”'/2 + °<l?

problem over GF(p) fn time L{p)
After the preprocessing stage has been completed, amy discrete logarithm

In GF(p) wmay be computed Iin expected time and space L(p)Jl,z + o(1)
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; n
§5. DISCRETE LOGCARITHMS OVER GF{(27).

fn the last section we represented aelements of GF{p) = L/p by 5.1, the number cf members of GF(Z“) whose prinecipal representative is

i
~ == + o{1)
their least positive residue. Since this is an integar it made sense to a product of irreducible factors of degree £ v 4s 2" « L(2™) 2a
1
talk about an element of OF(p) factoring into amall primes. We would a + ™ + o(l)

Thug the expected time to complste stage one ia L(ZnJ

like to have a similar situwation in GF(2"). Recall that if

v . The value a = v1/2 minimizes this expression, giving the running time of

£(x) € (2/2)[x] 18 irreducible of degrea n then . L(2nJJ§ + 0(1).
GF(ZD) T UDICICECI) . Bines eack cosst fn Ehis uwtiont StrUCt:rE | Finally, the coordinate recurrence method may still be used in stage
has a unique representative with degree { n, we may represent GF(2) by two. The diserate logarithus ave ntegers defined mOd(2n~1). .
Hhe polynontels In (WD) wieh degree € Sinee ot e 2" is composite, the same devices as discussed in section % may be
a unique factorization domain, it thus makes sense to talk about an emod to got around thts problen. unning up e nave the. foltomtnn,

elemant of GF(2™) factoring into small primes (low degree irreducibles).

In fact, the situation for Gr(2"} ia somewhat easier than with THROREM 5.2, Algorithm IEC of section & with the changes discussed

GF(p) Whils we do not have an analog of the elliptic curve method, we do above 15 expected to complete preprocessing for the discrete togardchm

: n n.v2 + o{l)
have random polynomial time algorithms to factor polynomials din problem fn GF(2) In time L(2}) and In sprce
172 + of1
(2/2)[x] (see references on p.235 of [15]). Thus on presentation of a L(Zn)J / a(1) - After proprocessing, sny discrete logarithm may be

V172 + o(l}

n
polynomial h{x) € (2/2)[x] of degree < n, we can determine a computed In expected time and space 1{2)

complete factorization of h{x) into irreducibles in expected time lesa

Remark. While the algorithms of sections 3 and 4 are in a sense near Lo
than {(log n)c for some sbsolute censtant ¢ > 0.

diff ith GF(p) 1is that we need an analegy to the best we know of, "even allowing heuristic - empirical algorithms, the
The only other difference wit P s

h ion of polynomials in (Z/2)}[x] up to algorithm of this section is far from the best diserete logarithm
Lemma 3.1 which gives the proportion of pelynomia

£ wh irreducible factors have small degrees algorithm over GF(2™). As mentioned in the introduetion, the algorithm
a certaln degree all of whose irreduc a .

of Copperamith [6} has a heuristic running time of
173 2/3

Such a result may be found in Odlyezko {15].

axp{0(n~" “(log n) }}. Nevertheleaa, the algorithm of thia section is

1/100 < m99/100.

LEMMA 5.1 (0dlyzko). Suppose n d = The proportfon of

the fastest we know of now with a rigorous amalysis,

polynonials fn (2f2)[x] of degree S m all of whosse frreducible

factors have degrees % d among all polynomials in (2/2)(x] with cEs

degree < m  fs exp{-(l+o{l))u log u} where u = wm/d. 1. L. M. Adleman, A subsxponential algorithm for the discrete logarithm

If we choose v = [logz(L(Zn)a)] for a fixed a > 0, then the number problem with applications te cryptography, Prec. 20th IEEE Found. Comp.

Sci. Symp. (1979), 55-60.
of irreducible polynomials in (Z/2){x] with degree S v 1is

2(l+°(l))v = L(Zn)a+°(l) {(cf., Odlyzko [15]). Further, from Lemma
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