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Abstract. We consider solutions of the equation ϕ(n) = ϕ(n+1), where ϕ denotes Euler’s
function. Improving on previous work, we show that the reciprocal sum over all such n is
less than 8.

1. Introduction.

We study solutions of the equation ϕ(n) = ϕ(n + 1), where ϕ denotes Euler’s function.
Let S = {n ∈ N : ϕ(n) = ϕ(n + 1)} = {1, 3, 15, . . . } and let S(x) denote the number of
n ∈ S not exceeding x. In 1936, Erdős [4] proved that S has asymptotic density zero. In

1987, Erdős et al. [5, Theorem 3] proved that S(x) < x/e
3√log x for all sufficiently large x.

The cube root of log x was improved recently to the square root by Yamada [11].
It is still not known if there are infinitely many solutions. However, it is conjectured in [5]

that S(x) > x1−ε for all ε > 0 and x > Cε.
From the upper bound results for S(x) it follows that the reciprocal sum is finite. As with

Brun’s constant, where one attempts to get good estimates for the reciprocal sum of primes
p with p + 2 also prime, it is a challenge to get good estimates for the reciprocal sum of
members of S. It is shown in [1] that the reciprocal sum is less than 441702 and conjectured
that the value is less than 2. We improve the upper bound.

Theorem 1.1. We have ∑
n∈S

1

n
< 7.6472.

The proof makes use of the exact computation of S up to 1013. Beyond that point, an
averaging argument is employed to greatly limit the possibilities for the odd member of
{n, n + 1} for n ∈ S. Indeed, for n ∈ S we have ϕ(n)/n ≈ ϕ(n + 1)/(n + 1), and the even
member has this ratio at most 1/2. The averaging argument shows that only a small density
of odd numbers n have ϕ(n)/n so small.

To be sure, even if a set has a very small density, if that density is positive, then the
reciprocal sum will be infinite. So averaging arguments can take us only so far. Several new
techniques are used to deal with the large range, n > e150. These include methods suggested
by Patrick Letendre, and similar to the methods employed by Yamada [11]. We use several
techniques from [7] on the distribution of numbers with no large prime factors. Most helpful
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is a new paper of Bennett et al. [2] on numerically explicit estimates for the distribution of
primes in residue classes.

2. Notation and Preliminary Lemmas

We split the sum into three intervals, with cutoffs at 1013 and X0 = e150. We let exp(x)
and log x denote the natural exponential and logarithmic functions. We let x denote a real
number, m and n denote positive integers, p, q, r denote prime numbers, P (n) denote the
largest prime factor of n, and π(x) denote the prime counting function.

We state several preliminary lemmas that will be used in the proof of Theorem 1.1. We
will use the bounds [9, (3.5, 3.6)] of Rosser and Schoenfeld and [3, Cor 5.2, Thm. 5.6] of
Dusart for the prime counting function.

Lemma 2.1. For all x > 1, we have

π(x) < 1.25506x/ log x,

π(x) ≤ x/ log x (1 + 1.2762/ log x) ,

π(x) ≤ x/ log x
(
1 + 1/ log x+ 2.53816/ log2 x

)
.

For all x ≥ 17, we have π(x) > x/ log x.

Lemma 2.2. For all x ≥ 2278383 we have∣∣∣∣∣∑
p≤x

1

p
− (log log x+B)

∣∣∣∣∣ ≤ 0.2

log3 x
,

where B = 0.2614972128 . . . denotes the Mertens constant.

Let π(x;m, a) = |{p ≤ x : p ≡ a (mod m)}|.

Lemma 2.3. For m < C < D, we have∑
C<p≤D
p≡ a (m)

1

p
<

2

ϕ(m)

(
log log(D/m)− log log(C/m) +

1

log(D/m)

)
.

Lemma 2.3 follows directly from the Brun-Titchmarsh theorem by partial summation, see
for instance [7, Lem. 2.8]. A more elementary result that can complement Lemma 2.3 is the
following.

Lemma 2.4. Suppose that m is a positive integer coprime to 6. We have∑
p≤398m
p≡ 1 (m)

1

p
<

2.0156

m
.

Proof. Since m is odd, the primes in the sum are the primes in the set {2m + 1, 4m +
1, . . . , 396m + 1}. If m ≡ 1 (mod 3) then the numbers 2jm + 1 with j ≡ 1 (mod 3) are
divisible by 3, and if m ≡ 2 (mod 3), the numbers 2jm+ 1 with j ≡ 2 (mod 3) are divisible
by 3. Thus, the sum in the lemma is either at most

1

m

∑
j≤198
j 6≡ 1 (3)

1

2j
or

1

m

∑
j≤198
j 6≡ 2 (3)

1

2j
.

2



The second sum here is larger than the first sum, and the second sum is < 2.0156. �

Corollary 2.5. For r > 3 prime and x > 398r, we have∑
p≤x

p≡ 1 (r)

1

p
≤ 2

r − 1

(
log log(x/r)− 0.78169 +

1

log(x/r)

)
.

The corollary follows from Lemmas 2.3 and 2.4 since − log log 398 + 2.0156/2 < −0.78169.
We will also use the following inequality.

Lemma 2.6. For a positive integer m ≤ 1200 and x > 50m2, we have∑
50m2<p≤x
p≡ 1 (m)

1

p
<

1

ϕ(m)

(
log log x− log log(50m2)− 1.5

log x
+

2.5

log2 x
+

1.5

log(50m2)

)
.

Proof. This follows from a partial summation argument and the following new result, see [2,
Cor. 1.6]: under the hypotheses of the lemma,

x

ϕ(m) log x
< π(x;m, 1) <

x

ϕ(m) log x

(
1 +

2.5

log x

)
.

�

We also use the following bound [7, Lemma 2.7].

Lemma 2.7. For all y > 1 we have ∑
p>y

1

p2
<

1

y log y
.

Corollary 2.8. For all y ≥ 6241, we have∑
pa>y

a≥2

1

pa
<

2.4
√
y log y

.

Proof. Using the bound∑
pa>y

a≥2

1

pa
=
∑
p≥2

1

p(p− 1)
−
∑
pa≤y
a≥2

1

pa
< 0.773157−

∑
pa≤y
a≥2

1

pa
,

a computer check shows that the claim holds for 6241 ≤ y < 108. Assume that y ≥ 108. We
split the sum into two cases, p >

√
y and p ≤ √y. We bound the first case as∑

p>
√
y

pa>y, a≥2

1

pa
=
∑
p>
√
y

∑
a≥2

1

pa
=
∑
p>
√
y

1

p(p− 1)
<

√
y

√
y − 1

∑
p>
√
y

1

p2

<
2

√
y log y

(
1 +

1
√
y − 1

)
,
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using Lemma 2.7. We next address the second case. For p ≤ √y let ap be the least integer
such that pap > y. We have ∑

p≤√y
pa>y, a≥3

1

pa
=
∑
p≤√y

1

pap
1

1− 1/p
.

We consider two cases, ap = 3 and ap > 3. For the first case, we have∑
p≤√y
p3>y

1

p3
1

1− 1/p
<

y1/3

y1/3 − 1

∑
p>y1/3

1

p3
.

By partial summation and Lemma 2.1,∑
p>y1/3

1

p3
= −π(y1/3)

y
+

∫ ∞
y1/3

3π(t)

t4
dt <

2.4356

y2/3 log y
<

0.1131
√
y log y

.

For the second case, we have∑
p≤y1/3

1

y

1

1− 1/p
<

27.5742

y
+

101

100y

(
π(y1/3)− 25

)
<

2.3242

y
+

0.1699
√
y log y

.

Combining these bounds, we have ∑
pa>y

a≥2

1

pa
<

2.2878
√
y log y

for all y ≥ 108. This completes the proof of Corollary 2.8. �

3. An Averaging Method

Let N(x) denote the number of odd n ≤ x with ϕ(n)/n < 1/2.

Proposition 3.1. We have N(x) < 0.017876x+ 670.515
√
x+ 5.4 for all x > 0.

We will prove Proposition 3.1 after noting the following corollary.

Proof of Proposition 3.1. For a real number T ≥ 1, let gT denote the multiplicative function
supported on the squarefree numbers such that gT (p) = (p/(p− 1))T − 1. Thus,∑

d|n

gT (d) = (n/ϕ(n))T .

Noting that 323323 is the product of all of the primes from 7 to 19, we partition the odd
numbers n such that ϕ(n)/n < 1/2 into four classes:

(1) gcd(n, 6) = 1,
(2) gcd(n, 30) = 3,
(3) gcd(n, 30) = 15 and gcd(n, 323323) = 1,
(4) gcd(n, 30) = 15 and gcd(n, 323323) > 1.
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Let Bi(x) denote the number of n ≤ x in each case i. For any T ≥ 1,

B1(x) ≤ 1

2T

∑
n≤x

(n,6)=1

(
n

ϕ(n)

)T
=

1

2T

∑
n≤x

(n,6)=1

∑
d|n

gT (d).

Changing the order of summation, we obtain

B1(x) ≤
(

1

2

)T ∑
d≤x

(d,6)=1

gT (d)

(
x

3d
+

2

3

)
,

using the bound |{n ≤ t : gcd(n, 6) = 1}| ≤ t/3 + 2/3. Thus,

B1(x) ≤ x

 1

3 · 2T
∑

(d,6)=1

gT (d)

d

+
2

3 · 2T
∑
d≤x

(d,6)=1

gT (d).

Let S1 and S2 denote the first and second sums, respectively. We have∑
(d,6)=1

gT (d)

d
=
∏
p≥5

(
1 +

gT (p)

p

)
= exp

(∑
p≥5

log

(
1 +

gT (p)

p

))
.

We choose T as 69. Computing the sum for p < 109 and then majorizing the tail using
Lemmas 2.1 or 2.2, we get ∑

p≥5

log

(
1 +

gT (p)

p

)
< 34.3844.

Thus, S1 < (4.839× 10−7)x.
We next turn to S2. By Rankin’s trick,∑

d≤x
(d,6)=1

gT (d) ≤
√
x
∑
d≤x

(d,6)=1

gT (d)√
d
≤
√
x
∏
p≥5

(
1 +

gT (p)
√
p

)

=
√
x exp

(∑
p≥5

log

(
1 +

gT (p)
√
p

))
.

Splitting the sum at 109 as before, we compute∑
p≥5

log

(
1 +

gT (p)
√
p

)
< 49.1683,

so that S2 < 2.549
√
x. Thus B1(x) < (4.839× 10−7)x+ 2.549

√
x.

We next bound B2(x). For a positive integer u, let

(1) fu(m) =
∏
p |m
p -u

(
p

p− 1

)
5



and let gT,u be the multiplicative function supported on the squarefree numbers coprime to
u such that gT,u(p) = gT (p) for p - u. Thus,∑

d|m

gT,u(d) = fu(m)T .

We have

B2(x) ≤ 1

2T

∑
n≤x

(n,30)=3

(
n

ϕ(n)

)T
=

(
3

4

)T ∑
m≤x

3

(m,10)=1

f3(m)T

and so, using the bound |{n ≤ t : gcd(n, 10) = 1}| ≤ 2t/5 + 4/5,

B2(x) ≤
(

3

4

)T ∑
m≤x

3

(m,10)=1

∑
d |m

gT,3(d) ≤
(

3

4

)T ∑
d≤x

3

(d,10)=1

gT,3(d)

(
2x

15d
+

4

5

)

<

 2

15

(
3

4

)T ∑
(d,10)=1

gT,3(d)

d

x+
4

5

(
3

4

)T ∑
d≤x

3

(d,10)=1

gT,3(d).

Let S
′
1 and S

′
2 denote the left and right sums, respectively. We have∑

(d,10)=1

gT,3(d)

d
=
∏
p≥7

(
1 +

gT,3(p)

p

)
= exp

(∑
p≥7

log

(
1 +

gT,3(p)

p

))
.

We choose T = 29 and as before, we split the sum at 109, getting∑
p≥7

log

(
1 +

gT,3(p)

p

)
< 4.85969.

This gives S
′
1 < 0.004095x. By Rankin’s method, we have∑

d≤x
3

(d,10)=1

gT,3(d) ≤
√
x

3

∏
p≥7

(
1 +

gT,3(p)√
p

)

=

√
x

3
exp

(∑
p≥7

log

(
1 +

gT,3(p)√
p

))
.

Splitting the sum at 109 as above, we obtain S
′
2 < 6.765

√
x, so that B2(x) < 0.004095x +

6.765
√
x.

We next turn to B3(x). Noting that the product of the primes to 19 is 9699690, we have

B3(x) <
1

2T

∑
n≤x

(n,9699690)=15

(
n

ϕ(n)

)T
=

(
15

16

)T ∑
n≤ x

15

(n,646646)=1

f15(n)T .
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Note that
∑

d |n gT,15(d) = f15(n)T and ϕ(646646) = 207360. One finds via a computer
search among numbers to 646646 that for any t > 0, the number of d ≤ t coprime to 646646
is at most 207360t/646646 + 5.525. We have as above that B3(x) is less than

207360

646646

(
15

16

)T
x

15

∏
p≥23

(
1 +

gT,15(p)

p

)

+ 5.525

(
15

16

)T √
x

15

∏
p≥23

(
1 +

gT,15(p)√
p

)
.

Taking T = 72 and estimating the products as above, we find that B3(x) < 0.00182x +
661.201

√
x.

Finally, we obtain an upper bound for B4(x). The conditions that gcd(n, 30) = 15 and
gcd(n, 323323) > 1 put n in one of 115963 residue classes modulo 9699690. We find the
optimal bound

B4(x) ≤ 115963

9699690
x+

204775

38038
< 0.01196x+ 5.3835

by a computer search to 9699690.
Combining our bounds for Bi(x) proves the proposition. �

Remark. After work of Schoenberg [10] we know the density δ of numbers n with ϕ(n)/n <
1/2 exists, and the second author of this paper has calculated [6] that its value lies in the
interval (0.51120, 0.51176). Since every even number that is not a power of 2 satisfies this
inequality, we have that δ − 1/2 is the density of odd n with ϕ(n)/n < 1/2, that is, the
density of the numbers counted by N(x). We see that the bound of 0.017876 in Proposition
3.1 is not too far off from the asymptotically best possible estimate.

The following results can be proved in a similar way as we proved Proposition 3.1.

Proposition 3.2. Let M(x) denote the number of odd m ≤ x such that ϕ(m)/m < 0.5001.
We have M(x) < 0.01794x + 680.18

√
x + 5.4 for all x > 0. Moreover, for all x > 0 and

D > 0, we have

M(D + x)−M(D) < 0.01794x+ 1360.36
√
D + x+ 10.8.

The proof of Proposition 3.2 is nearly identical to that of Proposition 3.1 with the following
changes. For the first assertion, the factor of 1/2T is replaced with 0.5001T . For the second
assertion, the factor of

√
x is replaced with

√
D + x. For example, in the case that m is

coprime to 6, and D = 0, we get the bound

(2) (4.91× 10−7)x+ 2.5844
√
x,

which can be compared with our estimate for B1(x) in the proof of Proposition 3.1. Also,
we replace the bound for case (1) by

|{n ∈ (D,D + x] : gcd(n, 6) = 1}| ≤ x/3 + 4/3,

where the constant term is doubled due to the periodicity and symmetry of gcd(n, 6) as well
as the right-continuity of |{n ≤ x : gcd(n, 6) = 1}| − x/3, and similarly for cases (2)–(4).
This change does not affect the constant in the main term but each of the constants of lower
order will be double those of M(x).

We will also use the following proposition.
7



Proposition 3.3. Suppose that n is odd with ϕ(n)/n < 1
2
, p | n with p > 5000 and s | n+ 1

with s > 1 and s coprime to 30030. The number of n ≤ t with these properties is at most

0.02194
t

ps
+ 225

√
t

ps
+ 23.36

√
t

p
+ 38.

This estimate holds equally if the roles of n and n+ 1 are reversed.

Proof. The proof parallels that of Proposition 3.1, and in particular we have the same 4
cases. But here we replace “323323” with “1001”.

Write n = mp and ϕ(n)/n < 1
2
, so that ϕ(m)/m < 1

2
+ ε, where ε = 10−4. We first count

the number of choices for n ≤ t with gcd(n, 6) = 1. This is at most the number of m ≤ t/p
coprime to 6, with ϕ(m)/m < 1

2
+ε and mp ≡ −1 (mod s). Let b be an integer with bp ≡ −1

(mod s), so that m ≡ b (mod s). We have

N1 :=
∑
m≤t/p

gcd(m,6)=1
m≡ b (mod s)

ϕ(m)/m< 1
2
+ε

1 ≤
(1

2
+ ε
)T ∑

m≤t/p
gcd(m,6)=1
m≡ b (mod s)

(m/ϕ(m))T .

Since
∑

d |m gT (d) = (m/ϕ(m))T , we have

N1 ≤
(1

2
+ ε
)T ∑

d≤t/p
gcd(d,6s)=1

gT (d)
∑
k≤t/pd

gcd(k,6)=1
k≡ bd−1 (mod s)

1.

If d > t/ps, then k < s, so there is at most one k in the inner sum, and the contribution to
the expression is at most

(3) N1,1 :=
(1

2
+ ε
)T ∑

d≤t/p
gcd(d,6)=1

gT (d).

The remaining part is at most

N1,2 :=
(1

2
+ ε
)T ∑

d≤t/ps
gcd(d,6s)=1

gT (d)
∑
k≤t/pd

gcd(k,6)=1
k≡ bd−1 (mod s)

1.

The inner sum on k is at most t/3psd + 4, using an inclusion-exclusion on the 4 divisors of
6. (The “+4” can be improved here, but this is unimportant.) Thus,

N1,2 ≤
(1

2
+ ε
)T ∑

d≤t/ps
gcd(d,6)=1

gT (d)

(
t

3psd
+ 4

)

=
(1

2
+ ε
)T t

3ps

∑
d≤t/ps

gcd(d,6)=1

gT (d)

d
+ 4
(1

2
+ ε
)T ∑

d≤t/ps
gcd(d,6)=1

gT (d).
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With this expression and (3) we have 3 sums to estimate. We take T = 69. We have(1

2
+ ε
)T t

3ps

∑
d≤t/ps

gcd(d,6)=1

gT (d)

d
< 4.91× 10−7

t

ps
.

Also,

4
(1

2
+ ε
)T ∑

d≤t/ps
gcd(d,6)=1

gT (d) ≤ 4

√
t

ps

(1

2
+ ε
)T ∑

gcd(d,6)=1

gT (d)√
d

< 15.51

√
t

ps
.

Similarly,

N1,1 ≤
√
t

p

(1

2
+ ε
)T ∑

gcd(d,6)=1

gT (d)√
d

< 3.88

√
t

p
.

Summing up, we have

N1 ≤ 4.91× 10−7
t

ps
+ 15.51

√
t

ps
+ 3.88

√
t

p
.

We next consider

N2 :=
∑
m≤t/p

gcd(m,30)=3
m≡ b (mod s)

ϕ(m)/m< 1
2
+ε

1 ≤
(3

4
+

3ε

2

)T ∑
m≤t/3p

gcd(m,10)=1
m≡ b′ (mod s)

f3(m)T .

Then, as with the work for N1, we get

N2 ≤
(3

4
+

3ε

2

)T( ∑
d≤t/3p

gcd(d,10)=1

gT,3(d) +
∑

d≤t/3ps
gcd(d,10)=1

gT,3(d)
(2

5

t

3psd
+ 4
))

.

Choosing T = 29, we get

N2 ≤ 0.00412
t

ps
+ 34.02

√
t

ps
+ 8.51

√
t

p
.

We also have

N3 :=
∑
m≤t/p

gcd(m,30030)=15
m≡ b (mod s)

ϕ(m)/m< 1
2
+ε

1 ≤
(15

16
+

15ε

8

)T ∑
m≤t/15p

gcd(m,2002)=1
m≡ b′ (mod s)

f15(m)T .

We introduce gT,15 and note that the number of integers to t/15pd coprime to 2002 and in a
residue class mod s is at most 24t/1001psd+ 16. So N3 is at most(15

16
+

15ε

8

)T( ∑
d≤t/15p

(d,2002)=1

gT,15(d) +
∑

d≤t/15ps
(d,2002)=1

gT,15(d)
( 24t

1001psd
+ 16

))
.
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Choosing T = 36, we get

N3 ≤ 0.00846
t

ps
+ 175.47

√
t

ps
+ 10.97

√
t

p
.

We next consider the case when gcd(n, 30) = 15 and gcd(n, 1001) > 1. In this case, the
number of integers n ≤ t is at most

1

30
· 281

1001

t

ps
+ 38.

Putting our estimates together, we complete the proof. �

4. Proof of Theorem 1.1.

Recall that X0 = e150. We partition solutions of ϕ(n) = ϕ(n + 1) into a small range
n ≤ 1013, middle range 1013 < n < X0, and large range n > X0.

4.1. The Small Range, n ≤ 1013. By computation using an exhaustive list of all 10755
solutions up to 1013 (see [8]) we have∑

n∈S
n≤1013

1

n
= 1.432488 . . . .

4.2. The Middle Range, 1013 < n ≤ X0. It is shown in [1, Prop. 2.2] that for solutions to
ϕ(n) = ϕ(n+ 1) larger than 232, the odd member of the pair, say n, satisfies ϕ(n)/n < 1

2
. It

follows then via partial summation and doubling the estimate in Proposition 3.1 (to allow for
the possibility that an odd number n may be in two pairs of numbers with equal ϕ-values)
that ∑

n∈S
1013<n≤X0

1

n
=
S(X0)− S(1013)

X0

+

∫ X0

1013

S(t)− S(1013)

t2
dt < 4.3293.

However, we can do a little better as follows.
Consider odd numbers n > 1013 divisible by 105. These are part of case (4) in the proof

of Proposition 3.1 and according to the accounting there, the number of them in [1, x] is
at most x/210 + 1. However, the number of these with ϕ(n) = ϕ(m) with m = n ± 1 is
considerably smaller. Note that m is even and ϕ(m)/m ≤ (1 + 1/m)ϕ(105)/105. Further,
m ≡ ±1 (mod 105). Fix a = ±1 and let B(x) denote the number of such numbers m ≤ x
with n ≡ a (mod 105). Since ϕ(105)/105 = 16/35 and letting ε = 10−13, we have for any
T > 0,

B(x) =
∑
m≤x
2 |m

m≡ a (mod 105)

ϕ(m)/m< 16
35

(1+ε)

1 ≤
(

16

35
(1+ε)

)T ∑
m≤x
2 |m

m≡ a (mod 105)

(
m

ϕ(m)

)T
=

(
32

35
+ε

)T ∑
l≤x/2

l≡ b (mod 105)

f2(n)T ,

10



where b is such that 2b ≡ a (mod 105). Thus,

B(x) ≤
(

32

35
+ ε

)T ∑
d≤x/2

(d,105)=1

gT,2(d)
∑

k≤x/2d
k≡ bd−1 (mod 105)

1.

The inner sum is at most x/210d+ 1, so that

B(x) ≤
(

32

35
+ ε

)T ∑
d≤x/2

(d,105)=1

gT,2(d)
x

210d
+

(
32

35
+ ε

)T ∑
d≤x/2

(d,105)=1

gT,2(d)

Choosing T = 18 and using the methods of Section 3, we have

(4) B(x) ≤ 0.002578x+ 7.7
√
x.

Subtracting x/210− 1/2 from the estimate in Proposition 3.1, adding in the estimate in (4),
and doubling, we have

S(x)− S(1013) ≤ 0.031385x+ 1360
√
x+ 11.3.

We thus have

(5)
∑
n∈S

1013<n≤X0

1

n
≤ 3.8006.

4.3. The Large Range, n > X0. Here is the plan for the proof. Let n ∈ S. We show that,
but for a small number of exceptions, P (n) and P (n + 1) are large and that neither n nor
n+ 1 is divisible by a large proper power of a prime. We then deal with the situation when
the largest prime q dividing n(n + 1) is very large (approximately, it is > n0.3). Here we
consider the two cases: P (q−1) is large and P (q−1) is small. Finally, we have the situation
when q is not so large. Here we concentrate on the odd member of the pair, doubling our
estimate since we do not know which of n, n + 1 is odd. The advantage to us of working
with the odd member is that we can bring in Proposition 3.3 to help with the estimate.

Let Ik = (ek, ek+1) and Sk = Ik ∩ S. Let αk = 3.5 for 150 ≤ k < 400 and αk = 4 for
k ≥ 400. Let βk = 4 for 150 ≤ k < 200, βk = 4.5 for 200 ≤ k < 400, and βk = 5 for k ≥ 400.
Let

xk = ek/bαk log kc, x′k = e0.3k, zk = e
√
k/βk , z′k = e0.7

√
k.

Also, let

x′ = x′(t) = x′blog tc, z′ = z′(t) = z′blog tc.

Define the following sets of natural numbers:

Ck0 = {n ∈ Sk : qa|n(n+ 1) for some a ≥ 2, where qa > xk or q > z′k},
Ck1 = {n ∈ Sk : ω(n) or ω(n+ 1) ≥ αk logblog nc},
Ck2 = Sk \ (Ck

0 ∪ Ck1 ).

We will use the convention Ci =
⋃
k≥150 Cki . We first bound the contribution to the reciprocal

sum from C0.
11



Proposition 4.1. We have ∑
n∈C0

1

n
< 0.2516.

Proof. We handle the case when qa | n and double the estimate to allow for the parallel case
qa | n+ 1. Let Tk = {qa : a ≥ 2, qa > xk}. By [7, Lem. 2.2], we have

∑
k≥150

∑
ek<n≤ek+1

∃s∈Tk:s|n

1

n
≤
∑
k≥150

∑
s∈Tk
s≤ek+1

1

s
+
∑
k≥150

∑
s∈Tk
s≤ek+1

1

ek
.

The right sum is

∑
k≥150

1

ek

∑
s∈Tk
s≤ek+1

1 ≤
∑
k≥150

e(k+1)/2

ek
=

1

(
√
e− 1)e74

< 2 · 10−32.

Here we used inequality (3.7) in the proof of [7, Prop. 3.3] to bound the number of proper
prime powers up to t as less than t1/2 for t ≥ 200. For the left sum, we use Corollary 2.8 to
bound ∑

k≥150

∑
s∈Tk

1

s
≤
∑
k≥150

2.4
√
xk log xk

.

Computing the sum directly to k = 108 and bounding the remaining sum with an integral,
this expression is less than 0.12345 + 0.00155 = 0.12500, the two numbers coming from the
ranges 150 ≤ k ≤ 399 and k ≥ 400, respectively.

We proceed in the same way, but now use Lemma 2.7 and T ′k = {q2 : q > z′k}. The
reciprocal sum is bounded above by

∑
k≥150

∑
ek<n≤ek+1

∃s∈T ′k:s|n

1

n
≤
∑
k≥150

∑
s∈T ′k
s≤ek+1

1

s
+
∑
k≥150

∑
s∈T ′k
s≤ek+1

1

ek
.

By Lemma 2.7, we compute that this expression is smaller than 0.00079. Noting that
2(0.12500 + 0.00079) < 0.2516, completes the proof. �

Proposition 4.2. We have ∑
n∈C1

1

n
< 0.1430.

Proof. As before, we treat the case of n, doubling the estimate to account for the case of
n + 1. Following [7, Prop. 3.2], we have τ5(n) ≥ 5ω(n), where τ5(n) denotes the number of

12



ordered factorizations of n into five positive integers. By [7, Lem. 2.5] we have∑
e150<n<e400

ω(n)≥3.5 logblognc

1

n
=

∑
151≤k≤400

∑
ek−1<n<ek

ω(n)≥3.5 log(k−1)

1

n

≤
∑

151≤k≤400

5−3.5 log(k−1)
∑
n<ek

τ5(n)

n

≤
∑

151≤k≤400

1

120

(k + 5)5

(k − 1)3.5 log 5
< 0.07006.

Note that this sum, if extended to infinity, diverges. However, by changing 3.5 to 4, the sum
converges, and we have ∑

n>e400

ω(n)≥4 logblognc

1

n
≤
∑
k≥401

1

120

(k + 5)5

(k − 1)4 log 5
< 0.00142.

Noting that 2(0.07006 + 0.00142) < 0.1430, the proof is complete. �

For n ∈ Ck2 , we may assume that ω(n) < αk logblog nc, since n /∈ C1. Therefore, the
largest prime power dividing n exceeds n1/bαk logblogncc > ek/bαk log kc. It follows that this
prime exactly divides n since n /∈ C0, so that P (n) > xk and P (n) ‖n. These conclusions
hold as well for n+ 1.

We use the notation q = P (n(n+ 1)) and p = P (n). We define the following sets:

Ck3 = {n ∈ Ck2 : q > x′k, P (q − 1) ≤ z′k},
Ck4 = {n ∈ Ck2 : q > x′k, P (q − 1) > z′k},
Ck5 = {n ∈ Ck2 \ (C3 ∪ C4) : P (p− 1) ≤ zk},
Ck6 = {n ∈ Ck2 \ (C3 ∪ C4) : P (p− 1) > zk}.

We continue with the convention Ci = ∪k≥150Cki .

Proposition 4.3. We have ∑
n∈C3

1

n
< 0.2543.

Proof. Write the one of n, n + 1 which is a multiple of q as qm. We will sum 1/qm and
double the estimate to allow for the ambiguity of whether q | n or q | n+1. We first consider
the case that q > e0.45k. Let S(x, y) denote the reciprocal sum of those integers j > x with
P (j) ≤ y. By [7, Lem. 2.2, 2.10],∑

k≥150

∑
q>e0.45k

P (q−1)≤z′k

1

q

∑
ek

q
<m< ek+1

q

1

m
≤
∑
k≥150

1

2
S

(
e0.45k − 1

2
, z′k

)
(1 + e/2)

< 0.00063(1 + e/2),
13



noting that q − 1 is even. Also, we bound∑
k≥150

∑
x′k<q<e

0.45k

P (q−1)≤z′k

1

q

∑
ek

q
<m< ek+1

q

1

m
≤
∑
k≥150

1

2
S

(
x′k − 1

2
, z′k

)(
1 + e−0.55k

)
< 0.12564.

Here we used [7, Lem. 2.10] to sum over k ≥ 300, obtaining a bound of 0.00801, and [7, Lem.
2.9] with sk = log(e0.2uk log uk)/ log z′k to sum over 150 ≤ k ≤ 299, obtaining a bound of
0.11763. Combining and doubling, we complete the proof of Proposition 4.3. �

Proposition 4.4. We have ∑
n∈C4

1

n
< 0.8542.

Proof. Let n ∈ C4. Since n /∈ C2, r = P (q − 1) | ϕ(n), and r > z′blognc, there are primes

p, p′ with q = max{p, p′}, p‖n, p′‖n + 1 and p ≡ p′ ≡ 1 (mod r). Writing n = pm and
n+ 1 = p′m′, we have pm+ 1 = p′m′ and (p− 1)ϕ(m) = (p′ − 1)ϕ(m′). Thus,

p′(m′ϕ(m)−mϕ(m′)) = (m+ 1)ϕ(m)−mϕ(m′).

If the left side is zero, consider that since gcd(m,m′) = 1, we would then have m | ϕ(m) and
m′ | ϕ(m′), so that m = m′ = 1. But this does not occur for n > 1, so the left side is not
zero. Therefore p′ (and also p) are fixed by the ordered pair (m,m′), so that n is completely
determined by the pair (m,m′).

Let A(t) = {n ≤ t : n ∈ C4} and let yk = kek
√
z′k/20 and y = yblog tc. Then

A(t) = A1(t) ∪ A2(t),

where

A1(t) = {n ∈ A(t) : pp′ ≤ y} and A2(t) = {n ∈ A(t) : pp′ > y}.

Let Ai(t) denote the cardinality of Ai(t), i = 1, 2. The system of congruences n ≡ 0
(mod p), n+ 1 ≡ 0 (mod p′) has a unique solution n modulo pp′ by the Chinese remainder
theorem. Thus,

A1(t) ≤
∑
r>z′

∑
pp′≤y

max{p,p′}>x′
p≡ p′≡ 1 (r)

(
t

pp′
+ 1

)
.

For a prime r > z′ let

vr =
∑
pp′≤y

max{p,p′}>x′
p≡ p′≡ 1 (r)

t

pp′
.
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Let x′′ = x′0.4 = e0.12blog tc. Consider the case when r > x′′. We have∑
r>x′′

vr ≤
∑
r>x′′

t

 ∑
j<t/2r

1

2jr

2

<
∑
r>x′′

t

(2r)2
(log(t/2r) + 1)2

≤
∑
r>x′′

t

(2r)2
(log(t/2x′′) + 1)2 ≤ t(log(t/2x′′) + 1)2

4x′′ log x′′
,

using Lemma 2.7. Applying partial summation, the contribution to the reciprocal sum is
< 5× 10−5. Now assume that r ∈ (z′, x′′]. We have

(6) vr ≤ 2
∑

x′<p<y/(2r)
p≡ 1 (r)

∑
p′≤y/x′
p′≡ 1 (r)

t

pp′
,

doubled because we assume p > x′. We have by Lemma 2.3 and Corollary 2.5 that∑
x′<p≤y/2r
p≡ 1 (r)

1

p
≤ s1(r)

r
,

∑
p′≤y/x′
p′≡ 1 (r)

1

p′
≤ s2(r)

r
,

where

s1(r) =
2r

r − 1

(
log log

y

(2r)2
− log log

x′

2r
+

1

log(y/(2r)2)

)
,

s2(r) =
2r

r − 1

(
log log

y

2rx′
− 0.78169 +

1

log(y/(2rx′))

)
.

We assemble these estimates into (6). Note that s1(r)s2(r) is increasing in the variable r for
z′ < r ≤ x′′. Let x′′k = x′′(ek) = e0.12k. Via partial summation, we have the reciprocal sum
in this case at most

2
∑
k≥150

∑
z′k<r≤x

′′
k

s1(r)s2(r)

r2
≤ 2

∑
k≥150

∑
r>z′k

s1(x
′′
k)s2(x

′′
k)

r2
≤
∑
k≥150

2s1(x
′′
k)s2(x

′′
k)

z′k log z′k
,

using Lemma 2.7. We have the contribution to the reciprocal sum for r ∈ (z′, x′′] is less than
0.04665.

We next estimate the sum of the error term 1. This is

(7) 2
∑
r>z′

∑
p′<y/x′

p′≡ 1 (r)

∑
x′<p≤y/p′
p≡ 1 (r)

1.

Writing p = 2ar + 1, p′ = 2br + 1, the contribution when r > x′′ is at most

2
∑
r>x′′

∑
ab≤y/4r2

1 ≤
∑
r>x′′

y

2r2

(
log

y

4r2
+ 1
)
<
y(log(y/4x′′2) + 1)

2x′′ log x′′
,

using Lemma 2.7 and the elementary estimate that the number of pairs a, b with ab ≤ x is
at most x log x+ x. Dividing our expression by t and integrating from X0 to ∞, we get less
than 0.00030.

So now we assume that z′ < r ≤ x′′. Using the Brun–Titchmarsh inequality, the inner
sum in (7) is at most 2(y/p′)/((r − 1) log(y/(p′r))). Note that not both 2r + 1, 4r + 1 can
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be prime, since one of them is divisible by 3. Thus, the contribution to (7) when p′ ≤ 6r is
at most ∑

z′<r≤x′′

4y

(2r+1)(r−1) log(y/((2r+1)r))
<

2y

log(y/2x′′2)

(
1 +

1

z′

)∑
r>z′

1

r2
.

Using Lemma 2.7 and partial summation, the contribution to the reciprocal sum in this case
is less than 0.01432. We now assume that p′ > 6r in (7). We find that for a given r, the
expression is at most

8y

r2
r2

(r − 1)2
(A+B),

where A = 1/(log(y/x′r) log(x′/r)) and

B =
1

log(y/r2)

(
log log(y/x′r)− log log(x′/r)− log log 6 + log log(y/6r2)

)
.

Using that (1 + 1/(r−1))2(A+B) is increasing in r on (z′, x′′], using partial summation and
Lemma 2.7 we get that the contribution to the reciprocal sum is less than 0.33245.

We next consider an upper bound for A2(t). If n ∈ A2(t) then pp′ > y, and since
pp′mm′ = n(n+ 1) ≤ t(t+ 1), we have

mm′ < t(t+ 1)/y = 20t(t+ 1)/(kek
√
z′k) = w = w(t), say.

Further, one of m,m′ is odd and the other is even, so assume m is odd, m′ is even. We
double our estimate to take into account the other possibility. There are two cases: 3 | m
and 3 - m. Let A2,1(t) denote the set of such ordered pairs (m,m′) when 3 | m, and A2,2(t)
the set of such pairs with 3 - m. Let A2,i(t) denote their cardinalities for i = 1, 2, respectively.
Since the pair (m,m′) fixes p and p′ (and therefore n), we have

A2(t) = A2,1(t) + A2,2(t).

Note that p ≥ 2r + 1 > 2z′ + 1 > 5000 since p ≡ 1 (mod r) and r > z′. Thus, ϕ(m)/m <
0.5001, so we may apply the averaging argument in Proposition 3.2. Since m,m′ are coprime,

A2,1(t) ≤ 2
∑
m≤w

gcd(m,6)=3
ϕ(m)/m<0.5001

∑
m′≤w/m
2 |m′
3 -m′

1 ≤ 2

3

∑
m≤w

gcd(m,6)=3
ϕ(m)/m<0.5001

(w
m

+ 2
)
,

A2,2(t) ≤ 2
∑
m≤w

gcd(m,6)=1
ϕ(m)/m<0.5001

∑
m′≤w/m
2 |m′

1 ≤
∑
m≤w

gcd(m,6)=1
ϕ(m)/m<.5001

w

m

Letting M1(x) be the number of m ≤ x with gcd(m, 6) = 1 and ϕ(m)/m < 0.5001 and
noting that the first such m is m1 := 37182145, we have from (2) and partial summation
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that ∑
m≤w

gcd(m,6)=1
ϕ(m)/m<0.5001

1

m
=
M1(w)

w
+

∫ w

m1

M1(x)

x2
dx

≤ 5× 10−7 + 5× 10−7(logw − logm1) +
2 · 2.6
√
m1

< 5× 10−7 logw + 8.6× 10−4.

For the sum of w/m+2 for m ≤ w, gcd(m, 6) = 3, and ϕ(m)/m < 0.5001, we use Proposition
3.2, and relax the condition gcd(m, 6) = 3 to gcd(m, 2) = 1. Computing directly the sum of
1/m to 1010, an upper bound for the sum is 0.21322. Thus,∑

m≤w
gcd(m,2)=1

ϕ(m)/m<.5001

1

m
< 0.01794 logw − 0.172656.

Further, using w ≥ 2 × 1062 and Proposition 3.2, we have the number of integers m in the
sum at most 0.01795w. Thus,

A2(t) < 0.0119605w logw − 0.09031w.

The contribution to the reciprocal sum from this term is at most∫ ∞
X0

1

t2
A2(t)dt <

∑
k≥150

∫ ek+1

ek

1

t2
(0.0119605w logw − 0.09031w)dt < 0.46042.

Combining these bounds, we complete the proof of Proposition 4.4. �

Proposition 4.5. We have ∑
n∈C5

1

n
< 0.2790.

Proof. Assume that n ∈ C5 and write n = pm. We also assume that n is odd. The case when
n is even is completely parallel, so we double our estimates to reflect this case. We bound
the reciprocal sum for xk < p ≤ x′k and r = P (p− 1) ≤ zk by∑

k≥150

∑
xk<p≤x′k
P (p−1)≤zk

1

p

∑
ek

p
<m< ek+1

p

m odd, ϕ(m)/m<0.5001

1

m
,

noting that ϕ(m)/m < p/(2(p − 1)) < 0.5001 for p > x150. We first bound the inner sum.
Recall that M(x) = |{m ≤ x : 2 - m, ϕ(m)/m < 0.5001}|. Let D = ek/p. By partial
summation, ∑

ek

p
<m< ek+1

p

m odd, ϕ(m)/m<0.5001

1

m
=
M(De)

De
− M(D)

D
+

∫ De

D

M(t)

t2
dt.
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Let a = 0.01794, b = 1360.36, c = 10.8. By Proposition 3.2,

M(De)

De
<
M(D) + a(e− 1)D + b

√
De+ c

De

and ∫ De

D

M(t)

t2
dt <

M(D)

D
− M(D)

De
+
a

e
− 2b√

De
+

2b√
D
− c

De
+

c

D
.

Combining terms, the sum over m is less than 0.01795.
Turning to the sum over p, we first bound this sum over k ≥ 2000. Using the notation

of [7, Lem. 2.10] and observing that p− 1 is even,∑
k≥2000

∑
p>xk

P (p−1)≤zk

1

p
≤ 1

2

∑
k≥2000

S

(
xk − 1

2
, zk

)

<
1

2

∑
k≥2000

20e(1+ε)uk(2log(uk log uk)/ log zk − 1)−1

(uk log uk)uk

< 0.04598,

where ε = 2.3 · 10−8 and uk = log((xk − 1)/2)/ log zk. Here we computed the sum over
2000 ≤ k ≤ 108 directly and then compared the remaining series to an integral. Using the
first inequality of [7, Lem. 2.9] with sk = log(eγuk log uk)/ log zk and noting that p − 1 is
even, we have ∑

1500≤k≤1999

∑
p>xk

P (p−1)≤zk

1

p
≤ 1

2

∑
1500≤k≤1999

S

(
xk − 1

2
, zk

)
< 0.010329.

We next sum over 1000 ≤ k ≤ 1499, 700 ≤ k ≤ 999, 556 ≤ k ≤ 699, with parameters sk =
log(ecuk log uk)/ log zk, c = 0.5, 0.45, 0.4, to obtain bounds 0.120102, 0.643079, 1.211382,
respectively.

Finally, for the interval 150 ≤ k ≤ 555, we directly evaluate the sum of reciprocals of even
zk-smooth numbers p− 1 > xk − 1 as follows. The sum of reciprocals of all even zk-smooth
numbers is equal to

∏
3≤p≤zk

p
p−1 . For each 150 ≤ k ≤ 555 we subtract from this quantity

the sum of reciprocals of even zk-smooth numbers not exceeding xk − 1. Summing over
150 ≤ k ≤ 199, 200 ≤ k ≤ 399, 400 ≤ k ≤ 555, we obtain the bounds 3.439039, 1.941653,
0.35777, respectively.

Summing these bounds, multiplying by 0.01795, and doubling, we complete the proof of
Proposition 4.5. �

Proposition 4.6. We have ∑
n∈C6

1

n
< 0.6320.

Proof. We assume that n is odd and double the bound, noting that a symmetric argument
applies to the case that n+1 is odd. Recall that p = P (n). There is a prime r > zblognc such
that r | p−1, and thus r|ϕ(n) = ϕ(n+1). Either r2 | n+1 or there is a prime p′ | n+1 with
p′ ≡ 1 (mod r). In this proof we let the letter s denote either r2 or p′. Since n /∈ C0, C4, we
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have s ≤ x′blognc. Consider the counting function of such n ≤ t. Noting that p, p′, r2 < t0.3

and applying Proposition 3.3, we find that the counting function is bounded above by∑
r>z

∑
x<p≤x′
p≡ 1 (r)

∑
s≤x′

(
0.02194t

ps
+ 225

√
t

ps
+ 23.36

√
t

p
+ 38

)
,

where x = xblog tc, z = zblog tc, and s runs over primes p′ ≡ 1 (mod r) or s = r2. For t ≥ X0

and p, s ≤ x′ ≤ t0.3, we have

23.36

√
t

p
+ 38 < 23.37

√
t

p
, 0.02194

t

ps
+ 225

√
t

ps
< 0.02195

t

ps
.

Decoupling the possibilities for s, our counting function is majorized by S1 + S2, where

S1 =
∑
r>z

∑
x<p≤x′
p≡ 1 (r)

(
0.02195t

pr2
+ 23.37

√
t

p

)
,

S2 =
∑
r>z

∑
x<p≤x′
p≡ 1 (r)

∑
p′≤x′

p′≡ 1 (r)

(
0.02195t

pp′
+ 23.37

√
t

p

)
.

We can make a further consolidation in S1, since n /∈ C0 implies that r < z′. Thus, for
t > X0, we have

S1 <
∑
r>z

∑
x<p≤x′
p≡ 1 (r)

0.02196t

pr2
.

We use Lemma 2.3 to sum 1/p, Lemma 2.7 to sum 1/r2, and we majorize 1/(r − 1) (from
Lemma 2.3) with 1/(z− 1). After partial summation to extract the reciprocal sum from the
counting function, we have a contribution of at most

2(0.00206 + 0.00328 + 0.00085) = 0.01238

to the reciprocal sum. (The three terms correspond to the three expressions for zk.)
We now turn to S2. Via partial summation, the reciprocal sum of integers counted by S2

is bounded by ∑
k≥150

∑
r>zk

∑
xk<p≤x′k
p≡ 1 (r)

∑
p′≤x′k
p′≡ 1 (r)

(
0.02195

pp′
+ 23.37e−k/2

1
√
p

)
.

For the the term involving 1/pp′, let

P (k, r) =
∑

xk<p<x
′
k

p≡ 1 (r)

1

p
, Q(k, r) =

∑
p′≤x′k
p′≡ 1 (r)

1

p′
.

We split up the range for the variables k, r into 3 regions:

• k ≥ 1258,
• 150 ≤ k ≤ 1257, r ≥ 1201,
• 150 ≤ k ≤ 1257, r < 1201.
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In the first region, for each k we segment the interval of primes r > zk into intervals

(100j−1zk, 100jzk] for j such that 100jzk < 100x
1/2
k . In each of these intervals we use Lemma

2.3 to bound P (k, r) and Corollary 2.5 to bound Q(k, r). In doing this, note that our bound
for r2P (k, r)Q(k, r) is increasing in r on each interval, so we replace r in the expression
with the upper bound of the interval, and then use Lemma 2.7 to bound the sum of 1/r2

in each interval. After applying partial summation, multiplying by 0.02195, and doubling,
we get a contribution of less than 0.09481 to the reciprocal sum. For larger values of r, we
use Corollary 2.5 to majorize both P (k, r) and Q(k, r), so that now the upper bound for
r2P (k, r)Q(k, r) is decreasing in r. After using Lemma 2.7 for the sum on r, summing on k,
and performing the requisite doubling, we find that the contribution to the reciprocal sum
is less than 2.2 × 10−9. For the second region we proceed in a similar manner, except that

we use x0.6k instead of x
1/2
k and for the interval when j = 1 we use the lower bound 1201 for

r (in the upper intervals, it is larger). We get an upper bound, after doubling,

0.003893 + 0.011933 + 0.010115 < 0.02595,

the 3 numbers corresponding to the changing choices for xk, zk.
For the third region, we use Lemma 2.6. Write P (k, r) = P1(k, r) +P2(k, r) and Q(k, r) =

Q1(k.r) +Q2(k, r), where

P1(k, r) =
∑

xk<p≤50r2
p≡ 1 (r)

1

p
, P2(k, r) =

∑
max{xk,50r2}<p≤x′k

p≡ 1 (r)

1

p

Q1(k, r) =
∑

p′≤50r2
p′≡ 1 (r)

1

p′
, Q2(k, r) =

∑
50r2<p′≤x′k
p′≡ 1 (r)

1

p′

Since r < 1201 and k ≤ 1257, we can compute P1 and Q1 directly, and as mentioned, we use
Lemma 2.6 on the remaining sums. We get that the contribution to the reciprocal sum is at
most

2(0.04007 + 0.11131 + 0.09799) = 0.49874.

To complete the proof, we deal with∑
k≥150

∑
r>zk

23.37e−k/2
∑

xk<p≤x′k
p≡ 1 (r)

∑
p′≤x′k
p′≡ 1 (r)

1
√
p
.

Using the Brun–Titchmarsh inequality and partial summation, we have∑
xk<p≤x′k
p≡ 1 (r)

1
√
p
<

2
√
x′k

(r − 1) log(x′k/r)
+

√
r

r − 1
li
(√

x′k/r
)
,

where li is the logarithmic integral function. Splitting the sum on r at e
√
k, we have the

contribution here smaller than

2(2.2× 10−5 + 9× 10−7 + 4× 10−12 + 10−6) < 5× 10−5,

where the first three terms correspond to the changing choices for zk and the last term

corresponds to the case that r > e
√
k.
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Adding the various contributions, we have that the reciprocal sum is smaller than

0.01238 + 0.09481 + 0.02595 + 0.49874 + 5× 10−5 < 0.6320.

�

In sum, the large range bound for the reciprocal sum is

0.2516 + 0.1430 + 0.2543 + 0.8542 + 0.2790 + 0.6320 = 2.4141.

Combining the bounds from the small, middle, and large ranges,∑
n∈S

1

n
< 1.4325 + 3.8006 + 2.4141 = 7.6472.
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