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Hardy & Ramanujan, 1917: The normal number of prime

divisors of n is log logn.

That is, for each fixed ε > 0, the set of n with

|ω(n)− log logn| > ε log logn

has asymptotic density 0. Here, ω(n) is the number of prime

divisors of n. The same is true for Ω(n)− log logn, where Ω(n)

is the number of prime power divisors of n.
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Turán, 1934: A beautiful “probabilistic” proof of the

Hardy–Ramanujan theorem.

Erdős, 1935: The normal number of prime divisors of p− 1,

where p is prime, is log log p.

Erdős could not adapt the slick Turán proof; rather he used the

older Hardy–Ramanujan proof together with Brun’s (sieve)

method.

As an application:∑
p≤x

τ(p− 1) ≥ x/(logx)1−log 2+o(1),

where τ is the divisor function. Titchmarsh, in 1930, had

exponent 1/2 in the denominator.
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That was a straightforward application. Next came a typically

Erdős application. What can one say about the range of

Euler’s function ϕ? If V (x) denotes the number of Euler values

in [1, x], then since ϕ is 1-to-1 on the primes, we have

V (x) ≥ π(x) ∼ x/ logx.

Pillai, 1929: V (x)� x/(logx)(log2)/e.

As the principal application of the normal order of ω(p− 1):

Erdős, 1935: V (x) = x/(logx)1+o(1).
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Using either the result of Pillai or Erdős one has that there are

values of ϕ with arbitrarily many preimages. In particular, there

is some c > 0 such that for all large x, below x there is a

number with more than (logx)c preimages.

Thus, the following seems completely unexpected!

Erdős, 1935: There is some c > 0 such that for all large x,

below x there is a number with more than xc preimages

under ϕ.
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What have we learned since 1935?

One of the first applications of the Bombieri–Vinogradov

inequality was a proof that∑
p≤x

τ(p− 1) ∼ Cx,

for a certain positive constant C, which thus solved the

Titchmarsh divisor problem. (Solved earlier by Linnik using his

“dispersion method”.)

I believe we still don’t know the aysmptotic order of∑
p≤x τ3(p− 1), where τ3(n) is the number of ordered

factorizations of n into 3 factors.
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Concerning ω(p− 1), we know after Barban, Vinogradov, &

Levin that we have an Erdős–Kac-type theorem. Namely the

relative density of those primes p with

ω(p− 1) ≤ log log p + u(log log p)1/2

is G(u) (the Gaussian distribution).
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For V (x), the number of Euler values in [1, x], we now know

after papers of Erdős & Hall, Maier & Pomerance, and Ford,

the true order of magnitude of V (x). It is

x

logx
exp

(
c1(log3 x− log4 x)2 + c2 log3 x + c3 log4 x

)
for certain explicit constants c1, c2, c3. We still do not have an

asymptotic formula for V (x), nor do we know that the number

of Euler values in [1, x] is asymptotically equal to the number

of them in [x,2x].
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For popular values, after work of Wooldridge, Pomerance,

Fouvry & Grupp, Balog, Friedlander, Baker & Harman, we now

know that there are numbers below x with more than x0.7067

Euler preimages.

This problem is connected to the distribution of Carmichael

numbers in that improvements in the popular-value result are

likely to lead to improvements in the lower bound in the

distribution of Carmichael numbers.
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Sketch of the Erdős proof on the range of ϕ:

• If ϕ(n) ≤ x, then n ≤ X := cx log logx.

• For K large enough, we may assume ω(n) ≥ (1/K) log logx.

• Primes p with ω(p− 1) ≤ 40K are rare, so n may be assumed

to be divisible by at least (1/(2K)) log logx primes q with

ω(q − 1) > 40K.

• Thus, but for O(x/(logx)1−ε) values ϕ(n) ≤ x, we have

Ω(ϕ(n)) > 20 log logx. But there are very few such integers.
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Let ϕk be the k-fold iterate of ϕ. What can one say about the
range of ϕk?

The function ϕk was studied by Pillai: how many iterations to
get to 1? For example, 31, 32, 33, 34, 35, 36, and 37 each
take 5 iterations, but 38 takes only 4. Also studied by Shapiro
and Erdős, Granville, Pomerance, & Spiro.

Using the Bateman–Horn conjecture, one can show that

Vk(x)�k x/(logx)k

for each k, where Vk(x) denotes the number of values of ϕk in
[1, x].

Indeed, consider primes p where p− 1 = 2q with q prime,
q − 1 = 2r, with r prime, etc.

14



Erdős & Hall, 1977:

V2(x)�
x

(logx)2
exp

(
c log2 x log4 x

log3 x

)
.

In addition they claimed they were able to prove that

V2(x)� x/(logx)α for some α > 2.

Luca & Pomerance, 2009:

x

(logx)2
� V2(x)�

x

(logx)2
exp

(
37(log2 x log3 x)1/2

)
.

The upper bound generalizes:

Vk(x)�
x

(logx)k
exp

(
13k3/2(log2 x log3 x)1/2

)
uniformly for each positive integer k.
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Sketch of proof:

The lower bound for V2(x) uses Chen’s theorem and Brun’s

method.
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For the upper bound on Vk(x):

• Write n = pm with p the largest prime factor of n, assume

n ≤ X := x(c log logx)k.

• We can assume Ω(ϕk(n)) ≤ 2.9k log logx, so

Ω(ϕk(p)) ≤ 2.9k log logx and Ω(ϕk(m)) ≤ 2.9k log logx.

Thus, Ω(ϕ(m)) ≤ 3k log logx.

• Use the large sieve to get an upper bound for the number of

such primes p ≤ X/m. Then use the old Erdős strategy to get

an upper bound on
∑

1/m over m ≤ X with

Ω(ϕ(m)) ≤ 3k log logx.
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The range of the Carmichael function λ

First discussed by Gauss, λ(n) is the exponent of the

multiplicative group (Z/nZ)×. It is the smallest positive integer

such that aλ(n) ≡ 1 (mod n) for all a coprime to n.

So, for coprime m, n, λ(mn) = lcm[λ(m), λ(n)]. And

λ(pj) = ϕ(pj) for prime powers pj, except when p = 2, j ≥ 3 in

which case λ(2j) = 2j−2.

Being so similar to ϕ, one might expect similar results about

the range of λ. But one big headache appears: while ϕ(n) ≤ x

implies n � x log logx (in fact, the number of n with ϕ(n) ≤ x is

∼ cx, a result of Bateman), there can be extraordinarily huge

numbers n with λ(n) ≤ x.
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How huge? Try exp(xc/ log logx).

In addition, there are � x(logx)2 numbers n with λ(n) ≤ x.

So, with so many chances to hit numbers in [1, x], it is not

even clear that Vλ(x), the number of λ-values in [1, x], is o(x).

But it is true; it follows from a lemma in

Erdős & Wagstaff, 1980: Let dB be the upper density of

those numbers n divisible by some p− 1 with p > B prime.

Then limB→∞ dB = 0.
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Note that if λ(n) is not divisible by any p− 1 with p > B prime,
then n is not divisible by any prime p > B, so λ(n) has no prime
factors > B. So, there are few such integers.

This argument was first outlined by Erdős, Pomerance, &
Schmutz (1991) claiming that Vλ(x)� x/(logx)c for some
c > 0.

Friedlander & Luca, (2007):

Vλ(x) ≤ x/(logx)1−(e/2) log2+o(1),

where 1− (e/2) log2 = 0.05791 . . . .

Luca & Pomerance, (2009?):

Vλ(x) ≤ x/(logx)1−(1+log log2)/ log 2+o(1),

where 1− (1 + log log2)/ log 2 = 0.08607 . . . .
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Towards a lower bound:

Clearly Vλ(x) ≥ π(x) (since as with ϕ, λ is 1-to-1 on the

primes), so Vλ(x)� x/ logx.

Can we do better?

Banks, Friedlander, Luca, Pappalardi, & Shparlinski,

(2006):

Vλ(x)�
x

logx
exp

(
c(log log logx)2

)
.

So, what is your instinct? Is 1 the “correct” exponent on logx,

or is it some number smaller than 1?
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Luca & Pomerance, (2009?):

Vλ(x)�
x

(logx)3/5
.

In fact, we show this for numbers λ(n), where n = pq with p, q

primes. This seems counter-intuitive, since the number of

integers n = pq ≤ x is ∼ x log logx/ logx. But recall, it is not

n ≤ x that we need, but λ(n) ≤ x.
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So, let R(x) be the number of triples a, b, d where abd ≤ x,

gcd(a, b) = 1, and p = ad + 1, q = bd + 1 are both prime. Then

λ(pq) = abd, and except for possible overcounting, we have

Vλ(x) ≥ R(x). But overcounting needs to be considered!

Assume p ≤ exp((logx)c) with c chosen appropriately. Say

λ(pq) = λ(p′q′). If R1(x) is the number of times this happens

with q = q′ and R2(x) is the number of times this happens with

q 6= q′, then by Cauchy–Schwarz,

Vλ(x) ≥ R(x)2/(R1(x) + R2(x)).

In getting upper bounds for R1(x), R2(x) we assume further

that parameters a, b, d have close to a set number of prime

divisors, where the settings are chosen to optimize the final

estimate.
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