AN INEQUALITY RELATED TO THE SIEVE OF ERATOSTHENES

KAI (STEVE) FAN AND CARL POMERANCE

Abstract

Let $\Phi(x, y)$ denote the number of integers $n \in[1, x]$ free of prime factors $\leq y$. We show that but for a few small cases, $\Phi(x, y)<.6 x / \log y$ when $y \leq \sqrt{x}$.

1. Introduction

The sieve of Eratosthenes removes the multiples of the primes $p \leq y$ from the set of positive integers $n \leq x$. Let $\Phi(x, y)$ denote the number of integers remaining. Answering a question of Ford, the first-named author [7] recently proved the following theorem.

Theorem A. When $2 \leq y \leq x, \Phi(x, y)<x / \log y$.
If $y>\sqrt{x}$, then $\Phi(x, y)=\pi(x)-\pi(y)+1$ (where $\pi(t)$ is the number of primes in $[1, t]$), and so by the prime number theorem, Theorem A is essentially best possible when $x^{1-\epsilon}<y<\epsilon x$. When $y \leq \sqrt{x}$, there is a long history in estimating $\Phi(x, y)$, and in particular, we have the following theorem, essentially due to Buchstab (see [13, Theorem III.6.4]).

Theorem B. For $\omega(u)$ the Buchstab function and $u=\log x / \log y \geq 2$ and $y \geq 2$,

$$
\Phi(x, y)=\frac{x}{\log y}\left(\omega(u)+O\left(\frac{1}{\log y}\right)\right)
$$

The Buchstab function $\omega(u)$ is defined as the unique continuous function on $[1, \infty)$ such that

$$
u \omega(u)=1 \text { on }[1,2], \quad(u \omega(u))^{\prime}=\omega(u-1) \text { on }(2, \infty)
$$

Below is a graph of $\omega(u)$ for $u \in[1,8]$ generated by Mathematica.

Date: August 9, 2023.
2010 Mathematics Subject Classification. 11N25.
Key words and phrases. Buchstab's function, Selberg's sieve.

It is known that $\lim _{u \rightarrow \infty} \omega(u)=e^{-\gamma}=0.561459483566885 \ldots$ and that $\omega(u)$ oscillates above and below its limiting value infinitely often. The minimum value of $\omega(u)$ on $[2, \infty)$ is $1 / 2$ at $u=2$ and the maximum value M_{0} is $0.567143290409783 \ldots$, occurring at $u=$ $2.76322283417162 \ldots$ In particular, it follows from Theorem B that if $c>M_{0}$ and $y \leq \sqrt{x}$ with y sufficiently large depending on the choice of c, that $\Phi(x, y)<c x / \log y$. In addition, using an inclusion-exclusion argument plus the fact that the Mertens product $\prod_{p \leq y}(1-1 / p)<$ $M_{0} / \log y$ for all $y \geq 2$, the inequality $\Phi(x, y)<c x / \log y$ can be extended to all $2 \leq y \leq \sqrt{x}$, but now with x sufficiently large depending on c.

In light of Theorem A and given that $\Phi(x, y)$ is a fundamental (and ancient) function, it seems interesting to try and make these consequences of Theorem B numerically explicit. We prove the following theorem.

Theorem 1. For $3 \leq y \leq \sqrt{x}$, we have $\Phi(x, y)<.6 x / \log y$. The same inequality holds when $2 \leq y \leq \sqrt{x}$ and $x \geq 10$.

To prove this we use some numerically explicit estimates of primes due to Rosser-Schoenfeld, Büthe, and others. In addition we use a numerically explicit version of the upper bound in Selberg's sieve.

Theorem B itself is also appealing. It provides a simple asymptotic formula for $\Phi(x, y)$ as $y \rightarrow \infty$ which is applicable in a wide range.

Writing

$$
\Phi(x, y)=\frac{x}{\log y}\left(\omega(u)+\frac{\Delta(x, y)}{\log y}\right)
$$

one may attempt to establish numerically explicit lower and upper bounds for $\Delta(x, y)$ in the range $y \leq \sqrt{x}$ for suitably large $y \geq y_{0}$, where $y_{0} \geq 2$ is some numerically computable constant. More precisely, de Bruijn [3] essentially showed that for any given $\epsilon>0$, one has

$$
\Phi(x, y)=\mu_{y}(u) e^{\gamma} x \log y \prod_{p \leq y}\left(1-\frac{1}{p}\right)+O\left(x \exp \left(-(\log y)^{3 / 5-\epsilon}\right)\right)
$$

for all $x \geq y \geq 2$, where

$$
\mu_{y}(u):=\int_{0}^{u-1} \omega(u-v) y^{-v} d v
$$

Recently, the first-named author [8] proved numerically explicit versions of this result applicable for y in wide ranges.

2. A Prime lemma

Let $\pi(x)$ denote, as usual, the number of primes $p \leq x$. Let

$$
\operatorname{li}(x)=\int_{0}^{x} \frac{d t}{\log t}
$$

where the principal value is taken for the singularity at $t=1$. There is a long history in trying to find the first point when $\pi(x) \geq \operatorname{li}(x)$, which we now know is beyond 10^{19}. We prove a lemma based on this research.

Lemma 1. Let $\beta_{0}=2.3 \times 10^{-8}$. For $x \geq 2$, we have $\pi(x)<(1+$ $\left.\beta_{0}\right) \operatorname{li}(x)$.

Proof. The result is true for $x \leq 10$, so assume $x \geq 10$. Consider the Chebyshev function

$$
\theta(x)=\sum_{p \leq x} \log p
$$

We use [10, Prop. 2.1], which depends strongly on extensive calculations of Büthe [4, 5] and Platt [11]. This result asserts in part that $\theta(x) \leq x-.05 \sqrt{x}$ for $1427 \leq x \leq 10^{19}$ and for larger $x, \theta(x)<\left(1+\beta_{0}\right) x$. One easily checks that $\theta(x)<x$ for $x<1427$, so we have

$$
\theta(x)<\left(1+\beta_{0}\right) x, \quad x>0 .
$$

By partial summation, we have

$$
\begin{aligned}
\pi(x) & =\frac{\theta(x)}{\log x}+\int_{2}^{x} \frac{\theta(t)}{t(\log t)^{2}} d t \\
& <\frac{\left(1+\beta_{0}\right) x}{\log x}+\int_{2}^{10} \frac{\theta(t)}{t(\log t)^{2}} d t+\left(1+\beta_{0}\right) \int_{10}^{x} \frac{d t}{(\log t)^{2}}
\end{aligned}
$$

Since $\int d t /(\log t)^{2}=-t / \log t+\operatorname{li}(t)$, we have

$$
\begin{align*}
& \pi(x)<\left(1+\beta_{0}\right) \operatorname{li}(x)+\int_{2}^{10} \frac{\theta(t)}{t(\log t)^{2}} d t+\left(1+\beta_{0}\right)(10 / \log 10-\operatorname{li}(10)) \\
&(1) \quad<\left(1+\beta_{0}\right) \operatorname{li}(x)-.144 \tag{1}
\end{align*}
$$

This gives the lemma.
After checking for $x \leq 10$, we remark that an immediate corollary of (1) is the inequality

$$
\begin{equation*}
\pi(x)-k<\left(1+\beta_{0}\right)(\operatorname{li}(x)-k), \quad 2 \leq k \leq \pi(x), k \leq 10^{7} \tag{2}
\end{equation*}
$$

3. Inclusion-EXCLusion

For small values of $y \geq 2$ we can do a complete inclusion-exclusion to compute $\Phi(x, y)$. Let $P(y)$ denote the product of the primes $p \leq y$. We have

$$
\begin{equation*}
\Phi(x, y)=\sum_{d \mid P(y)} \mu(d)\left\lfloor\frac{x}{d}\right\rfloor . \tag{3}
\end{equation*}
$$

As a consequence, we have

$$
\begin{equation*}
\Phi(x, y) \leq \sum_{d \mid P(y)} \mu(d) \frac{x}{d}+\sum_{\substack{d \mid P(y) \\ \mu(d)=1}} 1=x \prod_{p \leq y}\left(1-\frac{1}{p}\right)+2^{\pi(y)-1} . \tag{4}
\end{equation*}
$$

We illustrate how this elementary inequality can be used in the case when $\pi(y)=5$, that is, $11 \leq y<13$. Then the product in (4) is $16 / 77<.207793$. The remainder term in (4) is 16 . And we have

$$
\Phi(x, y)<.207793 x+16<.6 x / \log 13
$$

when $x \geq 613$. There remains the problem of dealing with smaller values of x, which we address momentarily. We apply this method for $y<71$.

Pertaining to Table 1, for x beyond the " x bound" and y in the given interval, we have $\Phi(x, y)<.6 x / \log y$. The column "max" in Table 1 is the supremum of $\Phi(x, y) /(x / \log y)$ for y in the given interval and $x \geq y^{2}$ with x below the x bound. The max statistic was computed by creating a table of the integers up to the x bound with a prime

Table 1. Small y.

y interval	x bound	max
$[2,3)$	22	.61035
$[3,5)$	51	.57940
$[5,7)$	96	.55598
$[7,11)$	370	.56634
$[11,13)$	613	.55424
$[13,17)$	1603	.56085
$[17,19)$	2753	.54854
$[19,23)$	6296	.55124
$[23,29)$	17539	.55806
$[29,31)$	30519	.55253
$[31,37)$	76932	.55707
$[37,41)$	1.6×10^{5}	.55955
$[41,43)$	2.9×10^{5}	.55648
$[43,47)$	5.9×10^{5}	.55369
$[47,53)$	1.4×10^{6}	.55972
$[53,59)$	3.0×10^{6}	.55650
$[59,61)$	5.4×10^{6}	.55743
$[61,67)$	1.2×10^{7}	.55685
$[67,71)$	2.4×10^{7}	.55641

factor $\leq y$, taking the complement of this set in the set of all integers up to the x bound, and then computing $(j \log p) / n$ where n is the j th member of the set and p is the upper bound of the y interval. The max of these numbers is recorded as the max statistic.

As one can see, for $y \geq 3$ the max statistic in Table 1 is below . 6 . However, for the interval $[2,3)$ it is above .6. One can compute that it is $<.6$ once $x \geq 10$.

This method can be extended to larger values of y, but the x bound becomes prohibitively large. With a goal of keeping the x bound smaller than 3×10^{7}, we can extend a version of inclusion-exclusion to $y<241$ as follows.

First, we "pre-sieve" with the primes 2,3 , and 5 . For any $x \geq 0$ the number of integers $n \leq x$ with $\operatorname{gcd}(n, 30)=1$ is $(4 / 15) x+r$, where $|r| \leq 14 / 15$, as can be easily verified by looking at values of $x \in[0,30]$. We change the definition of $P(y)$ to be the product of the primes in $(5, y]$. Then for $y \geq 5$, we have

$$
\Phi(x, y) \leq \frac{4}{15} \sum_{d \mid P(y)} \mu(d) \frac{x}{d}+\frac{14}{15} 2^{\pi(y)-3}
$$

However, it is better to use the Bonferroni inequalities in the form

$$
\Phi(x, y) \leq \frac{4}{15} \sum_{\substack{j \leq 4}} \sum_{\substack{d \mid P(y) \\ \nu(d)=j}}(-1)^{j} \frac{x}{d}+\sum_{i=0}^{4}\binom{\pi(y)-3}{i}=x s(y)+b(y),
$$

say, where $\nu(d)$ is the number of distinct prime factors of d. (We remark that the expression $b(y)$ could be replaced with $\frac{14}{15} b(y)$.) The inner sums in $s(y)$ can be computed easily using Newton's identities, and we see that

$$
\Phi(x, y) \leq .6 x / \log y \text { for } x>b(y) /(.6 / \log y-s(y))
$$

We have verified that this x bound is smaller than $30,000,000$ for $y<$ 241 and we have verified that $\Phi(x, y)<.6 x / \log y$ for x up to this bound and $y<241$.

This completes the proof of Theorem 1 for $y<241$.

4. When u IS Large: Selberg's sieve

In this section we prove Theorem 1 in the case that $u=\log x / \log y \geq$ 7.5 and $y \geq 241$. Our principal tool is a numerically explicit form of Selberg's sieve.

Let \mathcal{A} be a set of positive integers $a \leq x$ and with $|\mathcal{A}| \approx X$. Let $\mathcal{P}=\mathcal{P}(y)$ be a set of primes $p \leq y$. For each $p \in \mathcal{P}$ we have a collection of $\alpha(p)$ residue classes $\bmod p$, where $\alpha(p)<p$. Let $P=P(y)$ denote the product of the members of \mathcal{P}. Let g be the multiplicative function defined for numbers $d \mid P$ where $g(p)=\alpha(p) / p$ when $p \in \mathcal{P}$. We let

$$
V:=\prod_{p \in \mathcal{P}}(1-g(p))=\prod_{p \in \mathcal{P}}\left(1-\frac{\alpha(p)}{p}\right) .
$$

We define $r_{d}(\mathcal{A})$ via the equation

$$
\sum_{\substack{a \in \mathcal{A} \\ d \mid a}} 1=g(d) X+r_{d}(\mathcal{A})
$$

The thought is that $r_{d}(\mathcal{A})$ should be small. We are interested in $S(\mathcal{A}, \mathcal{P})$, the number of those $a \in \mathcal{A}$ such that a is coprime to P.

We will use Selberg's sieve as given in [9, Theorem 7.1]. This involves an auxiliary parameter $D<X$ which can be freely chosen. Let h be the multiplicative function supported on divisors of P such that $h(p)=g(p) /(1-g(p))$. In particular if each $\alpha(p)=1$, then each $g(p)=1 / p$ and $h(p)=1 /(p-1)$, so $h(d)=1 / \varphi(d)$ for $d \mid P$, where
φ is Euler's function. Henceforth we will make this assumption (that each $\alpha(p)=1$). Let

$$
J=J_{D}=\sum_{\substack{d \mid P \\ d<\sqrt{D}}} h(d), \quad R=R_{D}=\sum_{\substack{d \mid P \\ d<D}} \tau_{3}(d)\left|r_{d}(\mathcal{A})\right|,
$$

where $\tau_{3}(d)$ is the number of ordered factorizations $d=a b c$, where a, b, c are positive integers. Selberg's sieve gives in this situation that

$$
\begin{equation*}
S(\mathcal{A}, \mathcal{P}) \leq X / J+R \tag{5}
\end{equation*}
$$

Note that if $D \geq P^{2}$, then

$$
J=\sum_{d \mid P} h(d)=\prod_{p \in \mathcal{P}}(1+h(p))=\prod_{p \in \mathcal{P}}(1-g(p))^{-1}=V^{-1}
$$

so that $X / J=X V$. This is terrific, but if D is so large, the remainder term R in (5) is also large, making the estimate useless. So, the trick is to choose D judiciously so that R is under control with J being near to V^{-1}.

Consider the case when each $\left|r_{d}(\mathcal{A})\right| \leq r$, for a constant r. In this situation the following lemma is useful.

Lemma 2. For $y \geq 241$, we have

$$
R \leq r \sum_{\substack{d<D \\ d \mid P(y)}} \tau_{3}(d) \leq r D(\log y)^{2} \prod_{\substack{p \leq y \\ p \notin \mathcal{P}}}\left(1+\frac{2}{p}\right)^{-1} .
$$

Proof. Let $\tau(d)=\tau_{2}(d)$ denote the number of positive divisors of d. Note that

$$
\sum_{d \mid P(y)} \frac{\tau(d)}{d}=\prod_{p \in \mathcal{P}}\left(1+\frac{2}{p}\right)=\prod_{p \leq y}\left(1+\frac{2}{p}\right) \prod_{\substack{p \leq y \\ p \notin \mathcal{P}}}\left(1+\frac{2}{p}\right)^{-1} .
$$

One can show that for $y \geq 241$ the first product on the right is smaller than $.95(\log y)^{2}$, but we will only use the "cleaner" bound $(\log y)^{2}$ (which holds when $y \geq 53$). Thus,

$$
\begin{aligned}
\sum_{\substack{d<D \\
d \mid P(y)}} \tau_{3}(d) & =\sum_{\substack{d<D \\
d \mid P(y)}} \sum_{j \mid d} \tau(j) \leq \sum_{\substack{j<D \\
j \mid P(y)}} \tau(j) \sum_{\substack{d<D / j \\
d \mid P(y)}} 1 \\
& <D \sum_{\substack{j<D \\
j \mid P(y)}} \frac{\tau(j)}{j}<D(\log y)^{2} \prod_{\substack{p \leq y \\
j \notin \mathcal{P}}}\left(1+\frac{2}{p}\right)^{-1} .
\end{aligned}
$$

This completes the proof.

To get a lower bound for J in (5) we proceed as in [9, Section 7.4]. Recall that we are assuming each $\alpha(p)=1$ and so $h(d)=1 / \varphi(d)$ for $d \mid P$.

Let

$$
I=\sum_{\substack{d \geq \sqrt{D} \\ d \mid P}} \frac{1}{\varphi(d)},
$$

so that $I+J=V^{-1}$. Hence

$$
\begin{equation*}
J=V^{-1}-I=V^{-1}(1-I V) \tag{6}
\end{equation*}
$$

so we want an upper bound for $I V$. Let ε be arbitrary with $\varepsilon>0$. We have

$$
I<D^{-\varepsilon} \sum_{d \mid P} \frac{d^{2 \varepsilon}}{\varphi(d)}=D^{-\varepsilon} \prod_{p \leq y}\left(1+\frac{p^{2 \varepsilon}}{p-1}\right)
$$

and so, assuming each $\alpha(p)=1$,

$$
\begin{equation*}
I V<D^{-\varepsilon} \prod_{p \in \mathcal{P}}\left(1+\frac{p^{2 \varepsilon}-1}{p}\right)=: f(D, \mathcal{P}, \varepsilon) . \tag{7}
\end{equation*}
$$

In particular, if $y \geq 241$ and each $r_{d}(\mathcal{A}) \leq r$, then

$$
\begin{equation*}
S(\mathcal{A}, \mathcal{P}) \leq X V(1-f(D, \mathcal{P}, \varepsilon))^{-1}+r D(\log y)^{2} \prod_{\substack{p \leq y \\ p \notin \mathcal{P}}}\left(1+\frac{2}{p}\right)^{-1} \tag{8}
\end{equation*}
$$

We shall choose D so that the remainder term is small in comparison to $X V$, and once D is chosen, we shall choose ε so as to minimize $f(D, \mathcal{P}, \varepsilon)$.

4.1. The case when $y \leq 500,000$ and $u \geq 7.5$.

We wish to apply (8) to estimate $\Phi(x, y)$ when $u \geq 7.5$, that is, when $x \geq y^{7.5}$. We have a few choices for \mathcal{A} and \mathcal{P}. The most natural choice is that \mathcal{A} is the set of all integers $\leq x, X=x$, and \mathcal{P} is the set of all primes $\leq y$. In this case, each $r_{d}(\mathcal{A}) \leq 1$, so that we can take $r=1$ in (8) (since $r_{d}(\mathcal{A}) \geq 0$ in this case). Instead we choose (as in the last section) \mathcal{A} as the set of all integers $\leq x$ that are coprime to 30 and we choose \mathcal{P} as the set of primes p with $7 \leq p \leq y$. Then $X=4 x / 15$ and one can check that each $\left|r_{d}(\mathcal{A})\right| \leq 14 / 15$, so we can take $r=14 / 15$ in (8). Also,

$$
\prod_{\substack{p \leq y \\ p \notin \mathcal{P}}}\left(1+\frac{2}{p}\right)^{-1}=\frac{3}{14},
$$

when $y \geq 5$. With this choice of \mathcal{A} and \mathcal{P}, (8) becomes

$$
\begin{equation*}
\Phi(x, y) \leq X V\left(1-D^{-\varepsilon} \prod_{7 \leq p \leq y}\left(1+\frac{p^{2 \varepsilon}-1}{p}\right)\right)^{-1}+\frac{1}{5} D(\log y)^{2} \tag{9}
\end{equation*}
$$

when $y \geq 241$.
Our "target" for $\Phi(x, y)$ is $.6 x / \log y$. We choose D here so that our estimate for the remainder term is 1% of the target, namely $.006 x / \log y$. Thus, in light of Lemma 2, we choose

$$
D=.03 x /(\log y)^{3} .
$$

We have verified that for every value of $y \leq 500,000$ and $x \geq y^{7.5}$ that the right side of (9) is smaller than $.6 x / \log y$. Note that to verify this, if p, q are consecutive primes with $241 \leq p<q$, then $S(\mathcal{A}, \mathcal{P})$ is constant for $p \leq y<q$, and so it suffices to show the right side of (9) is smaller than $.6 x / \log q$. Further, it suffices to take $x=p^{7.5}$, since as x increases beyond this point with \mathcal{P} and ε fixed, the expression $f(D, \mathcal{P}, \varepsilon)$ decreases. For smaller values of y in the range, we used Mathematica to choose the optimal choice of ε. For larger values, we let ε be a judicious constant over a long interval. As an example, we chose $\varepsilon=.085$ in the top half of the range.

4.2. When $y \geq 500,000$ and $u \geq 7.5$.

As in the discussion above we have a few choices to make, namely for the quantities D and ε. First, we choose $x=y^{7.5}$, since the case $x \geq y^{7.5}$ follows from the proof of the case of equality. We choose D as before, namely $.03 x /(\log y)^{3}$. We also choose

$$
\varepsilon=1 / \log y
$$

Our goal is to prove a small upper bound for $f(D, \mathcal{P}, \varepsilon)$ given in (7). We have

$$
f(D, \mathcal{P}, \varepsilon)<D^{-\varepsilon} \exp \left(\sum_{7 \leq p \leq y} \frac{p^{2 \varepsilon}-1}{p}\right) .
$$

We treat the two sums separately. First, by Rosser-Schoenfeld $[12$, Theorems 9, 20], one can show that

$$
-\sum_{p \leq y} \frac{1}{p}<-\log \log y-.26
$$

for all $y \geq 2$, so that

$$
\begin{equation*}
-\sum_{7 \leq p \leq y} \frac{1}{p}<-\log \log y-.26+31 / 30 \tag{10}
\end{equation*}
$$

for $y \geq 7$. For the second sum we have

$$
\sum_{7 \leq p \leq y} p^{2 \varepsilon-1}=7^{2 \varepsilon-1}+(\pi(y)-4) y^{2 \varepsilon-1}+\int_{11}^{y}(1-2 \varepsilon)(\pi(t)-4) t^{2 \varepsilon-2} d t
$$

At this point we use (2), so that

$$
\begin{aligned}
\frac{1}{1+\beta_{0}} & \sum_{11 \leq p \leq y} p^{2 \varepsilon-1}<(\operatorname{li}(y)-4) y^{2 \varepsilon-1}+\int_{11}^{y}(1-2 \varepsilon)(\operatorname{li}(t)-4) t^{2 \varepsilon-2} d t \\
& =(\operatorname{li}(y)-4) y^{2 \varepsilon-1}-\left.(\operatorname{li}(t)-4) t^{2 \varepsilon-1}\right|_{11} ^{y}+\int_{11}^{y} \frac{t^{2 \varepsilon-1}}{\log t} d t \\
& =(\operatorname{li}(11)-4) 11^{2 \varepsilon-1}+\left.\operatorname{li}\left(t^{2 \varepsilon}\right)\right|_{11} ^{y} \\
& =(\operatorname{li}(11)-4) 11^{2 \varepsilon-1}+\operatorname{li}\left(y^{2 \varepsilon}\right)-\operatorname{li}\left(11^{2 \varepsilon}\right)
\end{aligned}
$$

and so

$$
\begin{equation*}
\frac{1}{1+\beta_{0}} \sum_{7 \leq p \leq y} p^{2 \varepsilon-1}<7^{2 \varepsilon-1}+(\operatorname{li}(11)-4) 11^{2 \varepsilon-1}+\operatorname{li}\left(y^{2 \varepsilon}\right)-\operatorname{li}\left(11^{2 \varepsilon}\right) \tag{11}
\end{equation*}
$$

There are a few things to notice, but we will not need them. For example, $\operatorname{li}\left(y^{2 \varepsilon}\right)=\operatorname{li}\left(e^{2}\right)$ and $\operatorname{li}\left(11^{2 \varepsilon}\right) \approx \log \left(11^{2 \varepsilon}-1\right)+\gamma$.

Let $S(y)$ be the sum of the right side of (10) and $1+\beta_{0}$ times the right side of (11). Then

$$
f(D, \mathcal{P}, \varepsilon)<D^{-\varepsilon} e^{S(y)}
$$

The expression $X V$ in (9) is

$$
x \prod_{p \leq y}\left(1-\frac{1}{p}\right)
$$

We know from [10] that this product is $<e^{-\gamma} / \log y$ for $y \leq 2 \times 10^{9}$, and for larger values of y, it follows from [6, Theorem 5.9] (which proof follows from [6, Theorem 4.2] or [2, Corollary 11.2]) that it is $<\left(1+2.1 \times 10^{-5}\right) e^{-\gamma} / \log y$. We have

$$
\begin{align*}
\Phi(x, y) & \leq X V(1-f(D, \mathcal{P}, \varepsilon))^{-1}+\frac{1}{5} D(\log y)^{2} \tag{12}\\
& <\left(1+2.1 \times 10^{-5}\right) \frac{x}{e^{\gamma} \log y}\left(1-D^{-\varepsilon} e^{S(y)}\right)^{-1}+\frac{.006 x}{\log y} .
\end{align*}
$$

We have verified that $\left(1-D^{-\varepsilon} e^{S(y)}\right)^{-1}$ is decreasing in y, and that at $y=500,000$ it is smaller than 1.057. Thus, (12) implies that

$$
\Phi(x, y)<\left(1+2.1 \times 10^{-5}\right) \frac{1.057 x}{e^{\gamma} \log y}+\frac{.006 x}{\log y}<\frac{.5995 x}{\log y}
$$

This concludes the case of $u \geq 7.5$.

5. Small u

In this section we prove that $\Phi(x, y)<.57163 x / \log y$ when $u \in[2,3)$, that is, when $y^{2} \leq x<y^{3}$.

For small values of y, we calculate the maximum of $\Phi(x, y) /(x / \log y)$ for $y^{2} \leq x<y^{3}$ directly, as we did in Section 3 when we checked below the x bounds in Table 1 and the bound 3×10^{7}. We have done this for $241 \leq y \leq 1100$, and in this range we have

$$
\Phi(x, y)<.56404 \frac{x}{\log y}, \quad y^{2} \leq x<y^{3}, \quad 241 \leq y \leq 1100
$$

Suppose now that $y>1100$ and $y^{2} \leq x<y^{3}$. We have

$$
\begin{equation*}
\Phi(x, y)=\pi(x)-\pi(y)+1+\sum_{y<p \leq x^{1 / 2}}(\pi(x / p)-\pi(p)+1) \tag{13}
\end{equation*}
$$

Indeed, if n is counted by $\Phi(x, y)$, then n has at most 2 prime factors (counted with multiplicity), so $n=1, n$ is a prime in ($y, x]$ or $n=p q$, where p, q are primes with $y<p \leq q \leq x / p$.

Let p_{j} denote the j th prime. Note that

$$
\sum_{p \leq t} \pi(p)=\sum_{j \leq \pi(t)} j=\frac{1}{2} \pi(t)^{2}+\frac{1}{2} \pi(t)
$$

Thus,

$$
\sum_{y<p \leq x^{1 / 2}}(\pi(p)-1)=\frac{1}{2} \pi\left(x^{1 / 2}\right)^{2}-\frac{1}{2} \pi\left(x^{1 / 2}\right)-\frac{1}{2} \pi(y)^{2}+\frac{1}{2} \pi(y),
$$

and so

$$
\begin{equation*}
\Phi(x, y)=\pi(x)-M(x, y)+\sum_{y<p \leq x^{1 / 2}} \pi(x / p) \tag{14}
\end{equation*}
$$

where

$$
M(x, y)=\frac{1}{2} \pi\left(x^{1 / 2}\right)^{2}-\frac{1}{2} \pi\left(x^{1 / 2}\right)-\frac{1}{2} \pi(y)^{2}+\frac{3}{2} \pi(y)-1 .
$$

We use Lemma 1 on various terms in (14). In particular, we have (assuming $y \geq 5$)

$$
\begin{equation*}
\Phi(x, y)<\left(1+\beta_{0}\right) \operatorname{li}(x)+\sum_{y<p \leq x^{1 / 2}}\left(1+\beta_{0}\right) \operatorname{li}(x / p)-M(x, y) \tag{15}
\end{equation*}
$$

Via partial summation, we have

$$
\begin{align*}
\sum_{y<p \leq x^{1 / 2}} \operatorname{li}(x / p)= & x^{1 / 2} \operatorname{li}\left(x^{1 / 2}\right) \sum_{y<p \leq x^{1 / 2}} \frac{1}{p} \\
& -\int_{y}^{x^{1 / 2}}\left(\operatorname{li}(x / t)-\frac{x / t}{\log (x / t)}\right) \sum_{y<p \leq t} \frac{1}{p} d t . \tag{16}
\end{align*}
$$

For $1100 \leq t \leq 10^{4}$ we have checked numerically that

$$
0<\sum_{p \leq t} \frac{1}{p}-\log \log t-B<.00624
$$

where $B=.261497 \ldots$ is the Meissel-Mertens constant. Further, for $10^{4} \leq t \leq 10^{6}$,

$$
0<\sum_{p \leq t} \frac{1}{p}-\log \log t-B<.00161
$$

(The lower bounds here follow as well from [12, Theorem 20].) It thus follows for $1100 \leq y \leq 10^{4}$ that

$$
\begin{equation*}
\sum_{y<p \leq x^{1 / 2}} \frac{1}{p}<\log \frac{\log \left(x^{1 / 2}\right)}{\log y}+\beta_{1}, \quad \sum_{y<p \leq t} \frac{1}{p}>\log \frac{\log t}{\log y}-\beta_{1}, \tag{17}
\end{equation*}
$$

where $\beta_{1}=.00624$. Now suppose that $y \geq 10^{4}$. Using [6, Eq. (5.7)] and the value 4.4916 for " η_{3} " from [2, Table 15], we have that

$$
\left|\sum_{p \leq t} \frac{1}{p}-\log \log t-B\right|<1.9036 /(\log t)^{3}, t \geq 10^{6}
$$

Thus, (17) continues to hold for $y \geq 10^{4}$ with .00624 improved to .00322. We thus have from (16)

$$
\begin{align*}
\sum_{y<p \leq x^{1 / 2}} \operatorname{li}(x / p)< & x^{1 / 2} \operatorname{li}\left(x^{1 / 2}\right)\left(\log \frac{\log \left(x^{1 / 2}\right)}{\log y}+\beta_{1}\right) \tag{18}\\
& -\int_{y}^{x^{1 / 2}}\left(\operatorname{li}(x / t)-\frac{x / t}{\log (x / t)}\right)\left(\log \frac{\log t}{\log y}-\beta_{1}\right) d t
\end{align*}
$$

Let $R(t)=\left(1+\beta_{0}\right) \operatorname{li}(t) /(t / \log t)$, so that $R(t) \rightarrow 1+\beta_{0}$ as $t \rightarrow \infty$. We write the first term on the right side of (15) as

$$
\frac{x}{u \log y} R(x)=\frac{R\left(y^{u}\right)}{u} \frac{x}{\log y},
$$

and note that the first term on the right of (18) is less than

$$
R\left(y^{u / 2}\right) \frac{2}{u}\left(\log (u / 2)+\beta_{1}\right) \frac{x}{\log y} .
$$

For the expression $\frac{1}{2} \pi\left(x^{1 / 2}\right)^{2}-\frac{1}{2} \pi\left(x^{1 / 2}\right)$ in $M(x, y)$ we use the inequality $\pi(t)>t / \log t+t /(\log t)^{2}$ when $t \geq 599$, which follows from [1, Lemma 3.4] and a calculation (also see [6, Corollary 5.2]). Further, we use $\pi(y) \leq R(y) y / \log y$ for the rest of $M(x, y)$.

Using these estimates and numerical integration for the integral in (18) we find that

$$
\Phi(x, y)<.57163 \frac{x}{\log y}, \quad y \geq 1100, \quad y^{2} \leq x<y^{3}
$$

6. Iteration

Suppose k is a positive integer and we have shown that

$$
\begin{equation*}
\Phi(x, y) \leq c_{k} \frac{x}{\log y} \tag{19}
\end{equation*}
$$

for all $y \geq 241$ and $u=\log x / \log y \in[2, k)$. We can try to find some c_{k+1} not much larger than c_{k} such that

$$
\Phi(x, y) \leq c_{k+1} \frac{x}{\log y}
$$

for $y \geq 241$ and $u<k+1$. We start with c_{3}, which by the results of the previous section we can take as .57163 . In this section we attempt to find c_{k} for $k \leq 8$ such that $c_{8}<.6$. It would then follow from Section 4 that $\Phi(x, y)<.6 x / \log y$ for all $u \geq 2$ and $y \geq 241$.

Suppose that (19) holds and that y is such that $x^{1 /(k+1)}<y \leq x^{1 / k}$. We have

$$
\begin{equation*}
\Phi(x, y)=\Phi\left(x, x^{1 / k}\right)+\sum_{y<p \leq x^{1 / k}} \Phi\left(x / p, p^{-}\right) . \tag{20}
\end{equation*}
$$

Indeed the sum counts all $n \leq x$ with least prime factor $p \in\left(y, x^{1 / k}\right]$, and $\Phi\left(x, x^{1 / k}\right)$ counts all $n \leq x$ with least prime factor $>x^{1 / k}$. As we have seen, it suffices to deal with the case when $y=q_{0}^{-}$for some prime q_{0}.

Note that if (19) holds, then it also holds for $y=x^{1 / k}$. Indeed, if y is a prime, then $\Phi(x, y)=\Phi(x, y+\epsilon)$ for all $0<\epsilon<1$, and in this case $\Phi(x, y) \leq c_{k} x / \log (y+\epsilon)$, by hypothesis. Letting $\epsilon \rightarrow 0$ shows we have $\Phi(x, y) \leq c_{k} x / \log y$ as well. If y is not prime, then for all sufficiently small $\epsilon>0$, we again have $\Phi(x, y)=\Phi(x, y+\epsilon)$ and the same proof works.

Thus, we have (19) holding for all of the terms on the right side of (20). This implies that

$$
\begin{equation*}
\Phi\left(x, q_{0}^{-}\right) \leq c_{k} x\left(\frac{1}{\log \left(x^{1 / k}\right)}+\sum_{q_{0} \leq p \leq x^{1 / k}} \frac{1}{p \log p}\right) \tag{21}
\end{equation*}
$$

We expect that the parenthetical expression here is about the same as $1 / \log q_{0}$, so let us try to quantify this. Let

$$
\epsilon_{k}\left(q_{0}\right)=\max \left\{\frac{-1}{\log q_{0}}+\frac{1}{\log \left(x^{1 / k}\right)}+\sum_{q_{0} \leq p \leq x^{1 / k}} \frac{1}{p \log p}: y^{k}<x \leq y^{k+1}\right\}
$$

Let q_{1} be the largest prime $\leq x^{1 / k}$, so that

$$
\epsilon_{k}\left(q_{0}\right)=\max \left\{\frac{-1}{\log q_{0}}+\frac{1}{\log q_{1}}+\sum_{q_{0} \leq p \leq q_{1}} \frac{1}{p \log p}: q_{0}<q_{1} \leq q_{0}^{1+1 / k}\right\}
$$

It follows from (21) that

$$
\Phi(x, y)=\Phi\left(x, q_{0}^{-}\right) \leq c_{k} x\left(\frac{1}{\log q_{0}}+\epsilon_{k}\left(q_{0}\right)\right)=\frac{c_{k} x}{\log y}\left(1+\epsilon_{k}\left(q_{0}\right) \log q_{0}\right)
$$

Note that as k grows, $\epsilon_{k}\left(q_{0}\right)$ is non-increasing since the max is over a smaller set of primes q_{1}. Thus, we have the inequality

$$
\begin{equation*}
\Phi\left(x, q_{0}^{-}\right) \leq c_{3}\left(1+\epsilon_{3}\left(q_{0}\right) \log q_{0}\right)^{j} \frac{x}{\log y}, \quad x^{1 / 3}<q_{0} \leq x^{1 /(3+j)} \tag{22}
\end{equation*}
$$

Thus, we would like

$$
\begin{equation*}
c_{3}\left(1+\epsilon_{3}\left(q_{0}\right) \log q_{0}\right)^{5}<.6 \tag{23}
\end{equation*}
$$

We have checked (23) numerically for primes $q_{0}<1000$ and it holds for $q_{0} \geq 241$.

This leaves the case of primes >1000. We have the identity

$$
\begin{aligned}
& \sum_{q_{0} \leq p \leq q_{1}} \frac{1}{p \log p} \\
& \quad=\frac{-\theta\left(q_{0}^{-}\right)}{q_{0}\left(\log q_{0}\right)^{2}}+\frac{\theta\left(q_{1}\right)}{q_{1}\left(\log q_{1}\right)^{2}}+\int_{q_{0}}^{q_{1}} \theta(t)\left(\frac{1}{t^{2}(\log t)^{2}}+\frac{2}{t^{2}(\log t)^{3}}\right) d t
\end{aligned}
$$

via partial summation, where θ is again Chebyshev's function. First assume that $q_{1}<10^{19}$. Then, using [4], [5], we have $\theta(t) \leq t$, so that

$$
\sum_{q_{0} \leq p \leq q_{1}} \frac{1}{p \log p}<\frac{q_{0}-\theta\left(q_{0}^{-}\right)}{q_{0}\left(\log q_{0}\right)^{2}}+\frac{1}{\log q_{0}}-\frac{1}{\log q_{1}}
$$

We also have [4], [5] that $q_{0}-\theta\left(q_{0}^{-}\right)<1.95 \sqrt{q_{0}}$, so that one can verify that

$$
\epsilon_{3}\left(q_{0}\right)<\frac{1.95}{\sqrt{q_{0}}\left(\log q_{0}\right)^{2}}
$$

and so (23) holds for $q_{0}>1000$. It remains to consider the cases when $q_{1}>10^{19}$, which implies $q_{0}>10^{14}$. Here we use $|\theta(t)-t|<$ $3.965 t /(\log t)^{2}$, which is from [6, Theorem 4.2] or [2, Corollary 11.2]. This shows that (23) holds here as well, completing the proof of Theorem 1.

References

[1] D. Berkane and P. Dusart, On a constant related to the prime counting function, Mediterr. J. Math. 13 (2016), 929-938.
[2] S. Broadbent, H. Kadiri, A. Lumley, N. Ng, and K. Wilk, Sharper bounds for the Chebyshev function $\theta(x)$, Math. Comp. 90 (2021), 2281-2315.
[3] N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Nederl. Akad. Wetensch. Proc. 53 (1950), 803-812.
[4] J. Büthe, Estimating $\pi(x)$ and related functions under partial RH assumptions, Math. Comp. 85 (2016), 2483-2498.
[5] J. Büthe, An analytic method for bounding $\psi(x)$, Math. Comp. 87 (2018), 1991-2009.
[6] P. Dusart, Explicit estimates of some functions over primes, Ramanujan J. 45 (2018), 227-251.
[7] K. (S.) Fan, An inequality for the distribution of numbers free of small prime factors, Integers 22 (2022), \#A26, 12 pp.
[8] K. (S.) Fan, Numerically explicit estimates for the distribution of rough numbers, preprint, 2023.
[9] J. Friedlander and H. Iwaniec, Opera de cribro, Amer. Math. Soc. Colloq. Pub. 57, 2010.
[10] J. D. Lichtman and C. Pomerance, Explicit estimates for the distribution of numbers free of large prime factors, J. Number Theory 183 (2018), 1-23.
[11] D. J. Platt, Isolating some non-trivial zeros of zeta, Math. Comp. 86 (2017), 2449-2467.
[12] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
[13] G. Tenenbaum, Introduction to analytic and probabilistic number theory, third edition, Graduate Studies in Mathematics 163, Amer. Math. Soc., Providence, 2015.

Mathematics Department, Dartmouth College, Hanover, NH 03755
E-mail address: Steve.Fan.GR@dartmouth.edu
Mathematics Department, Dartmouth College, Hanover, NH 03755
E-mail address: carlp@math.dartmouth.edu

