A 1935 Erdős paper on prime numbers and Euler’s function

Carl Pomerance, Dartmouth College

with

Florian Luca, UNAM, Morelia
ON THE NORMAL NUMBER OF PRIME FACTORS
OF $p-1$ AND SOME RELATED PROBLEMS
CONCERNING EULER’S ϕ-FUNCTION

By PAUL ERDŐS (Manchester)

[Received 13 November 1934]

This paper is concerned with some problems considered by Hardy
and Ramanujan, Titchmarsh, and Pillai. Suppose we are given a set
M of positive integers m. Let $N(n)$ denote the number of m in the
interval $(0, n)$. By saying that the normal number of prime factors
of a number m is $B(n)$, we mean that, as $n \to \infty$, there are only
$\lfloor N(n) \rfloor$ of the $m (\ll n)$ for which the number of prime factors does
Hardy & Ramanujan, 1917: The normal number of prime divisors of n is $\log \log n$.

That is, for each fixed $\epsilon > 0$, the set of n with

$$|\omega(n) - \log \log n| > \epsilon \log \log n$$

has asymptotic density 0. Here, $\omega(n)$ is the number of prime divisors of n. The same is true for $\Omega(n) - \log \log n$, where $\Omega(n)$ is the number of prime power divisors of n.

Erdős, 1935: The normal number of prime divisors of $p - 1$, where p is prime, is $\log \log p$.

Erdős could not adapt the slick Turán proof; rather he used the older Hardy–Ramanujan proof together with Brun’s (sieve) method.

As an application:

$$\sum_{p \leq x} \tau(p - 1) \geq \frac{x}{(\log x)^{1 - \log 2 + o(1)}},$$

where τ is the divisor function. Titchmarsh, in 1930, had exponent $1/2$ in the denominator.
That was a straightforward application. Next came a typically Erdős application. *What can one say about the range of Euler’s function* φ? If $V(x)$ denotes the number of Euler values in $[1, x]$, then since φ is 1-to-1 on the primes, we have $V(x) \geq \pi(x) \sim x/\log x$.

Pillai, 1929: $V(x) \ll x/(\log x)^{(\log 2)/e}$.

As the principal application of the normal order of $\omega(p-1)$:

Erdős, 1935: $V(x) = x/(\log x)^{1+o(1)}$.
Using either the result of Pillai or Erdős one has that there are values of φ with arbitrarily many preimages. In particular, there is some $c > 0$ such that for all large x, below x there is a number with more than $(\log x)^c$ preimages.

Thus, the following seems completely unexpected!

Erdős, 1935: There is some $c > 0$ such that for all large x, below x there is a number with more than x^c preimages under φ.
What have we learned since 1935?

One of the first applications of the Bombieri–Vinogradov inequality was a proof that

$$\sum_{p \leq x} \tau(p - 1) \sim Cx,$$

for a certain positive constant C, which thus solved the Titchmarsh divisor problem. (Solved earlier by Linnik using his “dispersion method”.)

I believe we still don’t know the asymptotic order of $\sum_{p \leq x} \tau_3(p - 1)$, where $\tau_3(n)$ is the number of ordered factorizations of n into 3 factors.
Concerning $\omega(p - 1)$, we know after Barban, Vinogradov, & Levin that we have an Erdős–Kac-type theorem. Namely the relative density of those primes p with

$$\omega(p - 1) \leq \log \log p + u(\log \log p)^{1/2}$$

is $G(u)$ (the Gaussian distribution).
For $V(x)$, the number of Euler values in $[1, x]$, we now know after papers of Erdős & Hall, Maier & Pomerance, and Ford, the true order of magnitude of $V(x)$. It is

$$\frac{x}{\log x} \exp \left(c_1 (\log_3 x - \log_4 x)^2 + c_2 \log_3 x + c_3 \log_4 x \right)$$

for certain explicit constants c_1, c_2, c_3. We still do not have an asymptotic formula for $V(x)$, nor do we know that the number of Euler values in $[1, x]$ is asymptotically equal to the number of them in $[x, 2x]$.

For popular values, after work of Wooldridge, Pomerance, Fouvry & Grupp, Balog, Friedlander, Baker & Harman, we now know that there are numbers below x with more than $x^{0.7067}$ Euler preimages.

This problem is connected to the distribution of Carmichael numbers in that improvements in the popular-value result are likely to lead to improvements in the lower bound in the distribution of Carmichael numbers.
Sketch of the Erdős proof on the range of φ:

- If $\varphi(n) \leq x$, then $n \leq X : = cx \log \log x$.

- For K large enough, we may assume $\omega(n) \geq (1/K) \log \log x$.

- Primes p with $\omega(p - 1) \leq 40K$ are rare, so n may be assumed to be divisible by at least $(1/(2K)) \log \log x$ primes q with $\omega(q - 1) > 40K$.

- Thus, but for $O(x/(\log x)^{1-\epsilon})$ values $\varphi(n) \leq x$, we have $\Omega(\varphi(n)) > 20 \log \log x$. But there are very few such integers.
Let φ_k be the k-fold iterate of φ. What can one say about the range of φ_k?

The function φ_k was studied by Pillai: how many iterations to get to 1? For example, 31, 32, 33, 34, 35, 36, and 37 each take 5 iterations, but 38 takes only 4. Also studied by Shapiro and Erdős, Granville, Pomerance, & Spiro.

Using the Bateman–Horn conjecture, one can show that

$$V_k(x) \gg k x/(\log x)^k$$

for each k, where $V_k(x)$ denotes the number of values of φ_k in $[1, x]$.

Indeed, consider primes p where $p - 1 = 2q$ with q prime, $q - 1 = 2r$, with r prime, etc.
Erdős & Hall, 1977:

\[V_2(x) \ll \frac{x}{(\log x)^2} \exp \left(\frac{c \log_2 x \log_4 x}{\log_3 x} \right). \]

In addition they claimed they were able to prove that
\[V_2(x) \gg \frac{x}{(\log x)\alpha} \]
for some \(\alpha > 2. \)

Luca & Pomerance, 2009:

\[\frac{x}{(\log x)^2} \ll V_2(x) \ll \frac{x}{(\log x)^2} \exp \left(37(\log_2 x \log_3 x)^{1/2} \right). \]

The upper bound generalizes:

\[V_k(x) \ll \frac{x}{(\log x)^k} \exp \left(13k^{3/2}(\log_2 x \log_3 x)^{1/2} \right) \]
uniformly for each positive integer \(k. \)
Sketch of proof:

The lower bound for $V_2(x)$ uses Chen’s theorem and Brun’s method.
For the upper bound on $V_k(x)$:

- Write $n = pm$ with p the largest prime factor of n, assume $n \leq X := x(c \log \log x)^k$.

- We can assume $\Omega(\varphi_k(n)) \leq 2.9k \log \log x$, so $\Omega(\varphi_k(p)) \leq 2.9k \log \log x$ and $\Omega(\varphi_k(m)) \leq 2.9k \log \log x$. Thus, $\Omega(\varphi(m)) \leq 3k \log \log x$.

- Use the large sieve to get an upper bound for the number of such primes $p \leq X/m$. Then use the old Erdős strategy to get an upper bound on $\sum 1/m$ over $m \leq X$ with $\Omega(\varphi(m)) \leq 3k \log \log x$.
The range of the **Carmichael** function λ

First discussed by Gauss, $\lambda(n)$ is the *exponent* of the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^\times$. It is the smallest positive integer such that $a^{\lambda(n)} \equiv 1 \pmod{n}$ for all a coprime to n.

So, for coprime m, n, $\lambda(mn) = \text{lcm}[\lambda(m), \lambda(n)]$. And $\lambda(p^j) = \varphi(p^j)$ for prime powers p^j, except when $p = 2, j \geq 3$ in which case $\lambda(2^j) = 2^{j-2}$.

Being so similar to φ, one might expect similar results about the range of λ. But one big headache appears: while $\varphi(n) \leq x$ implies $n \ll x \log \log x$ (in fact, the number of n with $\varphi(n) \leq x$ is $\sim cx$, a result of Bateman), there can be extraordinarily huge numbers n with $\lambda(n) \leq x$.
How huge? Try $\exp(x^{c/\log \log x})$.

In addition, there are $\gg x^{(\log x)^2}$ numbers n with $\lambda(n) \leq x$.

So, with so many chances to hit numbers in $[1, x]$, it is not even clear that $V_\lambda(x)$, the number of λ-values in $[1, x]$, is $o(x)$.

But it is true; it follows from a lemma in

Erdős & Wagstaff, 1980: Let d_B be the upper density of those numbers n divisible by some $p - 1$ with $p > B$ prime. Then $\lim_{B \to \infty} d_B = 0$.

Note that if $\lambda(n)$ is not divisible by any $p - 1$ with $p > B$ prime, then n is not divisible by any prime $p > B$, so $\lambda(n)$ has no prime factors $> B$. So, there are few such integers.

This argument was first outlined by Erdős, Pomerance, & Schmutz (1991) claiming that $V_\lambda(x) \ll x/(\log x)^c$ for some $c > 0$.

Friedlander & Luca, (2007):

$$V_\lambda(x) \leq x/(\log x)^{1-(e/2)\log 2+o(1)},$$

where $1 - (e/2)\log 2 = 0.05791\ldots$.

Luca & Pomerance, (2009?):

$$V_\lambda(x) \leq x/(\log x)^{1-(1+\log \log 2)/\log 2+o(1)},$$

where $1 - (1 + \log \log 2)/\log 2 = 0.08607\ldots$.
Towards a lower bound:

Clearly $V_{\lambda}(x) \geq \pi(x)$ (since as with φ, λ is 1-to-1 on the primes), so $V_{\lambda}(x) \gg x/\log x$.

Can we do better?

Banks, Friedlander, Luca, Pappalardi, & Shparlinski, (2006):

$$V_{\lambda}(x) \gg \frac{x}{\log x} \exp \left(c(\log \log \log x)^2 \right).$$

So, what is your instinct? Is 1 the “correct” exponent on $\log x$, or is it some number smaller than 1?
Luca & Pomerance, (2009?):

\[V_\lambda(x) \gg \frac{x}{(\log x)^{3/5}}. \]

In fact, we show this for numbers \(\lambda(n) \), where \(n = pq \) with \(p, q \) primes. This seems counter-intuitive, since the number of integers \(n = pq \leq x \) is \(\sim x \log \log x / \log x \). But recall, it is not \(n \leq x \) that we need, but \(\lambda(n) \leq x \).
So, let \(R(x) \) be the number of triples \(a, b, d \) where \(abd \leq x \), \(\gcd(a, b) = 1 \), and \(p = ad + 1, q = bd + 1 \) are both prime. Then \(\lambda(pq) = abd \), and except for possible overcounting, we have \(V_\lambda(x) \geq R(x) \). But overcounting needs to be considered!

Assume \(p \leq \exp((\log x)^c) \) with \(c \) chosen appropriately. Say \(\lambda(pq) = \lambda(p'q') \). If \(R_1(x) \) is the number of times this happens with \(q = q' \) and \(R_2(x) \) is the number of times this happens with \(q \neq q' \), then by Cauchy–Schwarz,

\[
V_\lambda(x) \geq \frac{R(x)^2}{(R_1(x) + R_2(x))}.
\]

In getting upper bounds for \(R_1(x), R_2(x) \) we assume further that parameters \(a, b, d \) have close to a set number of prime divisors, where the settings are chosen to optimize the final estimate.