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Hardy & Ramanujan, 1917: The normal number of prime

divisors of n is log logn.

That is, for each fixed ε > 0, the set of n with

|ω(n)− log logn| > ε log logn

has asymptotic density 0. Here, ω(n) is the number of prime

divisors of n. The same is true for Ω(n)− log logn, where Ω(n)

is the number of prime power divisors of n.
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Turán, 1934: A beautiful “probabilistic” proof of the

Hardy–Ramanujan theorem.

Erdős, 1935: The normal number of prime divisors of p− 1,

where p is prime, is log log p.

Erdős could not adapt the slick Turán proof; rather he used the

older Hardy–Ramanujan proof together with Brun’s (sieve)

method.

As an application:∑
p≤x

τ(p− 1) ≥ x/(logx)1−log 2+o(1),

where τ is the divisor function. Titchmarsh, in 1930, had

exponent 1/2 in the denominator.
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That was a straightforward application. Next came a typically

Erdős application. What can one say about the range of

Euler’s function ϕ? If V (x) denotes the number of Euler values

in [1, x], then since ϕ is 1-to-1 on the primes, we have

V (x) ≥ π(x) ∼ x/ logx.

Pillai, 1929: V (x)� x/(logx)(log 2)/e.

As the principal application of the normal order of ω(p− 1):

Erdős, 1935: V (x) = x/(logx)1+o(1).
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Using either the result of Pillai or Erdős one has that there are

values of ϕ with arbitrarily many preimages. In particular, there

is some c > 0 such that for all large x, below x there is a

number with more than (logx)c preimages.

Thus, the following seems completely unexpected!

Erdős, 1935: There is some c > 0 such that for all large x,

below x there is a number with more than xc preimages

under ϕ.
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What have we learned since 1935?

One of the first applications of the Bombieri–Vinogradov

inequality was a proof that∑
p≤x

τ(p− 1) ∼ Cx,

for a certain positive constant C, which thus solved the

Titchmarsh divisor problem. (Solved earlier by Linnik using his

“dispersion method”.)

I believe we still don’t know the aysmptotic order of∑
p≤x τ3(p− 1), where τ3(n) is the number of ordered

factorizations of n into 3 factors.
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Concerning ω(p− 1), we know after Barban, Vinogradov, &

Levin that we have an Erdős–Kac-type theorem. Namely the

relative density of those primes p with

ω(p− 1) ≤ log log p+ u(log log p)1/2

is G(u) (the Gaussian distribution).
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For V (x), the number of Euler values in [1, x], we now know

after papers of Erdős & Hall, Maier & Pomerance, and Ford,

the true order of magnitude of V (x). It is

x

logx
exp

(
c1(log3 x− log4 x)2 + c2 log3 x+ c3 log4 x

)
for certain explicit constants c1, c2, c3. We still do not have an

asymptotic formula for V (x), nor do we know that the number

of Euler values in [1, x] is asymptotically equal to the number

of them in [x,2x].
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For popular values, after work of Wooldridge, Pomerance,

Fouvry & Grupp, Balog, Friedlander, Baker & Harman, we now

know that there are numbers below x with more than x0.7067

Euler preimages.

This problem is connected to the distribution of Carmichael

numbers in that improvements in the popular-value result are

likely to lead to improvements in the lower bound in the

distribution of Carmichael numbers.
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Sketch of the Erdős proof on the range of ϕ:

• If ϕ(n) ≤ x, then n ≤ X := cx log logx.

• For K large enough, we may assume ω(n) ≥ (1/K) log logx.

• Primes p with ω(p− 1) ≤ 40K are rare, so n may be assumed

to be divisible by at least (1/(2K)) log logx primes q with

ω(q − 1) > 40K.

• Thus, but for O(x/(logx)1−ε) values ϕ(n) ≤ x, we have

Ω(ϕ(n)) > 20 log logx. But there are very few such integers.
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Let ϕk be the k-fold iterate of ϕ. What can one say about the
range of ϕk?

The function ϕk was studied by Pillai: how many iterations to
get to 1? For example, 31, 32, 33, 34, 35, 36, and 37 each
take 5 iterations, but 38 takes only 4. Also studied by Shapiro
and Erdős, Granville, Pomerance, & Spiro.

Using the Bateman–Horn conjecture, one can show that

Vk(x)�k x/(logx)k

for each k, where Vk(x) denotes the number of values of ϕk in
[1, x].

Indeed, consider primes p where p− 1 = 2q with q prime,
q − 1 = 2r, with r prime, etc.
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Erdős & Hall, 1977:

V2(x)�
x

(logx)2
exp

(
c log2 x log4 x

log3 x

)
.

In addition they claimed they were able to prove that

V2(x)� x/(logx)α for some α > 2.

Luca & Pomerance, 2009:

x

(logx)2
� V2(x)�

x

(logx)2
exp

(
37(log2 x log3 x)1/2

)
.

The upper bound generalizes:

Vk(x)�
x

(logx)k
exp

(
13k3/2(log2 x log3 x)1/2

)
uniformly for each positive integer k.
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Sketch of proof:

The lower bound for V2(x) uses Chen’s theorem and Brun’s

method.
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For the upper bound on Vk(x):

• Write n = pm with p the largest prime factor of n, assume

n ≤ X := x(c log logx)k.

• We can assume Ω(ϕk(n)) ≤ 2.9k log logx, so

Ω(ϕk(p)) ≤ 2.9k log logx and Ω(ϕk(m)) ≤ 2.9k log logx.

Thus, Ω(ϕ(m)) ≤ 3k log logx.

• Use the large sieve to get an upper bound for the number of

such primes p ≤ X/m. Then use the old Erdős strategy to get

an upper bound on
∑

1/m over m ≤ X with

Ω(ϕ(m)) ≤ 3k log logx.
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The range of the Carmichael function λ

First discussed by Gauss, λ(n) is the exponent of the

multiplicative group (Z/nZ)×. It is the smallest positive integer

such that aλ(n) ≡ 1 (mod n) for all a coprime to n.

So, for coprime m,n, λ(mn) = lcm[λ(m), λ(n)]. And

λ(pj) = ϕ(pj) for prime powers pj, except when p = 2, j ≥ 3 in

which case λ(2j) = 2j−2.

Being so similar to ϕ, one might expect similar results about

the range of λ. But one big headache appears: while ϕ(n) ≤ x
implies n� x log logx (in fact, the number of n with ϕ(n) ≤ x is

∼ cx, a result of Bateman), there can be extraordinarily huge

numbers n with λ(n) ≤ x.
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How huge? Try exp(xc/ log logx).

In addition, there are � x(logx)2
numbers n with λ(n) ≤ x.

So, with so many chances to hit numbers in [1, x], it is not

even clear that Vλ(x), the number of λ-values in [1, x], is o(x).

But it is true; it follows from a lemma in

Erdős & Wagstaff, 1980: Let dB be the upper density of

those numbers n divisible by some p− 1 with p > B prime.

Then limB→∞ dB = 0.
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Note that if λ(n) is not divisible by any p− 1 with p > B prime,
then n is not divisible by any prime p > B, so λ(n) has no prime
factors > B. So, there are few such integers.

This argument was first outlined by Erdős, Pomerance, &
Schmutz (1991) claiming that Vλ(x)� x/(logx)c for some
c > 0.

Friedlander & Luca, (2007):

Vλ(x) ≤ x/(logx)1−(e/2) log 2+o(1),

where 1− (e/2) log 2 = 0.05791 . . . .

Luca & Pomerance, (2009?):

Vλ(x) ≤ x/(logx)1−(1+log log 2)/ log 2+o(1),

where 1− (1 + log log 2)/ log 2 = 0.08607 . . . .
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Towards a lower bound:

Clearly Vλ(x) ≥ π(x) (since as with ϕ, λ is 1-to-1 on the

primes), so Vλ(x)� x/ logx.

Can we do better?

Banks, Friedlander, Luca, Pappalardi, & Shparlinski,

(2006):

Vλ(x)�
x

logx
exp

(
c(log log logx)2

)
.

So, what is your instinct? Is 1 the “correct” exponent on logx,

or is it some number smaller than 1?
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Luca & Pomerance, (2009?):

Vλ(x)�
x

(logx)3/5
.

In fact, we show this for numbers λ(n), where n = pq with p, q

primes. This seems counter-intuitive, since the number of

integers n = pq ≤ x is ∼ x log logx/ logx. But recall, it is not

n ≤ x that we need, but λ(n) ≤ x.
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So, let R(x) be the number of triples a, b, d where abd ≤ x,

gcd(a, b) = 1, and p = ad+ 1, q = bd+ 1 are both prime. Then

λ(pq) = abd, and except for possible overcounting, we have

Vλ(x) ≥ R(x). But overcounting needs to be considered!

Assume p ≤ exp((logx)c) with c chosen appropriately. Say

λ(pq) = λ(p′q′). If R1(x) is the number of times this happens

with q = q′ and R2(x) is the number of times this happens with

q 6= q′, then by Cauchy–Schwarz,

Vλ(x) ≥ R(x)2/(R1(x) +R2(x)).

In getting upper bounds for R1(x), R2(x) we assume further

that parameters a, b, d have close to a set number of prime

divisors, where the settings are chosen to optimize the final

estimate.
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A very new development

Results on the range of ϕ may be carried over with little

difficulty to the range of σ, the sum-of-divisors function. Fifty

years ago, Erdős proposed the problem of showing there are

infinitely many integers that are simultaneously values of both

functions.

It is obviously true! For example, it would follow from the

conjecture that there are infinitely many Mersenne primes

(primes of the form 2p − 1), since σ of one of these is a power

of 2, and every power of 2 is in the range of ϕ.

It also follows if there are infinitely many twin primes, since if

p, p+ 2 are both primes, then σ(p) = ϕ(p+ 2).
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It is easy to see that every factorial number k! is a value of ϕ,

and presumably each of these is also a value of σ (except for

k = 2). For these reasons, Erdős wrote it was a “very

annoying” problem.

Some years ago I came up with a conditional proof on the ERH

(Extended Riemann Hypothesis). The idea was to take σ of

the product of those primes p ≤ x where the greatest prime

factor of p− 1 is below x1/2−ε, and then show using the ERH

that this was indeed a ϕ value. To do this, one need only show

that for each prime q dividing the candidate number, we also

have q − 1 dividing the number.
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I used to mention in talks that it would be much more

profitable to prove that the intersection of the ranges of ϕ and

σ is finite, since corollaries would be

1. There are only finitely many Mersenne primes.

2. There are only finitely many twin primes.

3. The ERH is false.
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Now in a joint papeer with Ford and Luca, we have found a

proof of the Erdős conjecture, so unfortunately we have not

proved any of those corollaries of the negation!

There are two key thoughts that go into the proof, which is

modeled after the ERH argument. First, Heath-Brown had

shown in 1983 that either there are infinitely many twin primes

or there are no Siegel zeros (loosely speaking). So, if there are

are only finitely many twin primes, we get to rigorously assume

that a weak form of the ERH holds. Since it is only a weak

form, there may be some exceptional primes that need to be

dealt with, and for this we use a second idea: a new paper of

Ford, Konyagin, and Luca on the distribution of primes p for

which a given prime divides a given iterate of ϕ at p.
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