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Let us begin at the beginning:
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Pythagoras
5



Sum of proper divisors

Let s(n) be the sum of the proper divisors

of n:

For example:

s(10) = 1 + 2 + 5 = 8, s(11) = 1,

s(12) = 1 + 2 + 3 + 4 + 6 = 16.
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In modern notation:

s(n) = σ(n)− n,

where σ(n) is the sum of all

of n's natural divisors.

The function s(n) was

considered by Pythagoras,

about 2500 years ago.
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Pythagoras:

noticed that

s(6) = 1 + 2 + 3 = 6

(If s(n) = n, we say n is

perfect.)

And he noticed that

s(220) = 284, s(284) = 220.
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If s(n) = m, s(m) = n, and

m 6= n, we say n,m are an

amicable pair and that they

are amicable numbers.

So 220 and 284 are amicable

numbers.
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These ancient concepts have fascinated

people from the beginning:

St. Augustine wrote about perfect

numbers in the bible: �Six is a perfect

number in itself, and not because God

created all things in six days; rather the

converse is true � God created all things

in six days because the number is

perfect.�
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In Genesis it is related that Jacob gave

his brother Esau a lavish gift so as to win

his friendship. The gift included 220

goats and 220 sheep.

Abraham Azulai, ca. 500 years ago:
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�Our ancestor Jacob prepared his present

in a wise way. This number 220 is a

hidden secret, being one of a pair of

numbers such that the parts of it are

equal to the other one 284, and

conversely. And Jacob had this in mind;

this has been tried by the ancients in

securing the love of kings and

dignitaries.�
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Ibn Khaldun, ca. 600 years ago in

�Muqaddimah�:

�Persons who have concerned themselves

with talismans a�rm that the amicable

numbers 220 and 284 have an in�uence

to establish a union or close friendship

between two individuals.�
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In �Aim of the Wise�, attributed to

Al-Majriti, ca. 1050 years ago, it is

reported that the erotic e�ect of amicable

numbers had been put to the test by:

�giving any one the smaller number 220

to eat, and himself eating the larger

number 284.�
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(This was a very early application of

number theory, far predating public-key

cryptography . . . )
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Nicomachus
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Nicomachus, ca. 1900 years ago:

A natural number n is abundant if

s(n) > n and is de�cient if s(n) < n. These

he de�ned in �Introductio Arithmetica�

and went on to give what I call his

`Goldilocks Theory':

� In the case of too much, is produced

excess, super�uity, exaggerations and

abuse; in the case of too little, is

produced wanting, defaults, privations
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and insu�ciencies. And in the case of

those that are found between the too

much and the too little, that is in

equality, is produced virtue, just measure,

propriety, beauty and things of that sort

� of which the most exemplary form is

that type of number which is called

perfect.�
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Sir Fred Hoyle wrote in 1962 that there

were two di�cult astronomical problems

faced by the ancients. One was a good

problem, the other was not so good.
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The good problem: Why do the planets

wander through the constellations in the

night sky?

The not-so-good problem: Why is it that

the sun and the moon are the same

apparent size?

20



So: Are perfect numbers,

amicable numbers, abundant

numbers and the like �good�

problems?

Let us see where these

concepts have led.
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Erich Bessel-Hagen, in a

1929 survey article, asked if

the asymptotic density of

the abundant numbers exist.
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Harold Davenport (1933)

showed the density exists.

In fact, the density D(u) of

{n : σ(n)/n ≤ u} exists, and
D(u) is continuous.
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Note: The abundant numbers

have density 1−D(2). A number of

people have estimated this density,

recently we learned it to 4 decimal

places: 0.2476 . . .

(Mitsuo Kobayashi, 2010).
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Davenport strongly used a technical

criterion of I. J. Schoenberg, who in 1928

proved an analogous result for the density

of numbers n with n/ϕ(n) ≤ u. Here ϕ is

Euler's function.

Beginning around 1935, Paul Erd®s

began studying this subject, looking for

the great theorem that would unite these

threads.
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In addition Erd®s began his quest for an

elementary method.

This culminated in the Erd®s�Wintner

theorem in 1939.

Suppose g : N→ R is

additive.

(g(ab) = g(a) + g(b) when a, b

are coprime.)
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Consider the 3 series over

primes:∑ 1

p
,

∑ g(p)

p
,

∑ g(p)2

p

where the �rst has |g(p)| > 1,

the other two have |g(p)| ≤ 1.
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Erd®s�Wintner: The 3 series

converge if and only if

{n : g(n) ≤ u} has a limiting

distribution. Further, the

distribution is continuous if∑
g(p)6=0

1

p
diverges.
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Example: Say f (n) = σ(n)/n.

Take g(n) = log f (n).

Then g(p) = log(1 + 1
p) ≈

1
p.
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Surely this beautiful theorem

can justify the low origins of

the de�nition of abundant

numbers!

But what of other familiar

arithmetic functions such as

ω(n): the number of distinct

primes that divide n?
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But, ω(p) = 1 for all primes p, so the 2nd

and 3rd series diverge.

Hardy and Ramanujan had shown that

ω(n)/ log log n→ 1 as n→∞ through a set

of asymptotic density 1. So there is a

threshold function: we should be studying

the di�erence

ω(n)− log log n.
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Erd®s�Kac (1939):

For each real number u, the

asymptotic density of the set{
n : ω(n)−log log n ≤ u

√
log log n

}
is

1√
2π

∫ u

−∞
e−t

2/2 dt.
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This is the Gaussian normal

distribution, the Bell curve!
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Einstein: �God does not play

dice with the universe.�
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Einstein: �God does not play

dice with the universe.�

Erd®s & Kac: Maybe so but

something's going on with

the primes.
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Einstein: �God does not play

dice with the universe.�

Erd®s & Kac: Maybe so but

something's going on with

the primes.

(Note: I made this up, it

was a joke . . . )
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Prime numbers, the most mysterious

�gures in math, D. Wells
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Some background on the Erd®s�Kac

theorem would be helpful, it didn't arise

spontaneously.

In 1934, Paul Turán gave a simpli�ed

proof of the Hardy�Ramanujan theorem.

Quoted in Elliott's Probabilistic Number

Theory, Turán said in 1976: � . . . I did

not know what Chebyshev's inequality

was and a fortiori the central limit

theorem. Erd®s, to my best knowledge,

was at that time not aware too. It was
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Mark Kac who wrote to me a few years

later that he discovered when reading my

proof in J.L.M.S. that this is basically

probability and so was his interest turned

to this subject.�
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Elliott also quotes Mark Kac: �If I

remember correctly I �rst stated (as a

conjecture) the theorem on the normal

distribution of the prime divisors during a

lecture in Princeton in March 1939.

Fortunately for me and possibly for

Mathematics, Erd®s was in the audience,

and he immediately perked up.
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�Before the lecture was over he had

completed the proof, which I could not

have done not having been versed in the

number theoretic methods, especially

those related to the sieve.�
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Let us return to the problem of amicable

numbers introduced by Pythagoras 2500

years ago.

Recall: Two numbers are amicable if the

sum of the proper divisors of one is the

other and vice versa. The Pythagorean

example: 220 and 284.
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We have seen that amicable numbers

have fascinated people through the

intervening centuries. Thabit ibn Kurrah

found a formula that gave a few

examples. Euler found a few. So far we

know about twelve million pairs, and

probably there are in�nitely many, but we

have no proof.

How would Erd®s approach this problem?
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Why count of course!

Let A(x) denote the number of

integers in [1, x] that belong to an

amicable pair. We have no good

lower bounds for A(x) as x→∞,

but what about an upper bound?
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For perfect numbers, which are

closely related to the amicables,

we know a fair amount about

upper bounds. First, from

Davenport's theorem on the

continuity of the distribution

function of σ(n)/n it is immediate

that the perfect numbers have

asymptotic density 0.
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This can be improved. Erd®s

made a fundamental contribution

here, but the champion result is

due to Hornfeck and Wirsing: The

number of perfect numbers in [1, x]

is at most xo(1).

But what about amicable

numbers?
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Erd®s (1955): The amicable

numbers have asymptotic

density 0.

His insight: the smaller member of

an amicable pair is abundant, the

larger is de�cient. Thus, we have

an abundant number with the sum

of its proper divisors being

de�cient.
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This property alone is enough to

prove density 0.

Let

h(n) = σ(n)/n.

Count numbers n ≤ x with

h(n) > 2 and h(s(n)) < 2.
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By the continuity of the

distribution function for h, instead

of h(n) > 2, we can have the

stronger assumption h(n) > 2 + δ

(for some �xed tiny δ > 0).

Have h(n) =
∑

d|n
1
d.

For an integer y, let

hy(n) =
∑

d|n, d≤y
1
d.
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By an averaging argument,

for y large, we usually have

hy(n) ≈ h(n), so usually

hy(n) =
∑

d|n, d≤y

1

d
> 2.
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Now the key step: Let M be

the lcm of {1, 2, . . . , y}.
Almost all numbers n have

p‖n for some prime p with

p + 1 ≡ 0 (mod M).

(Hint: Use Dirichlet.)
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So usually, M | σ(n), and so

s(n) = σ(n)− n has the same

divisors up to y as n does.

Assuming this,

h(s(n)) ≥ hy(s(n)) = hy(n) > 2,

contradicting h(s(n)) < 2.

QED
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I later gave a simpli�ed proof

using another Erd®s insight: the

distribution of primitive abundant

numbers (1935). (And then in

another paper, I showed the

reciprocal sum of the amicable

numbers is �nite.)
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As we have seen Pythagoras suggested

one study the dynamical system of

iterations of s(n), with perfect numbers

as �xed points and amicable pairs as

2-cycles.

From the dawn of modern computing,

problems such as these have been

intensively studied numerically, being a

primary spur towards the development of

factoring algorithms and primality tests.

55



Though Erd®s did not contribute

directly to computational number

theory, his statistical viewpoint is

part of the landscape here too.
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In Can�eld, Erd®s, P (1983), the

distribution of �smooth� numbers

was worked out in enough detail

to give accurate guidance to the

construction and analysis of

integer factorization algorithms.

57



Fermat proved that if p is a prime

then ap ≡ a (mod p) for every

integer a. It is an easy congruence

to check. Can one reason from

the converse??

Say a composite number n is a

base-a pseudoprime if an ≡ a

(mod n).
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Pseudoprimes exist. For example,

2341 ≡ 2 (mod 341).

Erd®s (1949, 1950) was the �rst

to show that for each �xed base

a > 1, the pseudoprimes are very

rare in comparison to primes.
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Given: A large random n.

Accept n as prime if

2n ≡ 2 (mod n).

60



Though there is of course

some chance for error here,

it is actually a practical way

to recognize primes, it is

fast, and it is extraordinarily

simple.
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Erd®s was very interested in Carmichael

numbers. These are numbers, like 561,

which are pseudoprimes to every base. In

1956 he got the essentially best-known

upper bound for C(x), the number of

Carmichael numbers in [1, x]:

C(x) ≤ x1−c log log log x/ log log x.

He also gave a heuristic argument (based

on a seminal paper of his from 1935)

that this was essentially best possible.
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The Erd®s conjecture on Carmichael

numbers: C(x) ≥ x1−ε.

In 1993, Alford, Granville, P gave a

rigorous proof, based on the Erd®s

heuristic, that C(x) > x2/7 for all large x

and that C(x) > x1−ε assuming the

Elliott�Halberstam conjecture on the

distribution of primes in residue classes.

63



And what was this seminal paper

from 1935 just mentioned?

It was in:

Quarterly J. Math. Oxford Ser. 6

(1935), 205�213.
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As mentioned, Hardy & Ramanujan

showed that n normally has about log log n

prime factors. Clearly then, primes p are

not normal! But are numbers p− 1

normal?

In this paper, submitted for publication at

the age of 21, Erd®s showed that yes,

p− 1 is indeed normal with respect to the

number of its prime factors.
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Not only is this interesting on its own, the

proof of the normality of p− 1 was one of

the early applications of Brun's sieve

method, of which Erd®s was so famous.

And the result was an essential tool in

solving a problem of Pillai: how many

numbers in [1, x] are values of ϕ?

(ϕ: Euler's function)
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Erd®s showed that this count of ϕ-values

in [1, x] is of the shape x/(log x)1+o(1). We

still don't have an asymptotic estimate,

but we know the order of magnitude

(Ford).

Erd®s also proved the following

astounding result:

There is a positive constant c such that

for in�nitely many numbers N , there are

more than N c solutions to ϕ(n) = N .
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He gave a heuristic that �c� here can be

taken as any number smaller than 1. It

was this construction that was so

important in the proof of the in�nitude of

Carmichael numbers.
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I would like to close with one last ancient

problem: prime numbers.

2300 years ago, Euclid was the �rst to

consider counting primes: he proved

there are in�nitely many.

One might argue then that it is Euclid

who �rst o�ered the statistical viewpoint.
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Detail from Raphael's mural The School

of Athens, ca. 1510
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Further progress was made

2000 years later by Euler:∑
p≤x

1

p
∼ log log x.
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Fifty years later: Gauss and

Legendre conjectured that

π(x) :=
∑
p≤x

1 ∼ x

log x
.

74



Fifty years later: Chebyshev

proved that π(x) is of

magnitude x/ log x. And

Riemann laid out a plan to

prove the Gauss�Legendre

conjecture.
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Fifty years later: Hadamard

and de la Vallee Poussin

proved it.
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Fifty years later: Erd®s and

Selberg gave an elementary

proof.

We're a bit overdue for the

next installment . . . .
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I would like to think that beyond the

�Prime Number Theorem�, Erd®s was

searching too for the �Amicable Number

Theorem�, the �Perfect Number

Theorem�, and so on.

In all of these problems and results we

can see echoes of the past at the dawn of

number theory and mathematics.
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Perhaps the ancient problems will

never be completely solved, but

thinking about them statistically

has made all the di�erence.

And leading the way, was Paul

Erd®s.
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THANK YOU
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