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ON THE NORMAL NUMBER OF PRIME FACTORS
OF p—1 AND SOME RELATED PROBLEMS
CONCERNING EULER’S ¢-FUNCTION

By PAUL ERDOS (Manchester)
[Received 13 November 1934]

Tuis paper is concerned with some problems considered by Hardy
and Ramanujan, Titchmarsh, and Pillai. Suppose we are given a set
M of positive integers m. lLet N(n) denote the number of m in the
interval (0,2). By saying that the normal number of prime factors
of a number m is B(n), we mean that, as n —> o, there are only
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Hardy & Ramanujan, 1917: The normal nhumber of prime
divisors of n is loglogn.

That is, for each fixed ¢ > 0, the set of n with

lw(n) — loglogn| > eloglogn

has asymptotic density 0. Here, w(n) is the number of prime
divisors of n. The same is true for Q2(n) — loglogn, where Q2(n)
is the number of prime power divisors of n.



Turan, 1934: A beautiful “probabilistic’” proof of the
Hardy—Ramanujan theorem.

Erdos, 1935: The normal number of prime divisors of p — 1,
where p is prime, is loglogp.

Erdbs could not adapt the slick Turan proof; rather he used the
older Hardy—Ramanujan proof together with Brun’s (sieve)
method.

AS an application:

> m(p— 1) 2 z/(log )~ 109 2HL),

p<x
where 7 is the divisor function. Titchmarsh, in 1930, had
exponent 1/2 in the denominator.



That was a straightforward application. Next came a typically
Erdds application. What can one say about the range of
Euler’s function o7 If V(x) denotes the number of Euler values
in [1,x], then since ¢ is 1-to-1 on the primes, we have

V(x) > n(x) ~x/logr.

Pillai, 1929: V() < z/(log z)(1092)/e,
As the principal application of the normal order of w(p — 1):

Erdos, 1935: V(z) = z/(log z)1to(1)



Using either the result of Pillai or Erdds one has that there are
values of ¢ with arbitrarily many preimages. In particular, there
IS some ¢ > 0 such that for all large x, below x there is a
number with more than (logxz)¢ preimages.

Thus, the following seems completely unexpected!
Erdos, 1935: There is some ¢ > 0 such that for all large x,

below x there is a number with more than x¢ preimages
under .



What have we learned since 19357

One of the first applications of the Bombieri—Vinogradov
inequality was a proof that

Z T(p—1) ~ Cu,

p<x
for a certain positive constant ', which thus solved the
Titchmarsh divisor problem. (Solved earlier by Linnik using his
“dispersion method"”.)

I believe we still don't know the aysmptotic order of
> p<zT3(p — 1), where 73(n) is the number of ordered
factorizations of n into 3 factors.



Concerning w(p — 1), we know after Barban, Vinogradov, &
Levin that we have an Erdds—Kac-type theorem. Namely the
relative density of those primes p with

w(p — 1) < loglogp + u(loglog p)/?
is G(u) (the Gaussian distribution).
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For V(x), the number of Euler values in [1,z], we now know
after papers of Erdds & Hall, Maier & Pomerance, and Ford,
the true order of magnitude of V(x). It is
xr

log x
for certain explicit constants cq,co,c3. We still do not have an
asymptotic formula for V(x), nor do we know that the number
of Euler values in [1,z] is asymptotically equal to the number
of them in [z, 2x].

exp (cl(log3 z— 1094 )2 + co 1093z + 31094 x)
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For popular values, after work of Wooldridge, Pomerance,
Fouvry & Grupp, Balog, Friedlander, Baker & Harman, we now
know that there are numbers below z with more than 97067
Euler preimages.

This problem is connected to the distribution of Carmichael
numbers in that improvements in the popular-value result are
likely to lead to improvements in the lower bound in the
distribution of Carmichael numbers.
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Sketch of the Erdds proof on the range of ¢:

o If o(n) <z, then n < X := cxloglogz.

e For K large enough, we may assume w(n) > (1/K)loglogx.
e Primes p with w(p — 1) < 40K are rare, SO n may be assumed
to be divisible by at least (1/(2K))loglogz primes g with

w(g—1) > 40K.

e Thus, but for O(z/(log z)17¢) values p(n) < x, we have
Q(p(n)) > 20loglogxz. But there are very few such integers.
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Let ¢ be the k-fold iterate of . What can one say about the
range of o7

The function ¢;. was studied by Pillai: how many iterations to
get to 17 For example, 31, 32, 33, 34, 35, 36, and 37 each
take 5 iterations, but 38 takes only 4. Also studied by Shapiro
and Erdds, Granville, Pomerance, & Spiro.

Using the Bateman—Horn conjecture, one can show that

Vi(z) >, z/(log z)"

for each k, where Vi (z) denotes the number of values of ¢ in
[1,z].

Indeed, consider primes p where p — 1 = 2q with ¢q prime,
q— 1 =2r, with r prime, etc.
14



Erdos & Hall, 1977:

clogr>xl0gs x
log3 x .

Vole) < (los;lcw)2 P (

In addition they claimed they were able to prove that
Vo(x) > x/(logz)® for some o > 2.

Luca & Pomerance, 2009:

(Iogwa;)Q <L Vo) < (Iogwa;)Q exp (37(Iogzaz I093$)1/2) :

The upper bound generalizes:

Vk(ZIZ) < I exp (13]€3/2(|092 x 1093 513)1/2>

X
(log x)
uniformly for each positive integer k.
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Sketch of proof:

The lower bound for Vo(x) uses Chen’'s theorem and Brun’'s
method.
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For the upper bound on Vi (x):

e Write n = pm with p the largest prime factor of n, assume
n < X := z(cloglogz)¥.

e We can assume Q(¢r(n)) < 2.9kloglogx, so
Qpr(p)) < 2.9kloglogz and Q(pr(m)) < 2.9kloglog .
Thus, Q(p(m)) < 3kloglog .

e Use the large sieve to get an upper bound for the number of
such primes p < X/m. Then use the old Erdds strategy to get
an upper bound on >>1/m over m < X with

Q(p(m)) < 3kloglog .
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The range of the Carmichael function )\

First discussed by Gauss, A(n) is the exponent of the
multiplicative group (Z/nZ)*. It is the smallest positive integer
such that ¢*(™) =1 (mod n) for all a coprime to n.

So, for coprime m,n, AX(mn) = lcm[X(m), X(n)]. And
A(p?) = p(p?) for prime powers pJ, except when p=2,5 > 3 in
which case \(27) = 27— 2.

Being so similar to ¢, one might expect similar results about
the range of A. But one big headache appears: while ¢o(n) < x
implies n < xloglogz (in fact, the number of n with p(n) <z is
~ cx, a result of Bateman), there can be extraordinarily huge
numbers n with A\(n) < z.
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How huge? Try exp(z¢/ 09109z
In addition, there are > (109 z)? numbers n with An) < z.

So, with so many chances to hit numbers in [1,x], it is not
even clear that V) (z), the number of A-values in [1,z], is o(x).

But it is true; it follows from a lemma in

Erdos & Wagstaff, 1980: Let dg be the upper density of
those numbers n divisible by some p — 1 with p > B prime.
Then IimB_>oo dB = 0.
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Note that if A\(n) is not divisible by any p — 1 with p > B prime,
then n is not divisible by any prime p > B, so A(n) has no prime
factors > B. So, there are few such integers.

This argument was first outlined by Erdds, Pomerance, &
Schmutz (1991) claiming that V) (z) < x/(log x)¢ for some
c > 0.

Friedlander & Luca, (2007):

Vi(2) < z/(log )1~ (e/2)1092+0(1)
where 1 — (e/2)log2 = 0.05791... .

Luca & Pomerance, (20097):
V)\(a?) < ac/(log x)l—(l—l-log log 2)/ log 2—|—0(1)7
where 1 — (1 +loglog?2)/log2 = 0.08607 ... .
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Towards a lower bound:

Clearly Vi (x) > w(x) (since as with ¢, X is 1-to-1 on the
primes), so Vy(x) > z/log x.

Can we do better?

Banks, Friedlander, Luca, Pappalardi, & Shparlinski,
(2006):

xr
ogzx

Vi(z) > I exp (c(log log log 56)2) .

So, what is your instinct? Is 1 the ‘“correct” exponent on log z,
or is it some number smaller than 17
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Luca & Pomerance, (20097):

i
V :

In fact, we show this for numbers A(n), where n = pg with p, g
primes. This seems counter-intuitive, since the number of

integers n =pq < x is ~xzloglogz/logx. But recall, it is not
n < x that we need, but \(n) < z.
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So, let R(x) be the number of triples a,b,d where abd < x,
gcd(a,b) =1, and p=ad+ 1,g = bd+ 1 are both prime. Then
A(pg) = abd, and except for possible overcounting, we have
Vyi(z) > R(xz). But overcounting needs to be considered!

Assume p < exp((logx)€) with ¢ chosen appropriately. Say
Mpg) = X(p'¢). If R1(z) is the number of times this happens
with ¢ = ¢’ and Ro(z) is the number of times this happens with
g # ¢', then by Cauchy—Schwarz,

Vi(z) > R(z)?/(R1(z) + Ra(x)).

In getting upper bounds for Ri(xz), R>(x) we assume further
that parameters a,b,d have close to a set number of prime
divisors, where the settings are chosen to optimize the final

estimate.
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