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Abstract. We give an upper bound for the distribution of base-
a pseudoprimes that is uniform in the base and does not require
coprimality to the base. In addition we show that there are in-
finitely many “near Carmichael numbers” meaning that they are
pseudoprimes for a positive proportion of bases, but not all bases.

1. Introduction

Fermat’s “little theorem” asserts that

(1) an ≡ a (mod n)

whenever n is prime and a is an integer. If (1) holds with n composite,
then we say that n is a base-a Fermat pseudoprime. Since it is compu-
tationally easy to compute an (mod n) via a powermod algorithm, one
often checks (1) with a large number n which is not known to be prime
or composite. If the congruence holds one can suspect that n is prime,
and if it does not hold, one knows that n is composite. This test is not
useful when a = 0 or 1, since every n satisfies the congruence, nor is it
interesting in the case a = −1, since every odd n passes. In this paper
we shall assume that a ≥ 2.

Historically the special case a = 2 was tacitly assumed, and base-
2 Fermat pseudoprimes were simply referred to as pseudoprimes. We
have long known that there are infinitely many, in fact, if p > 3 is
prime, then (4p − 1)/3 is a pseudoprime. Another classical proof of
their infinitude is based on the fact that if n is a pseudoprime, so is
2n−1. There are numbers that are Fermat pseudoprimes to every base,
these are the Carmichael numbers. The best result currently known is
that there are at least x0.3389 Carmichael numbers up to x once x is
sufficiently large, see [4]. So in fact there are many more pseudoprimes
than suggested by the historical arguments.

The existence of pseudoprimes and Carmichael numbers seems to
invalidate using (1) for distinguishing between primes and composites.
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But the ease of checking (1) suggests we should not give up on it. In
fact, Erdős showed that though there are infinitely many pseudoprimes,
there are far fewer of them up to a large number x than there are primes,
suggesting that if a random n satisfies (1) it is highly likely to be prime,
see [5]. Currently the best upper bound known for the number of odd
pseudoprimes ≤ x is

x1−
1
2
log log log x/ log log x

for x sufficiently large, see [7]. It is conjectured that the “correct”
bound is the same expression but with 1

2
replaced with 1 + o(1). This

has been proved for Carmichael numbers and a heuristic argument
suggests that this estimate is tight (as well as for Fermat pseudoprimes
to any fixed base).

Though it is surely not difficult in determining whether an even num-
ber is prime or composite, we point out that the above upper bound
was proved only for odd pseudoprimes. Further, one may ask about
the more general problem of the distribution of base-a Fermat pseudo-
primes. Let Pa(x) denote the number of base-a Fermat pseudoprimes
≤ x. Our first result shows that in a wide range for a there is a univer-
sal upper bound of the same quality as previously shown for the case
of odd pseudoprimes.

Theorem 1. There is a number x0 such that

Pa(x) ≤ x1−
1
2
log log log x/ log log x

for all x ≥ x0 and 2 ≤ a ≤ x.

We remark that it follows from an argument of Beeger [1] that if
there is one Fermat pseudoprime n base a with gcd(n, a) = d, then
there are infinitely many such numbers n. Here is a proof. For positive,
coprime integers a, n let `a(n) denote the exponent that a belongs to
modulo n. Suppose that n satisfies the above conditions. We know
from Bang’s theorem that there is some prime p with `a(p) = n − 1.
Since gcd(p, a) = 1 we have gcd(pn, a) = d. Also, pn ≡ 1 (mod n− 1)
so that apn ≡ a (mod p). From an ≡ a (mod n), we have ak ≡ a
(mod n) for any k ≡ 1 (mod n − 1). Thus, apn ≡ a (mod n), and we
conclude that apn ≡ a (mod pn) as claimed. See [8] for a discussion on
what the true magnitude of the count of these pseudoprimes may be.

Let F(n) = {a (mod n) : an−1 ≡ 1 (mod n)}. It is easy to see that
F(n) is a subgroup of (Z/nZ)∗. After Monier and Baillie–Wagstraff,
we know that F (n) := #F(n) =

∏
p|n(p− 1, n− 1). Now let

F∗(n) = {a (mod n) : an ≡ a (mod n)}, F ∗(n) = #F∗(n).
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As noted in [8],

F ∗(n) =
∏
p|n

(1 + (p− 1, n− 1)).

We have F ∗(n) = n if and only if n is prime, n is a Carmichael number,
or n = 1. Further, if F ∗(n) < n, then F ∗(n) ≤ 3

5
n except that F ∗(6) =

4, see [2, Exercise 3.14]. It is asked there if F ∗(n) = 3
5
n infinitely often,

and if there is a positive number ε with 1 > F ∗(n)/n > ε infinitely
often. We prove this latter assertion.

Theorem 2. There are infinitely many numbers n with

1 > F ∗(n)/n > 1/2451.

2. A preliminary result

By way of notation, let logk denote the k-fold iterated natural loga-
rithm. We reserve the letter p for prime numbers.

We prove an analogue of [7, Theorem 1].

Theorem 3. For all sufficiently large numbers x we have

#{m ≤ x : (a,m) = 1, `a(m) = n} ≤ x1−(3+log3 x)/ log2 x

for all n ≥ 1 and 2 ≤ a ≤ x.

Proof. Since `a(m) ≤ m ≤ x, we may assume that n ≤ x. For a number
c with 0 < c < 1, we have∑

m≤x
`a(m)=n

1 ≤ xc
∑

`a(m)=n

m−c ≤ xc
∑

p|m =⇒ `a(p)|n

m−c = xc
∏

`a(p)|n

(1− p−c)−1.

Denote this last product by A and choose c = 1−(4+log3 x)/(2 log2 x).
So, it suffices to show that A is fairly small. In fact, we will show that
logA < (log x)3/4, which is sufficient for the theorem.

Assume that x is large enough that c > 7/8. Then

logA =
∑

`a(p)|n

p−c +O(1) =
∑
d|n

∑
`a(p)=d

p−c +O(1).

The different primes q1, . . . , qt with `a(qj) = d are all divisors of ad − 1
and are all ≡ 1 (mod d). A crude upper bound for t is d log a ≤ d log x.
Thus,∑
`a(p)=d

p−c =
∑
j≤t

q−cj ≤
∑
j≤t

(dj + 1)−c < d−c
∑
j≤t

j−c < d−c(1− c)−1t1−c.
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Putting in our bound for t, we find that

logA < (1− c)−1(log x)1−c
∑
d|n

d1−2c +O(1).

Using that
∏

p≤2 log x p > x, the sum over d | n is less than∏
p|n

(1− p1−2c)−1 ≤
∏

p≤2 log x

(1− p1−2c)−1 = eO(log2 x/ log3 x).

Thus, when x is large enough,∏
p|n

(1− p1−2c)−1 ≤ (log x)1/2,

and so

logA < (1− c)−1(log x)1−c+1/2 +O(1) ≤ (log x)3/4.

This completes the proof. �

3. An upper bound

In this section we prove Theorem 1.
As in [7] we consider numbers n with various, perhaps overlapping

properties. Let

L(x) = xlog3 x/ log2 x;

our goal is to prove that Pa(x) ≤ x/L(x)1/2. Suppose that (1) holds
for a, n, where a, n ≤ x and n is composite. Write n = uv where
u = (a, n). Since (1) holds, we have (a, v) = 1. At least one of the
following conditions holds:

(i) v ≤ x/L(x)2,
(ii) there is a prime p | v with p > L(x)3 and `a(p) ≤ L(x),

(iii) there is a prime p | v with `a(p) > L(x),
(iv) v has a divisor d with x/L(x)5 < d ≤ x/L(x)2.

Indeed, if (ii) and (iii) both fail, then every prime factor p of v has
p ≤ L(x)3. Thus, if (i) also fails, then (iv) must hold.

Suppose that (i) holds. There are at most x/L(x) numbers n ≤
x/L(x). Assume that n > x/L(x). Then u > L(x). The number of
n ≤ x divisible by a divisor u of a with u > L(x) is at most τ(a)x/L(x),
where τ(a) denotes the total number of divisors of a. We know after
Wigert that τ(a) ≤ x(log 2+o(1))/ log2 x, so that τ(a) ≤ L(x)o(1). Thus, the
number of n satisfying (i) is at most x/L(x)1+o(1).
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As in the proof of Theorem 3, the number of primes p with `a(p) = k
is at most k log x. The number of n ≤ x in case (ii) is thus at most∑

p>L(x)3

`a(p)<L(x)

x

p
<

x

L(x)3

∑
k<L(x)

k log x <
x log x

L(x)
.

For n satisfying (1) and p | v, we have

n ≡ 0 (mod p) and n ≡ 1 (mod `a(p)),

so that n ≡ p (mod p`a(p)). Since n is composite, we have n > p, so
the number of n is < x/p`a(p). Thus, the number of n in case (iii) is
less than ∑

p≤x
`a(p)>L(x)

x

p`a(p)
<

x

L(x)

∑
p≤x

1

p
� x log log x

L(x)
.

Let I = (x/L(x)5, x/L(x)2]. The number of n in case (iv) is at most∑
d∈I

n≡ 0 (mod d)
n≡ 1 (mod `a(d))

1 ≤
∑
d∈I

(
1 +

x

d`a(d)

)
≤ x

L(x)2
+ x

∑
d∈I

1

d`a(d)

=
x

L(x)2
+ x

∑
m≤x

1

m

∑
d∈I

`a(d)=m

1

d
.

Let C(t) = t−(3+log3 t)/2 log2 t. Note that C(t) is decreasing for large t.
We use Theorem 3 and partial summation on the inner sum, getting∑

d∈I
`a(d)=m

1

d
� C(x/L(x)5) log x < x−(2+log3 x)/2 log2 x

for x sufficiently large. Thus, from the above, the count in case (iv)
is at most x1−(2+log3 x)/2 log2 x log x < x1−(1+log3 x)/2 log2 x. Collecting the
estimates in the various cases completes the proof of Theorem 1.

4. Proof of Theorem 2

We will show there are two different positive integers a, b ≤ 50 with
ak+1, bk+1 simultaneously prime infinitely often. Theorem 2 follows,
for if p, q are the two primes, then

F ∗(pq) = (1 + (p− 1, pq − 1))(1 + (q − 1, pq − 1))

= (1 + (p− 1, q − 1))2 ≥ (1 + k)2
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and limk→∞(1 + k)2/(ak + 1)(bk + 1) = 1/ab ≥ 1/49 · 1/50 = 1/2450.
It remains to note that pq is not a Carmichael number since every
Carmichael number has at least 3 prime factors.

To show that ak + 1, bk + 1 are both prime infinitely often we use
a generalization of Zhang’s theorem, as improved by the Polymath
project, on small gaps between primes: For any distinct positive in-
tegers a1, . . . , a50, there are two of them ai, aj with aik + 1, ajk + 1
both prime infinitely often, see Granville [3, p. 175] and Maynard [6].
(Note that the linear forms aik+1 form an “admissible” set since their
product at k = 0 is 1.)
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