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Abstract

A Fibonacci integer is an integer in the multiplicative group gen-
erated by the Fibonacci numbers. For example, 77 = 21 · 55/(3 · 5)
is a Fibonacci integer. Using some results about the structure of
this multiplicative group, we determine a near-asymptotic formula
for the counting function of the Fibonacci integers, showing that up
to x the number of them is between exp(c(log x)1/2 − (log x)ǫ) and
exp

(

c(log x)1/2 + (log x)1/6+ǫ
)

, for an explicitly determined constant
c. The proof is based on both combinatorial and analytic arguments.
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1 Introduction

Let (Fn)n≥1 be the Fibonacci sequence given by F1 = F2 = 1 and Fn+2 =
Fn+1 +Fn for all n ≥ 1 and let GF be the set of integers in the multiplicative
group generated by (Fn)n≥1 inside Q∗. Hence, GF consists of all integers
which can be represented as a ratio of products of Fibonacci numbers. We
call the members of GF Fibonacci integers. The smallest positive integer n
that is not a Fibonacci integer is 37, and the number of Fibonacci integers
in [1, 100] is 88. One might think then that most integers are Fibonacci
integers, but this is not the case. For a positive real number x let GF (x) =
GF ∩ [1, x] be the set of Fibonacci integers in [1, x]. In [5], it was shown that
the estimate

#GF (x) ≪A
x

(log x)A
holds for all x ≥ 2

with any constant A, where the implied constant above depends on A. Ap-
plying this with any A > 1, it was deduced in [5] that

∑

n∈GF

1

n
< ∞.

Here, we improve on this estimate.

Theorem 1. For each fixed ǫ > 0, the estimate

exp
(

c(log x)1/2 − (log x)ǫ
)

≤ #GF (x) ≤ exp
(

c(log x)1/2 + (log x)1/6+ǫ
)

holds for all sufficiently large x, with

c = 2ζ(2)

√

ζ(3)

ζ(6) log α
= 5.15512 . . . ,

where ζ is the Riemann zeta-function and α = (1 +
√

5)/2 is the golden
mean.

Our method is general and can be applied to any Lucas sequence of
general term

un =
an − bn

a − b
or vn = an + bn for all n ≥ 1,

where a + b, ab are nonzero integers and a/b is not a root of 1. Write
Gu and Gv for the positive integers in the multiplicative groups generated
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by {un}n≥1 and {vn}n≥1 inside Q∗, respectively, and for a positive real
number x write Gu(x) and Gv(x) for the intersection with [1, x] of Gu and
Gv, respectively. Then, at least assuming that a and b are real, both #Gu(x)
and #Gv(x) obey estimates of the same shape as what is shown in Theorem 1,
where in the formula for the constant c we need to replace (1 +

√
5)/2 by

max{|a|, |b|}. Perhaps this is still true even when a and b are complex
conjugates but we have not worked out the details for this situation. To
simplify the presentation, we shall deal only with the Fibonacci sequence.

2 Arithmetic considerations

Let α = (1+
√

5)/2 and β = (1−
√

5)/2 be the two roots of the characteristic
equation X2 − X − 1 = 0 of the Fibonacci sequence. Then it is well-known
that

Fn =
αn − βn

α − β
holds for all n ≥ 1.

For a positive integer m write

Φm(X) =
∏

1≤k≤m
(k,m)=1

(X − exp(2πik/m)) ∈ Z[X]

for the m-cyclotomic polynomial and let

Φm(X,Y ) =
∏

1≤k≤m
(k,m)=1

(X − exp(2πik/m)Y ) ∈ Z[X,Y ]

be its homogenization. Further, let Φm stand for Φm(α, β). Note that for
m > 1, Φm is an integer. We have

Fm =
∏

d|m
d>1

Φd (1)

and by Möbius inversion, we have, for m > 1,

Φm =
∏

d|m

F
µ(d)
m/d , (2)

where µ is the Möbius function. In particular, Φm ∈ GF when m > 1.
Formula (1) shows that the numbers Φm for m > 1 generate the same group
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as the Fibonacci numbers. It turns out that this group is almost freely
generated by the numbers (Φm)m>1. This is not exactly so because of the
exceptions

Φ2 = 1, Φ6 =
F6

F2F3
= 22 = Φ2

3, Φ12 =
F12F2

F6F4
= 6 = Φ3 · Φ4. (3)

The numbers Φm capture the so-called primitive prime divisors of Fm,
namely those primes p dividing Fm that do not divide Fn for any n < m.
It is known that each Fm, when m 6= 1, 2, 6, 12, has at least one primitive
prime factor. Let Ψm be the product of the primitive prime factors of Fm

with the corresponding exponents as they appear in Fm. For m > 1, we have
Ψm | Φm. To investigate the quotient δm = Φm/Ψm, note that for every
positive integer k there exists some integer n such that k | Fn. We write
z(k) for the smallest such n (the index of appearance of k in the Fibonacci
sequence). Thus, we can rephrase the condition that p is primitive for Fm

as z(p) = m and the definition of Ψm as

Ψm =
∏

pap‖Fm

z(p)=m

pap .

Further, δm = Φm/Ψm = 1 except if

m = pkz(p) for some k ≥ 1 and prime p.

If m = pkz(p) and m 6= 12, then δm = p.
All of the above properties can be found in either Section 2 of [1], or in

[6]. If p is prime and z(p) = m, then p ≡ 0,±1 (mod m), and the sign in

fact equals the Legendre symbol
(p

5

)

. In particular, we see that if δm = p

is an odd prime, then p = P (m), where we write P (m) for the largest prime
factor of m. Thus, if m (6= 12) is of the form pkz(p), then it is uniquely of
this form; that is, p and k are determined.

Let M = N \ {1, 2, 6, 12}. The result that Fm has a primitive prime
factor for each m ∈ M shows that the group generated by (Fn)n≥1 is freely
generated by (Φm)m∈M. This group is also freely generated by (Fm)m∈M,
but the cyclotomic numbers Φm almost freely generate the Fibonacci integers
as a mutiplicative semigroup. However, there are some Fibonacci integers
not of this form, for example

Φ24

Φ3
,

Φ25

Φ5
, and

Φ37·19Φ113·19

Φ19
.

The following lemma sheds some light on the structure of GF .
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Lemma 1. Assume that I,J are finite multisets of indices with mi, nj ∈
M, ni 6= mj for all i ∈ I, j ∈ J and

n =
∏

i∈I

Φni

∏

j∈J

Φ−1
mj

∈ N.

There exists an injection f from the multiset of prime factors of

∏

j∈J

Ψmj = p1p2 . . . pk

into the multiset {ni}i∈I where f(pl) = pkl
l z(pl) for some kl ∈ N.

Proof. If p is a prime factor of
∏

Ψmj , then z(p) = mj for some j ∈ J . Since
mj 6∈ {ni}i∈I , it follows that p = δni for some i ∈ I and ni = pkz(p) for
some positive integer k. In particular, if pa‖∏Ψmj , then there are at least
a values of i ∈ I with ni of the form pkz(p) (perhaps with different values
of k), so that we may assign each factor of p to a different ni. Further, since
no ni has two different representations in the form pkz(p) with p prime and
k > 0, we may continue this mapping for each prime factor of

∏

Ψmj .

Remark 1. Lemma 1 does not tell the whole story. What is not being
accounted for in the result is the contribution of the primes in

∏

j∈J δmj

which also need to occur in the product
∏

i∈I Φni . It turns out that these
primes are negligible in our counting problem.

Remark 2. We remark that a prime p is a Fibonacci integer if and only if
Ψz(p) = p and δz(p) is a Fibonacci integer. Since δz(p) is either 1 or a prime
(much) smaller than p, we thus have a simple algorithm for determining if
a given prime is a Fibonacci integer. The first few primes which are not
Fibonacci integers are 37, 43, and 53. Since Ψn is exponentially large in
n, it is easy to see that the number of prime Fibonacci integers in [1, x]
is O(log x). Probably there are infinitely many of them, but we do not
know how to prove this. It seems to be a slightly easier assertion than the
conjecture that there are infinitely many prime Fibonacci numbers, but that
doesn’t seem to be of much help.

Yuri Bilu asked us if, in general, it is decidable whether a given natural
number n is a Fibonacci integer. The arguments in the next section, and in
partiqular (10), show that this is indeed the case.

Remark 3. Say that a Fibonacci integer is an atom if it exceeds 1 and it
is not the product of two smaller Fibonacci integers. Let Ξn = Ψn if δn is
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a Fibonacci integer, and otherwise, let Ξn = Φn (cf. Remark 2). Using the
thoughts behind Lemma 1 it is possible to characterize the atoms as the
union of {Ξn : n ∈ M} and

{

∏l
i=1 Φ

p
ki
i m

Ξm
: m ∈ M, Ξm = p1 . . . pl, l ≥ 2, and pk1

1 m, . . . , pkl
l m ∈ M

}

,

where p1, . . . , pl denote primes. The Fibonacci integers do not enjoy unique
factorization into atoms. Here are three examples based on the fact that
Φ19 = 37·113: Let n(j, l) denote the atom Φ37j ·19Φ113l·19/Φ19, where j, l > 0,
and note that

Φ37·19 × Φ113·19 = Φ19 × n(1, 1),

Φ372·19 × n(1, 1) = Φ37·19 × n(2, 1),

n(1, 1) × n(2, 2) = n(1, 2) × n(2, 1).

Such redundancies complicate the possible attainment of an asymptotic for-
mula for the distribution of Fibonacci integers.

Lemma 2. The inequality

αφ(m)−1 ≤ Φm < αφ(m)+1 (4)

holds for all integers m > 1.

Proof. The lemma holds with equality at the lower bound when m = 2, so
assume m ≥ 3. From (2), we get

Φm =
∏

d|m

F
µ(d)
m/d =

∏

d|m

(

αm/d − βm/d
)µ(d)

= αφ(m)
∏

d|m

(

1 −
(

β

α

)m/d
)µ(d)

,

so that since β/α = −α−2,

Lm := log
(

Φm/αφ(m)
)

=
∑

d|m

µ(d) log
(

1 − (−α−2)m/d
)

.

It suffices to show that |Lm| < log α. Note that if k ∈ N,

∑

j>k

∣

∣log
(

1 − (−α−2)j
)∣

∣ <
∑

j>k

∣

∣log
(

1 − α−2j
)∣

∣

=
∑

i≥1

1

i
α−2ik 1

α2i − 1
<
∣

∣

∣
log
(

1 − α−2k
)∣

∣

∣
.
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If m is not squarefree, we have

|Lm| <
∑

j>1

∣

∣log
(

1 − (−α−2)j
)∣

∣ <
∣

∣log
(

1 − α−2
)∣

∣ = log α.

Suppose m is squarefree and p is the smallest odd prime factor of m. Then
p + 1 ∤ m. If m is odd,

|Lm| <
∣

∣log
(

1 + α−2
)

− log
(

1 + α−2p
)∣

∣+
∑

j>p+1

∣

∣log
(

1 − (−α−2)j
)∣

∣

<
∣

∣log
(

1 + α−2
)

− log
(

1 + α−2p
)∣

∣+
∣

∣log
(

1 − α−2p−2
)∣

∣

= log
(

1 + α−2
)

− log
(

1 + α−2p
)

− log
(

1 − α−2p−2
)

< log
(

1 + α−2
)

< log α.

If m is even,

|Lm| <
∣

∣log
(

1 + α−2
)

− log
(

1 − α−4
)

− log
(

1 + α−2p
)∣

∣

+
∑

j>p+1

∣

∣log
(

1 − (−α−2)j
)∣

∣

<
∣

∣− log
(

1 − α−2
)

− log
(

1 + α−2p
)∣

∣+
∣

∣log
(

1 − α−2p−2
)∣

∣

= − log
(

1 − α−2
)

− log
(

1 + α−2p
)

− log
(

1 − α−2p−2
)

< − log
(

1 − α−2
)

= log α.

This completes the proof.

3 Combinatorial arguments

Let G1 be the multiplicative semigroup freely generated by {Φm}m∈M inside
the set N of natural numbers and for a positive real number x let G1(x) =
G1 ∩ [1, x]. In the next section, with tools specific to complex analysis, we
will prove the following theorem.

Theorem 2. For each fixed ǫ > 0, the estimate

exp
(

c(log x)1/2 − (log x)ǫ
)

≤ #G1(x) ≤ exp
(

c
√

log x + (log x)ǫ
)

(5)

holds for all sufficiently large x.

In this section, we shall show how to use this theorem and the results of
the previous section to complete the proof of our main result, Theorem 1.
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It suffices to deal with the upper bound on #GF (x), since the lower bound
is an immediate consequence of Theorem 2 and the fact that each Φm for
m ∈ M is a Fibonacci integer.

Let x be large and assume that

N =
∏

i∈I

Φni

∏

j∈J

Φ−1
mj

≤ x

is an integer. We need to bound from above the number of such possible
N ’s. For each m ∈ M, let l(m) = Ω(Ψm) be the number of primitive prime
factors of Φm counted with multiplicity. Let f be an injection from the
multiset of prime factors of

∏

j∈J

Ψmj

into the multiset {ni}i∈I as guaranteed by Lemma 1. For j ∈ J , let pj,1 ≥
pj,2 ≥ · · · ≥ pj,l(mj) be the multiset of prime factors of Ψmj , and for 1 ≤ l ≤
l(mj), let nj,l = f(pj,l), so that nj,l = p

kj,l

j,l mj for some positive integer kj,l.
Thus, by a change in notation, we wish to count the number of numbers of
the form

N =





∏

j∈J

1

Φmj

l(mj )
∏

l=1

Φnj,l





∏

i∈I

Φni ≤ x. (6)

(Note that numbers N in (6) are not necessarily integers since if some Φmj

has a non-primitive prime factor, we have not necessarily arranged for it to
be cancelled with some corresponding prime among the Φn’s, see Remark 1.)
We thus have

#GF (x) ≤
∑

w

#G1(x/w), (7)

where w ranges over rationals of the form of the parenthetical double product
in (6).

Fix some j, l and look at m := mj and n := nj,l = pkm, where p = pj,l

is a primitive prime factor of Φm and k ≥ 1. By Lemma 2, we have

Φn

Φm
≥ αφ(n)−φ(m)−2. (8)

We claim that

φ(n) − φ(m) − 2 ≥ 1

2
φ(n). (9)

Indeed, if p = 2, then m = 3 and k ≥ 3, so that

φ(n) − φ(m) − 2 =
1

3
n − 4 ≥ 1

6
n =

1

2
φ(n).
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If p = 3, then m = 4 and k ≥ 2, so that

φ(n) − φ(m) − 2 =
1

3
n − 4 ≥ 2

9
n =

2

3
φ(n).

In the remaining cases, we have p ≥ 5 and φ(m) ≥ 4, so that

φ(n) − φ(m) − 2 ≥ φ(pk)φ(m) − 3

2
φ(m) ≥ 5

8
φ(pk)φ(m) =

5

8
φ(n).

In each case we have (9).
It follows from (6), (8), and (9) that

∑

j∈J

l(mj )
∑

l=1

φ(nj,l) ≤
2

log α
log x,

and so using the minimal order of φ, we have

∑

j∈J

l(mj)
∑

l=1

nj,l ≤ K, (10)

where K = ⌊κ log x log log log x⌋ and κ is an absolute computable constant.

Since nj,l = p
kj,l

j,l mj , we also have each pj,1mj ≤ K. So, the inequality

Φmj

mj
≤ Ψmj ≤ p

l(mj)
j,1

and Lemma 2 imply that l(mj) ≫ mj/(log log x log log log x). Thus,

l(mj) ≥
mj

(log log x)2
(11)

for sufficiently large x, each j ∈ J , and all J as above.
Let L = (log x)1/6. We say a multiset {nj,l} is good if for each j there are

at most L distinct primes pj,l with exponents kj,l at least 2. We say {nj,l} is
bad if for each j, there are more than L distinct primes pj,l with exponents
kj,l at least 2. Each multiset in our problem can be partitioned into a good
multiset and a bad multiset. With T,U,M positive integers, let NT be the
set of good multisets with T distinct mj’s and let NU,M be the set of bad
multisets with U distinct mj’s, where the sum of the distinct mj ’s is M . Let
WT denote the set of rationals w in [1, x] of the form

w =
∏

j∈J

1

Φmj

l(mj)
∏

l=1

Φnj,l
,

9



where the multiset {nj,l} is in NT and let wT be the least member of WT ,
with wT = 1 if WT is empty. Similarly define WU,M and wU,M for multisets
in NU,M . We have from (7) that

#GF (x) ≤
∑

T,U,M

∑

w∈WT
w′∈WU,M

#G1

( x

ww′

)

≤
∑

T,U,M

#G1

(

x

wT wU,M

)

NT NU,M ,

(12)
where T,U,M run up to K, and NT = 1 + #NT , NU,M = 1 + #NU,M .

We wish to count the number of multisets {nj,l} arising with certain
constraints. Such a multiset uniquely determines the corresponding multiset
{mj}, and so we count by first choosing this simpler multiset and then
extending to {nj,l}. The number of ways of choosing a multiset {mj} with
∑

mj ≤ K and with T distinct mj’s is at most K2T ≤ exp(3T log log x)
for x large. Given some mj, the number of corresponding multisets {nj,l}
is at most (2 log K)l(mj) ≤ exp(2mj log log x) for large x, since l(mj) <
mj and the number of choices for an exponent kj,l for the prime pj,l is at
most log K/ log pj,l < 2 log K. In the case where we know that the number
of distinct primes pj,l which have exponents at least 2 is at most L, the
number of ways of choosing these distinct primes is at most KL. Fixing
one such prime p, the number of ways of choosing exponents for all of its
copies is at most K2 log K for large x. Indeed, with Z = ⌊2 log K⌋, we are
counting integer vectors (v1, . . . , vZ) where vk is the number of copies of p
with exponent k. If there are s copies of p in all, then each vk ≤ s. So, there
are at most (s + 1)Z choices, and it remains to note that since s ≤ K/2, the
above quantity is smaller than K2 log K for large values of x. So, the total
number of ways to choose these L distinct primes and exponents for them
and their copies is at most KL+2L log K ≤ exp(3L(log log x)2). We conclude
that

NT NU,M ≤ exp
(

3(T + U + M + L)(log log x)2
)

. (13)

Thus, to use (12), we wish to have upper bounds for T,U,M and lower
bounds for the numbers wT and wU,M . We will see that these tasks are
related. Suppose wT arises from the multiset pair {mj}, {nj,l}. Without
loss of generality, we may assume that m1, . . . ,mT are distinct. Since each
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pj,l ≥ mj − 1 and mj ≥ 3, we have by (11)

∑

j∈J

l(mj)
∑

l=1

nj,l ≥
T
∑

j=1

l(mj)
∑

l=1

pj,lmj ≥
T
∑

j=1

l(mj)(mj − 1)mj

≥ 1

(log log x)2

T+2
∑

j=3

j2(j − 1) ≥ 1/4

(log log x)2
T 4.

We conclude from Lemma 2, (9), (10) and the minimal order of φ that

wT ≥ exp

(

T 4

(log log x)3

)

(14)

for all large x.
We achieve two lower bounds for wU,M as follows. For {nj,l} in NU,M ,

with corresponding multiset {mj}, we assume that m1, . . . ,mU are distinct.
For each j ≤ U there are more than L distinct primes pj,l with exponent at
least 2 in nj,l. Each of these primes satisfies pj,l ≡ 0,±1 (mod mj), so that
∑

l p
2
j,l ≫ L3m2

j and
∑∑

nj,l ≫ L3
∑

m3
j . As above, we deduce that

wU,M ≥ exp

(

L3
∑

m3
j

log log x

)

(15)

for all large x. In addition, the primes associated with mj are all different
from the primes associated with mj′ when mj 6= mj′ , so there are more than
UL distinct primes pj,l with exponents at least 2 among the various nj,l’s.
The sum of their squares is at least of order U3L3, and since each mj > L
(using l(mj) > L), we have

∑∑

nj,l ≫ U3L4. We thus deduce that

wU,M ≥ exp

(

U3L4

log log x

)

(16)

for all large x. By Hölder’s inequality, we have

M =

U
∑

j=1

mj ≤





U
∑

j=1

m3
j





1/3

U2/3,

so that from (16) and then (15), we obtain

U ≤ (log wU,M )1/3

L4/3
(log log x)1/3, M ≤ (log wU,M)5/9

L17/9
(log log x)5/9 (17)

11



for all large x.
Note that for 1 ≤ w ≤ x,

(

log
x

w

)1/2
= (log x)1/2

(

1 − log w

log x

)1/2

≤ (log x)1/2

(

1 − log w

2 log x

)

= (log x)1/2 − log w

2(log x)1/2
.

Thus, from Theorem 2, we have

#G1

(

x

wT wU,M

)

≤ exp

(

c(log x)1/2 − c log(wT wU,M )

2(log x)1/2
+ (log x)ǫ

)

for all large x. With (12) we thus get,

#GF (x)

exp
(

c(log x)1/2 + (log x)ǫ
) ≤

∑

T,U,M

exp

(

−c log(wT wU,M )

2(log x)1/2

)

NT NU,M .

(18)
Since the sum in (18) has at most (K + 1)3 terms, it suffices to show that
each term is at most exp((log x)1/6+ǫ/2). Suppose 2/3 < a ≤ 1 and we have
shown that all of the terms in (18) with wT wU,M > exp((log x)a(log log x)5)
are negligible. (We definitely have this for a = 1 since no term satisfies this
inequality.) Then (14) gives T ≤ (log x)a/4(log log x)2 and (17) gives both
U ≤ (log x)a/3−2/9(log log x)2 and M < (log x)5a/9−17/54(log log x)4. Note
that a/3 − 2/9 < 5a/9 − 17/54 < a/4, so from (13),

NT NU,M ≤ exp
(

4(log x)a/4(log log x)4
)

.

Since a/4+1/2 > 2/3, we thus may replace a with a/4+1/2 in the argument,
since those terms with wT wU,M > exp((log x)a/4+1/2(log log x)5) are now
seen to be negligible in (18) because a/4 < a − 1/2. In a finite number of
steps, we reach a value of a with 2/3 < a < 2/3 + ǫ, and then all remaining
terms in (18) are smaller than exp((log x)1/6+ǫ/2). This completes the proof
of Theorem 1.

Remark 4. To improve on the exponent 1/6 in Theorem 1 it would seem
that a finer knowledge of the prime factors of the numbers Φm would be
needed. It seems reasonable that for all large m there is a prime factor
of Φm that is larger than any fixed power of m, and if this is the case,
the exponent 1/6 can be replaced with 0. Assuming a strong form of the
abc conjecture, it follows that for each fixed ǫ > 0 the number Φm has a
squarefree divisor larger than Φ1−ǫ

m for all sufficiently large m (see [7]). Using
this, our argument would give exponent 1/8 in place of 1/6 in Theorem 1.
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4 Analytic arguments

In the previous section, we reduced the problem to counting the number of
positive integers in [1, x] that belong to the semigroup G1 freely generated
by {Φm}m∈M. We need to prove that this number satisfies the estimate
given by Theorem 2.

Note first that the Dirichlet series associated with G1 is given by

D(z) :=
∑

n∈G1

n−z =
∏

m∈M

(1 − Φ−z
m )−1.

In view of the exponential growth of Φm, the series D(z) converges for
ℜ(z) > 0. Now we apply the following well-known variant of Perron’s for-
mula (see, e.g., [4]):

G(x) :=
∑

n≤x
n∈G1

(

1 − n

x

)

=
1

2πi

∫ r+i∞

r−i∞

D(z)xz

z(z + 1)
dz (19)

for any r > 0. It will later turn out to be advantageous to work with this
variant rather than Perron’s formula itself. The integral in (19) is estimated
by means of the saddle-point method. In order to choose r appropriately,
we have to study the behavior of D(z) as z → 0. We have

log D(z) = −
∑

m∈M

log
(

1 − Φ−z
m

)

= −
∑

m∈M

log (1 − exp(−(log Φm)z)) .

(20)
Now we apply the Mellin transform to this harmonic sum; the Mellin trans-
form of − log(1−e−z) is given by Γ(s)ζ(s+1), which implies that the Mellin
transform of log D(z) is Γ(s)ζ(s + 1)C(s), where

C(s) =
∑

m∈M

(log Φm)−s.

Next we need information on the analytic behavior of the Dirichlet series
C(s), which is provided in the following lemma:

Lemma 3. The Dirichlet series C(s) satisfies

C(s) = (log α)−s
∑

m≥1

φ(m)−s + A(s),

where A(s) is analytic on ℜ(s) > 0 and satisfies A(s) = O(|s|) for ǫ ≤
ℜ(s) ≤ ǫ−1, where the implied constant only depends on ǫ.
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Proof. Write Lm = log Φm − φ(m) log α as in the proof of Lemma 2, and
recall that

|Lm| ≤ log α

for arbitrary m > 1. Thus, we have

A(s) = C(s) − (log α)−s
∑

m≥1

φ(m)−s

= −(log α)−s(2 + 2−s + 4−s) +
∑

m∈M

(

(log Φm)−s − (log α)−sφ(m)−s
)

.

The first part is analytic and bounded in the indicated region, so it remains
to consider the sum over M, which we denote A0(s). We have

A0(s) = (log α)−s
∑

m∈M

φ(m)−s

(

(

1 +
Lm

φ(m) log α

)−s

− 1

)

,

so that

|A0(s)| ≪ |(log α)−s|









∑

m∈M
φ(m)<|s|

|φ(m)−s| +
∑

m∈M
φ(m)≥|s|

|φ(m)−s| · |sLm|
φ(m) log α









≤ |(log α)−s|









∑

m∈M
φ(m)<|s|

φ(m)−ǫ + |s|
∑

m∈M
φ(m)≥|s|

φ(m)−1−ǫ









≪ |s|.
This shows that the sum converges absolutely and uniformly on compact
subsets of the half-plane ℜ(s) > 0, and so we have that A0(s), and hence
A(s), is analytic on this half-plane. This completes the proof of the lemma.

The Dirichlet series
∑

m≥1 φ(m)−s was studied, for instance, in [2]. Since
φ(m) is multiplicative, we have the Euler product

∑

m≥1

φ(m)−s =
∏

p

∑

α≥0

φ(pα)−s =
∏

p

(

1 +
1

(p − 1)s(1 − p−s)

)

=
∏

p

(1 − p−s)−1 ·
∏

p

(

1 + (p − 1)−s − p−s
)

= ζ(s) ·
∏

p

(

1 + (p − 1)−s − p−s
)

.
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The second factor converges for ℜ(s) = σ ≥ ǫ > 0, and it is easy to show
that it grows subexponentially as |ℑ(s)| → ∞ in this region. Indeed, noting
that (1 − 1/p)−s = 1 + O(|s|p−1) if p > |s|, we find

log
∏

p

(

1 + (p − 1)−s − p−s
)

=
∑

p

log
(

1 + (p − 1)−s − p−s
)

=
∑

p≤|s|

log
(

1 + (p − 1)−s − p−s
)

+
∑

p>|s|

log
(

1 − p−s
(

1 − (1 − 1/p)−s
))

=
∑

p≤|s|

log
(

1 + O(p−σ)
)

+
∑

p>|s|

log
(

1 + O(|s|p−σ−1)
)

≪
∑

p≤|s|

p−σ + |s|
∑

p>|s|

p−σ−1 ≪ |s|1−σ ≪ |s|1−ǫ.

Since |Γ(s)| decreases exponentially as |ℑ(s)| → ∞, this is therefore also
the case for Γ(s)ζ(s + 1)C(s), which allows us to apply the Mellin inversion
formula: we have

log D(r) =
1

2πi

∫ 2+i∞

2−i∞
Γ(s)ζ(s + 1)C(s)r−s ds.

If we shift the path of integration to ℜ(s) = ǫ and pick up the residue at
s = 1 (see [3] for details), we obtain

log D(r) =
A

r
+ O(r−ǫ),

where the constant A is given by

Γ(1)ζ(2)

log α
·
∏

p

(

1 + (p − 1)−1 − p−1
)

=
ζ(2)

log α

∏

p

p2 − p + 1

p(p − 1)

=
ζ(2)

log α

∏

p

1 − p−6

(1 − p−2)(1 − p−3)
=

ζ(2)2ζ(3)

ζ(6) log α
.

By similar arguments, we find that

d

dz
log D(z) = −

∑

m∈M

log Φm

Φz
m − 1

has Mellin transform −Γ(s)ζ(s)C(s − 1), which yields

d

dz
log D(z)

∣

∣

∣

z=r
= −A

r2
+ O(r−1−ǫ),
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and in the same manner

d2

dz2
log D(z)

∣

∣

∣

z=r
=

2A

r3
+ O(r−2−ǫ).

Finally, we have, if z = r + it,

∣

∣

∣

∣

d3

dz3
log D(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

m∈M

(log Φm)3Φz
m(Φz

m + 1)

(Φz
m − 1)3

∣

∣

∣

∣

∣

≤
∑

m∈M

(log Φm)3Φr
m(Φr

m + 1)

(Φr
m − 1)3

= O(r−4),

uniformly in t. Now we can expand log D(z) into the series:

log D(r) − it

(

A

r2
+ O(r−1−ǫ)

)

− t2

2

(

2A

r3
+ O(r−2−ǫ)

)

+ O

( |t|3
r4

)

.

If we restrict ourselves to the central part |t| ≤ T = r7/5, then this gives us

log D(z) = log D(r) − iAt

r2
− At2

r3
+ O(r1/5),

when 0 < r < 1. Using

1

z
=

1

r

(

1 + O
( |t|

r

)

)

,
1

z + 1
=

1

r + 1
(1 + O(|t|)) = 1 + O(r),

we consequently have

D(z)xz

z(z + 1)
=

D(r)xr

r
exp

(

− iAt

r2
− At2

r3
+ it log x + O(r1/5)

)

.

Now choose r in such a way that the linear terms in the exponent cancel,
i.e., r =

√

A/ log x. Then the central part in the integral in (19) is

1

2πi

∫ r+iT

r−iT

D(z)xz

z(z + 1)
dz =

D(r)xr

r
· 1

2π

∫ T

−T
exp

(

−At2

r3

)

(

1 + O(r1/5)
)

dt.

Completing the integral on the right to the entire interval (−∞,∞) only
yields an exponentially small error term, hence we have

1

2πi

∫ r+iT

r−iT

D(z)xz

z(z + 1)
dz =

D(r)xr

r
· 1

2
√

πA
r3/2

(

1 + O(r1/5)
)

=
D(r)xr√r

2
√

πA

(

1 + O(r1/5)
)

.
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It remains to estimate the part with |t| ≥ r7/5 in the integral in (19).
The part |t| ≥ r−1 can be trivially estimated, since |D(z)| ≤ |D(r)|:

∣

∣

∣

∣

1

2πi

∫ r+i∞

r+ir−1

D(z)xz

z(z + 1)
dz

∣

∣

∣

∣

≤ D(r)xr · 1

2π

∫ r+i∞

r+ir−1

1

|z(z + 1)| dz

≪ rD(r)xr,

and likewise for t ≤ −r−1. Here it is essential that we were using the
modified version of Perron’s formula to obtain a convergent integral.

For the part r7/5 ≤ |t| ≤ r−1, we need another estimate for D(z).

Lemma 4. Write z = r + it, and suppose that r7/5 ≤ |t| ≤ r−1. Then we
have the estimate

log D(r) −ℜ(log D(z)) ≫ r−1/5

uniformly for 0 < r ≤ 1/3.

Proof. First of all, we reduce the task to an estimate for certain exponential
sums. We have

log D(z) = −
∑

m∈M

log
(

1 − Φ−z
m

)

=
∑

m∈M

∞
∑

k=1

1

k
Φ−kz

m

=
∑

m∈M

∞
∑

k=1

1

k
Φ−kr

m (cos(kt log Φm) − i sin(kt log Φm)) .

Hence,

log D(r) −ℜ(log D(z)) =
∑

m∈M

∞
∑

k=1

1

k
Φ−kr

m (1 − cos(kt log Φm))

≥
∑

m∈M

Φ−r
m (1 − cos(t log Φm)) .

By Lemma 2, Φm < αφ(m)+1 ≤ αm for m ∈ M, which implies Φ−r
m ≥ 1/α

for m ≤ r−1, m ∈ M. So we obtain the following estimate:

log D(r) −ℜ(log D(z)) ≥ α−1
∑

m≤r−1

(1 − cos(t log Φm)) ,

which allows us to restrict our attention to a somewhat simpler sum. We
distinguish several cases.
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If |t| ≤ r, we then have

|t log Φm| ≤ |t|m log α ≤ rm log α ≤ log α <
π

2

for m ≤ r−1 and thus 1 − cos(t log Φm) ≫ t2(log Φm)2. Hence, we obtain

log D(r) −ℜ(log D(z)) ≫ t2
∑

m≤r−1

(log Φm)2 ≫ t2
∑

m≤r−1

φ(m)2.

Now an elementary argument shows that

∑

m≤M

φ(m)2 ≍ M3,

so that using |t| ≥ r7/5, we have

log D(r) −ℜ(log D(z)) ≫ t2r−3 ≥ r−1/5.

If r ≤ |t| ≤ r1/5, we can apply the same argument to obtain

log D(r) −ℜ(log D(z)) ≥ α−1
∑

m≤r−1

(1 − cos(t log Φm))

≥ α−1
∑

m≤|t|−1

(1 − cos(t log Φm))

≫ t2
∑

m≤|t|−1

(log Φm)2 ≫ t2 · |t|−3 ≫ r−1/5.

For |t| ≥ r1/5, we need different arguments. Write X = r−1. Clearly,

∑

m≤X

(1 − cos(t log Φm)) ≥
∑

m∈N

(1 − cos(t log Φm))

for any set N of integers in [1,X]. We focus on the following two cases:

I. Take the set N1 that consists of all numbers p and 2p where p is a prime
in the interval [X4 , X

2 ]. We have

log(Φp) = log Fp = log

(

αp − βp

α − β

)

= p log α − log(α − β) + O
(

α−X/2
)

,

using β/α = −α−2, and

log(Φ2p) = log(F2p/Fp) = log (αp + βp) = p log α + O
(

α−X/2
)

.
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Thus,

∑

m∈N1

exp(it log Φm)

= (1 + exp(−it log(α − β)))
∑

X/4≤p≤X/2

exp(itp log α) + O
(

Xα−X/2
)

.

Since #N1 is twice the number of primes in [X/4,X/2], we now have the
estimate

∑

m∈N1

cos(t log Φm) = ℜ





∑

m∈N1

exp(it log Φm)



 ≤

∣

∣

∣

∣

∣

∣

∑

m∈N1

exp(it log Φm)

∣

∣

∣

∣

∣

∣

≤ #N1

2
|1 + exp(−it log(α − β)) | + o(1).

II. Similarly, for an odd prime q < log X, we consider the set Nq of all
integers of the form pq or 2pq, where p ∈ [X

4q , X
2q ] is prime. We have

log(Φpq) = log

(

(αpq − βpq)(α − β)

(αp − βp)(αq − βq)

)

= (pq − p) log α + log(α − β) − log (αq − βq) + O
(

α−2p
)

and

log(Φ2pq) = log

(

αpq + βpq

(αp + βp)(αq + βq)

)

= (pq − p) log α − log (αq + βq) + O
(

α−2p
)

.

Then the same reasoning as above shows that

∑

m∈Nq

cos(t log Φm)

≤ #Nq

2

∣

∣

∣

∣

1 + exp

(

it log(α − β) + it log

(

αq + βq

αq − βq

))∣

∣

∣

∣

+ o(1).

Now suppose that X is large enough that there exists a prime q in the
interval

[

6
7 log Y

2 log α
,

log Y

2 log α

]
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for all Y ≥ X1/10, which is guaranteed by the prime number theorem.
Choose q in such a way that it lies inside this interval with Y = |t|X1/3; by
our assumptions on t, we have Y ≥ X−1/5 · X1/3 > X1/10. It follows that

Y −1 ≤ α−2q ≤ Y −6/7

and thus

X−1/3 = |t|Y −1 ≤ |t|α−2q ≤ |t|Y −6/7 = |t|1/7X−2/7 ≤ X−1/7.

Using β/α = −α−2, we thus have
∣

∣

∣

∣

exp

(

it log

(

αq + βq

αq − βq

))

− 1

∣

∣

∣

∣

≫ X−1/3. (21)

Now consider the two expressions

A1 =
1

2
|1 + exp (it log (α − β))|

and

A2 =
1

2

∣

∣

∣

∣

1 + exp

(

it log (α − β) + it log

(

αq + βq

αq − βq

))∣

∣

∣

∣

.

Trivially, A1, A2 ≤ 1, and the estimate (21) now shows that either A1 ≤
1 − C1X

−2/3 or A2 ≤ 1 − C1X
−2/3 for some positive constant C1. In the

first case, we obtain the estimate
∑

m∈N1

(1 − cos(t log Φm)) ≥ #N1 − (1 − C1X
−2/3)#N1

= C1X
−2/3#N1 ≫ X1/3

log X
.

In the second case we have, analogously,

∑

m∈Nq

(1 − cos(t log Φm)) ≫ X1/3

log2 X
.

In either case, the proof of the lemma is completed.

Making use of this lemma, it is now easy to estimate the remaining part
of the integral:
∣

∣

∣

∣

∣

1

2πi

∫ r+ir−1

r+ir7/5

D(z)xz

z(z + 1)
dz

∣

∣

∣

∣

∣

≤ D(r)xr exp(−C2r
−1/5)

∫ r+ir−1

r+ir7/5

1

|z(z + 1)| dz

≪ | log r| exp(−C2r
−1/5)D(r)xr
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for some positive constant C2.
Putting all three parts of the integral together, we obtain

G(x) =
∑

n≤x
n∈G1

(

1 − n

x

)

=
D(r)xr√r

2
√

πA

(

1 + O(r1/5)
)

= exp
(

2
√

A log x + O((log x)ǫ/2)
)

for any fixed ǫ > 0. The quantity #G1(x) that we are actually interested in
can be estimated in terms of G(x) as follows: trivially,

#G1(x) ≥ G(x).

On the other hand, however, we have

#G1(x) ≤
(

1 − 1

log x

)−1
∑

n≤x log x
n∈G1

(

1 − n

x log x

)

=

(

1 − 1

log x

)−1

G(x log x) = exp
(

2
√

A log x + O((log x)ǫ/2)
)

,

which proves Theorem 2 and thus also completes the proof of Theorem 1.
We remark that it is possible to obtain an asymptotic formula for G(x) (and
also for #G1(x)) by further studying the behavior of C(s) (near s = 0).

Acknowledgments. F. L. and S. W. thank Arnold Knopfmacher for
useful discussions. Part of this work was done during a visit of F. L. and
S. W. at the School of Mathematics of the University of the Witwatersrand
in February of 2010. They thank the people of this institution for their
hospitality. During the preparation of this paper, F. L. was also supported
in part by grants SEP-CONACyT 79685 and PAPIIT 100508 and C. P.
was supported in part by NSF grant DMS-0703850. S. W. was supported
financially by the National Research Foundation of South Africa under grant
number 70560.

References

[1] Y. Bilu, G. Hanrot, and P. M. Voutier. Existence of primitive divisors of
Lucas and Lehmer numbers. J. Reine Angew. Math., 539:75–122, 2001.
With an appendix by M. Mignotte.

21



[2] H. G. Diamond. The distribution of values of Euler’s phi function. In An-
alytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis
Univ., St. Louis, Mo., 1972), pages 63–75. Amer. Math. Soc., Provi-
dence, R.I., 1973.

[3] P. Flajolet, X. Gourdon, and P. Dumas. Mellin transforms and asymp-
totics: harmonic sums. Theoret. Comput. Sci., 144(1-2):3–58, 1995. Spe-
cial volume on mathematical analysis of algorithms.

[4] P. Flajolet, P. Grabner, P. Kirschenhofer, H. Prodinger, and R. F. Tichy.
Mellin transforms and asymptotics: digital sums. Theoret. Comput. Sci.,
123(2):291–314, 1994.
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