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Leonardo of Pisa (Fibonacci) (c. 1170 – c. 1250)
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We all know the Fibonacci sequence:

1,1,2,3,5,8,13,21,34,55,89,144,233,377,510, . . . .

The n-th one is given by Binet’s formula:

Fn =
αn − βn

α− β
,

where α = (1 +
√

5)/2, β = (1−
√

5)/2 are the roots of

x2 − x− 1.

Thus, Fn ∼ αn/
√

5 and the number of Fibonacci numbers in

[1, x] is logx/ logα+O(1).
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Thus, it is quite special for a natural number to be in the

Fibonacci sequence, it is a rare event.

Say we try to “spread the wealth” by also including integers we

can build up from the Fibonacci numbers using multiplication

and division. Some examples that are not themselves Fibonacci

numbers:

4 = 22, 6 = 2 · 3, 7 =
21

3
, 8 = 23, 9 = 32, . . . .

Call such numbers Fibonacci integers. These are the numbers

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, . . . .

Perhaps we have spread the wealth too far?
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Well, not every natural number is a Fibonacci integer, the first

one missing is 37. To see that it must be missing, note that

F19 = 4181 = 37 · 113,

so that the rank of appearance of 37 (and 113) is 19. Say

37 =
Fn1 . . . Fnk
Fm1 . . . Fml

,

where n1 ≤ · · · ≤ nk and m1 ≤ · · · ≤ ml, nk 6= ml. Then nk ≥ 19.

Carmichael showed that each Fn has a primitive prime factor

(i.e., not dividing a smaller Fk) when n 6= 1,2,6,12. Thus, Fnk
has a primitive prime factor p 6= 37 (if nk = 19, then p = 113).

So p must appear in the denominator, so that ml ≥ nk and

indeed ml > nk. Then repeat with a primitive prime factor q of

ml, getting nk > ml.
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Robert D. Carmichael (1879–1967)
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Let N(x) denote the number of Fibonacci integers in [1, x]. We

have

N(10) = 10, N(100) = 88, N(1000) = 534, N(10,000) = 2681.

So, what do you think?

N(x) ≈ x/(logx)c ?

N(x) ≈ x/ exp((logx)c) ?

N(x) ≈ xc

N(x) ≈ exp((logx)c) ?

N(x) ≈ (logx)c ?
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Luca, Porubský (2003). With N(x) the number of Fibonacci

integers in [1, x], we have

N(x) = Oc (x/(logx)c)

for every positive number c.

S̆tefan Porubský
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Luca, Pomerance, Wagner (2010). With N(x) the number of

Fibonacci integers in [1, x], for each ε > 0,

exp
(
C(logx)1/2 − (logx)ε

)
< N(x) < exp

(
C(logx)1/2 + (logx)1/6+ε

)
for x sufficiently large, where C = 2ζ(2)

√
ζ(3)/(ζ(6) logα).

Stephan Wagner
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The problem of counting Fibonacci integers is made more

difficult because of allowing denominators. That is, if we just

looked at the semigroup generated by the Fibonacci numbers,

rather than integers in the group that they generate, life would

be simpler.

In fact, because of Carmichael’s primitive prime factors, if we

throw out Fn for n = 1,2,6,12, then an integer represented as

a product of Fibonacci numbers is uniquely so up to order; the

semigroup is free.

And we can now begin to see the shape of the counting

function (for this restricted problem). We’re essentially taking

partitions of integers up to logx/ logα, and the total number of

them should be of the approximate shape exp((logx)1/2).
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Ban denominators? The cyclotomic factorization:

Let Φn(x) denote the n-th cyclotomic polynomial, so that

xn − 1 =
∏
d|n

Φd(x), Φn(x) =
∏
d|n

(xd − 1)µ(n/d).

Let Φn(x, y) = yϕ(n)Φ(x/y) be the homogenization of Φn(x).

Then for n > 1,

Fn =
αn − βn

α− β
=

∏
d|n, d>1

Φd(α, β), Φn(α, β) =
∏
d|n

F
µ(n/d)
d .

Abbreviate Φn(α, β) as Φn. For n > 1, Φn is a natural number,

and in fact it is a Fibonacci integer.
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Thus, the Fibonacci integers are also generated by the

cyclotomic numbers Φn = Φn(α, β) for n > 1. The number

Φn = Φn(α, β) divides Fn, and it has all of the primitive prime

factors of Fn (with the same exponents as in Fn). So they too

(for n 6= 1,2,6,12) freely generate a semigroup that now

contains many more Fibonacci integers than the semigroup

generated by just the Fibonacci numbers themeselves.

But we do not get all of them, unfortunately.
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Consider the Fibonacci integer 23. We can see that it is one,

since

F24 = 25 · 32 · 7 · 23, so that 23 =
F24

F5
3F4F8

.

The primitive part of F24 is 23, so this will appear in Φ24.

However Φ24 = 46, and we have

23 =
Φ24

Φ3
.

Thus, denominators are still necessary.
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Let z(p) be the rank of appearance of the prime p; that is, the

least n with p | Fn. Then for any positive integer k,

Φpkz(p) = p× (the primitive part of Fpkz(p)).

And if n is not in the form pkz(p), then Φn is exactly the

primitive part of Fn.
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For example, Φ19 = F19 = 37 · 113, as we’ve seen. Thus,

Φ37k·19Φ113l·19

Φ19

is a Fibonacci integer for any choice of positive integers k, l.

It is possible to figure out the atoms for the Fibonacci integers,

namely those Fibonacci integers exceeding 1 that cannot be

factored into smaller Fibonacci integers. And with these atoms,

we would not need denominators; that is, the Fibonacci integers

would indeed be the semigroup generated by the atoms.

However, we do not have unique factorization into atoms. Call

the above example n(k, l). It is easy to see that they are atoms,

but n(1,1)n(2,2) = n(1,2)n(2,1).
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Our strategy: ignore the difficulties and plow forward.

First, let NΦ(x) be the number of integers in [1, x] representable

as a product of Φn’s (for n 6= 1,2,6,12). Clearly N(x) ≥ NΦ(x).

Since different words in these factors (order of factors not

counting) give different Fibonacci integers and

Φn ≈ αϕ(n) (in fact, αϕ(n)−1 ≤ Φn ≤ αϕ(n)+1),

we can tap into the partition philosophy mentioned earlier.

Following the analytic methods originally laid out by Hardy and

Ramanujan, we can show that

exp
(
C(logx)1/2 − (logx)ε

)
≤ NΦ(x) ≤ exp

(
C(logx)1/2 + (logx)ε

)
.
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G. H. Hardy (1877–1947) S. Ramanujan (1887–1920)
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The basic plan is to consider the generating function

D(z) =
∑
n∈Φ

n−z =
∏

n6=1,2,6,12

(1−Φ−zn )−1,

where Φ is the multiplicative semigroup generated by the Φn’s.
By a standard argument, the Mellin transform of logD(z) is
Γ(s)ζ(s+ 1)C(s), where

C(s) =
∑

n 6=1,2,6,12

(log Φn)−s.

Then C(s) differs from (logα)−s
∑
nϕ(n)−s by a function

analytic in <(s) > 0 with nice growth behavior in the vertical
aspect.

Then comes the saddle point method, and so on.

And with more work we believe we can attain an asymptotic
formula for NΦ(x).
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Could there be an elementary approach for this part of the

proof? There very well might be, since Erdős showed in 1942

that by elementary methods one can get an asymptotic formula

for p(n) (but not a determination of the constant outside of

the exponential).
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Paul Erdős (1913–1996)



Our next step in the plowing-ahead program is to estimate the

number of extra Fibonacci integers that are not words in the

Φn’s. We show, via a fairly delicate combinatorial argument,

that these extra Fibonacci integers introduce a factor of at

most

exp
(
(logx)1/6+ε

)
.

Further, we can show that if Φn has a prime factor larger than

nK for each fixed K and all sufficiently large n, depending on

K, then “1/6” may be replaced with 0.

So, what is stopping us from doing this?
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Or might I ask, who is stopping us from doing this?
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Cameron L. Stewart
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Let Pn denote the largest prime factor of Φn.

Exhibit A:

Stewart (1977): For numbers n with τ(n) ≤ (logn)1−ε,
Pn > Cεϕ(n)(logn)/τ(n).

Exhibit B:

Stewart (1977): For most numbers n,
Pn > ε(n)n(logn)2/ log logn, where ε(n)→ 0 is arbitrary.

Note that these results do not even show Pn > n1+ε for most n,
let alone for all large n.

For the defense: Obviously this is a very difficult problem; it
was hard making even this meager progress.
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It is not known that Pn/n→∞. The best result for all large n

is that the largest prime factor exceeds 2n for all n > 12, a

result of Schinzel.

Assuming a strong form of the ABC conjecture, due to Stewart

and Tenenbaum, we can at least get that Pn > n2−ε for all large

n. This then allows an improvement of “1/6” in the theorem

to “1/8”.

In our proof, we did not use very much, for example, we did

not use that for most primes p, we have z(p) > p1/2, so it is

conceivable that some improvements can be made.
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Finally: Our result for Fibonacci integers carries over too to

“Mersenne integers” (integers in the multiplicative group

generated by the Mersenne numbers 2n − 1) and other similar

constructs created from binary recurrent sequences. Only the

constant coefficient of (logx)1/2 in the exponent changes.
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These slides and a draft of our paper can be found at

www.math.dartmouth.edu/∼carlp/

Happy Birthday Cam!
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