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The range of the Carmichael function λ

First discussed by Gauss, λ(n) is the exponent of the

multiplicative group (Z/nZ)×. It is the smallest positive integer

such that aλ(n) ≡ 1 (mod n) for all a coprime to n.

So, for coprime m,n, λ(mn) = lcm[λ(m), λ(n)]. And

λ(pj) = ϕ(pj) for prime powers pj, except when p = 2, j ≥ 3 in

which case λ(2j) = 2j−2.

Clearly λ is very similar to Euler’s function ϕ. They are nearly

identical on prime powers, and for other numbers, one merely

replaces
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Let Vϕ(x) denote the number of integers in [1, x] that are
values of ϕ, and similarly let Vλ(x) denote the corresponding
count for λ.

Clearly both Vϕ(x) ≥ π(x) and Vλ(x) ≥ π(x), since
ϕ(p) = λ(p) = p− 1 for each prime p.

We’ve known since 1935 (Erdős) that Vϕ(x) = x/(logx)1+o(1)

as x→∞. This result was later refined by Erdős & Hall,
Pomerance, Maier & Pomerance, and most recently Ford, who
was able to find the correct order of Vϕ(x).

Being so similar to ϕ, one might expect similar results about
the range of λ. But one big headache appears: while ϕ(n) ≤ x
implies n� x log logx (in fact, the number of n with ϕ(n) ≤ x is
∼ cx, a result of Bateman), there can be extraordinarily huge
numbers n with λ(n) ≤ x.
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How huge? Try exp(xc/ log logx).

In addition, there are � x(logx)2
numbers n with λ(n) ≤ x.

So, with so many chances to hit numbers in [1, x], it is not

even clear that Vλ(x), the number of λ-values in [1, x], is o(x).

But it is true; it follows from a lemma in

Erdős & Wagstaff, 1980: Let dB be the upper density of

those numbers n divisible by some p− 1 with p > B prime.

Then limB→∞ dB = 0.
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Note that if λ(n) is not divisible by any p− 1 with p > B prime,
then n is not divisible by any prime p > B, so λ(n) has no prime
factors > B. So, there are few such integers.

This argument was first outlined by Erdős, Pomerance, &
Schmutz (1991) who claimed that Vλ(x)� x/(logx)c for some
c > 0.

Friedlander & Luca, (2007):

Vλ(x) ≤ x/(logx)1−(e/2) log 2+o(1),

where 1− (e/2) log 2 = 0.05791 . . . .

Luca & Pomerance, (2009?):

Vλ(x) ≤ x/(logx)1−(1+log log 2)/ log 2+o(1),

where 1− (1 + log log 2)/ log 2 = 0.08607 . . . .
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Towards a lower bound:

As mentioned, Vλ(x) ≥ π(x), so Vλ(x)� x/ logx.

Can we do better?

Banks, Friedlander, Luca, Pappalardi, & Shparlinski,

(2006):

Vλ(x)�
x

logx
exp

(
c(log log logx)2

)
.

So, what is your instinct? Is 1 the “correct” exponent on logx

as with Vϕ(x), or is it some number smaller than 1?
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Luca & Pomerance, (2009?):

Vλ(x)�
x

(logx)3/5
.

In fact, we show this for numbers λ(n), where n = pq with p, q

primes. This seems counter-intuitive, since the number of

integers n = pq ≤ x is ∼ x log logx/ logx. But recall, it is not

n ≤ x that we need, but λ(n) ≤ x.
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So, let R(x) be the number of triples a, b, d where abd ≤ x,

gcd(a, b) = 1, and p = ad+ 1, q = bd+ 1 are both prime. Then

λ(pq) = abd, and except for possible overcounting, we have

Vλ(x) ≥ R(x). But overcounting needs to be considered!

Assume p ≤ exp((logx)c) with c chosen appropriately. Say

λ(pq) = λ(p′q′). If R1(x) is the number of times this happens

with q = q′ and R2(x) is the number of times this happens with

q 6= q′, then by Cauchy–Schwarz,

Vλ(x) ≥ R(x)2/(R1(x) +R2(x)).

In getting upper bounds for R1(x), R2(x) we assume further

that parameters a, b, d have close to a set number of prime

divisors, where the settings are chosen to optimize the final

estimate.
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We have a heuristic argument (suggested to us by Granville)

that our upper bound for Vλ(x) is in fact the truth:

Vλ(x) = x/(logx)c+o(1), c = 1−(1+log log 2)/ log 2 = 0.08607 . . . .

The heuristic generalizes our construction using two primes to

one using k primes. It remains to be seen how much can be

proved.
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The range of ϕ compared with the range of σ

Results on the range of ϕ may be carried over with little

difficulty to the range of σ, the sum-of-divisors function. Fifty

years ago, Erdős proposed the problem of showing there are

infinitely many integers that are simultaneously values of both

functions.

It is obviously true! For example, it would follow from the

conjecture that there are infinitely many Mersenne primes

(primes of the form 2p − 1), since σ of one of these is a power

of 2, and every power of 2 is in the range of ϕ.

It also follows if there are infinitely many twin primes, since if

p, p+ 2 are both primes, then σ(p) = ϕ(p+ 2).
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It is easy to see that every factorial number k! is a value of ϕ,

and presumably each of these is also a value of σ (except for

k = 2). For these reasons, Erdős wrote it was a “very

annoying” problem.

Some years ago I came up with a conditional proof on the ERH

(Extended Riemann Hypothesis). The idea was to take σ of

the product of those primes p ≤ x where the greatest prime

factor of p− 1 is below x1/2−ε, and then show using the ERH

that this was indeed a ϕ value. To do this, one need only show

that for each prime q dividing the candidate number, we also

have q − 1 dividing the number.
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I used to mention in talks that it would be much more

profitable to prove that the intersection of the ranges of ϕ and

σ is finite, since corollaries would be

1. There are only finitely many Mersenne primes.

2. There are only finitely many twin primes.

3. The ERH is false.
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Now in a joint papeer with Ford and Luca, we have found a

proof of the Erdős conjecture, so unfortunately we have not

proved any of those corollaries of the negation!

There are two key thoughts that go into the proof, which is

modeled after the ERH argument. First, Heath-Brown had

shown in 1983 that either there are infinitely many twin primes

or there are no Siegel zeros (loosely speaking). So, if there are

are only finitely many twin primes, we get to rigorously assume

that a weak form of the ERH holds. Since it is only a weak

form, there may be some exceptional primes that need to be

dealt with, and for this we use a second idea: a new paper of

Ford, Konyagin, & Luca on the distribution of primes p for

which a given prime divides a given iterate of ϕ at p.
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