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As we all know, functions in mathematics

are ubiquitous and indispensable.

But what was the very first function

mathematicians studied?

I would submit as a candidate, the

function s(n) of Pythagoras.
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Sum of proper divisors

Let s(n) be the sum of the proper divisors of n:

For example:

s(10) = 1 + 2 + 5 = 8,

s(11) = 1,

s(12) = 1 + 2 + 3 + 4 + 6 = 16.

(In modern notation: s(n) = σ(n)− n, where σ(n) is the sum of

all of n’s natural divisors.)
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Pythagoras noticed that s(6) = 1 + 2 + 3 = 6

If s(n) = n, we say n is perfect.

And he noticed that

s(220) = 284, s(284) = 220.

If s(n) = m, s(m) = n, and m 6= n, we say n,m are an amicable

pair and that they are amicable numbers.

So 220 and 284 are amicable numbers.
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This talk:

• The age of numerology

• The age of formulas and examples

• The age of statistics

• Is it good mathematics?
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St. Augustine: “Six is a perfect number

in itself, and not because God created all

things in six days; rather the converse is

true — God created all things in six days

because the number is perfect.”

(City of God, Part XI, Chapter 30)
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Ibn Khaldun, ca. 600 years ago in

“Muqaddimah”:

“Persons who have concerned themselves

with talismans affirm that the amicable

numbers 220 and 284 have an influence

to establish a union or close friendship

between two individuals.”
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In Genesis: To win his brother’s

friendship, Jacob gave his brother Esau

220 goats and 220 sheep.

“Our ancestor Jacob prepared his present

in a wise way. This number 220 is a hidden

secret, being one of a pair of numbers

such that the parts of it are equal to the

other one 284, and conversely. And Jacob

had this in mind; this has been tried by the

ancients in securing the love of kings and

dignitaries.”

(Abraham Azulai, ca. 400 years ago)
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In “Aim of the Wise”, attributed to Al-Majriti, ca. 1050 years

ago, it is reported that the erotic effect of amicable numbers

was successfully put to the test by:

“giving any one the smaller number 220 to eat, and himself

eating the larger number 284.”

In case you’re curious, it’s reported elsewhere that this might

involve pomegranate seeds or raisins.
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This was a very early application of number theory, far

predating public-key cryptography . . .

And here’s a more modern application:
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Available for £11.93 from mathsgear.co.uk
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The age of computation and formulas overlaps the age of

numerology:

Euclid came up with a formula for perfect numbers 2300 years

ago:

If 2p − 1 is prime, then 2p−1(2p − 1) is perfect.

Euclid gave these examples of perfect numbers:

2(22 − 1) = 2 · 3 = 6,

22(23 − 1) = 4 · 7 = 28,

24(25 − 1) = 16 · 31 = 496,

26(27 − 1) = 64 · 127 = 8128.
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Detail from Raphael’s mural The School of Athens, ca. 1510
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Euclid: If 2p − 1 is prime, then 2p−1(2p − 1) is perfect.

Probably Euclid knew that a necessary condition for 2p − 1 to

be prime is that p is prime, and that this condition is not

sufficient. We saw he gave as examples p = 2,3,5,7, but not

11, presumably because he knew that 211 − 1 is composite.

Euler proved that all even perfect numbers are given by

Euclid’s formula. We still don’t know if there are infinitely

many even perfect numbers.

What about odd perfect numbers? Well, there are none

known. And we don’t know if there are any.
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By 1640, Fermat knew that prime exponents 13, 17, 19 work,

and 23 doesn’t. In 1644, Mersenne wrote that in the range 29

to 257, the only primes that work are 31, 67, 127, and 257.

The correct list in this range is 31, 61, 89, 107, and 127, but

Mersenne was not shown to be wrong till 1883, with the

discovery of 61 by Pervouchine. Mersenne was right that

there are few primes that work in this range, and we still call

primes of the form 2p − 1 Mersenne primes.

We now know 51 Mersenne primes, the largest having exponent

82,589,933. We conjecture there are infinitely many of them.

We also conjecture there are infinitely many primes p with

2p − 1 composite!
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The modern search for Mersenne primes uses the

Lucas–Lehmer test:

Let Mp = 2p − 1. Consider the iteration s0 = 4, s1 = 14,

s2 = 194, . . . , where the term sk is the remainder when s2
k−1− 2

is divided by Mp.

Then, for p > 2, Mp is prime if and only if sp−2 = 0.

For example, with p = 5 and M5 = 31, we have

s0 = 4, s1 = 14, s2 = 8, s3 = 0,

so 31 is prime. And with p = 11, M11 = 2047,

s0 = 4, s1 = 14, s2 = 194, s3 = 788, s4 = 701, s5 = 119,

s6 = 1877, s7 = 240, s8 = 282, s9 = 1736,

so 2047 is composite.
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This test makes best sense when viewed through the lens of

finite fields. In my survey article “Primality testing: variations

on a theme of Lucas” I argued that the whole edifice of

primality testing rests squarely on a foundation laid by Lucas

144 years ago.
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Probably there are no odd perfect numbers:

It’s been known since Euler (and easy to prove) that every
perfect number n after 6 must be of the form pm2 where p is a
prime divisor of s(m2) +m2. So given m there are at most
about lnm possible choices for p. For each such choice we will
have s(pm2) a multiple of p, but for pm2 to be perfect, we need
it to be a multiple of m2 as well. In the case of even perfect
numbers, this works out from the formula, but for odd
examples it would seem that s(pm2) is about as likely to be a
multiple of m2 as a random number, namely with probability
1/m2. But we have about lnm lottery tickets p which possibly
could bring home a perfect number. However, the infinite sum
of (lnm)/m2 converges to a finite number, suggesting there are
no large examples. We already know there are no small
examples, so probably there are none.
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Nicomachus
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Nicomachus, ca. 1900 years ago:

A natural number n is abundant if s(n) > n and is deficient if

s(n) < n. These he defined in “Introductio Arithmetica” and

went on to give what I call his ‘Goldilocks Theory’:

“ In the case of too much, is produced excess, superfluity,

exaggerations and abuse; in the case of too little, is produced

wanting, defaults, privations and insufficiencies. And in the

case of those that are found between the too much and the

too little, that is in equality, is produced virtue, just measure,

propriety, beauty and things of that sort — of which the most

exemplary form is that type of number which is called perfect.”
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So, what is a modern number theorist to make of all this?

Answer: Think statistically.

In 1929 in a survey article, Erich Bessel-Hagen asked if the

asymptotic density of

{n : s(n) > n},

the set of abundant numbers, exists. For example, all the

multiples of 6 after 6 itself are abundant, so this brings 1/6 of

all numbers to the abundant category. Is there some constant

α such that the frequency of abundant numbers tends to α?
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In his 1933 Berlin doctoral thesis, Felix Behrend proved that if

the density exists, it lies between 0.241 and 0.314.

And later in 1933, building on work of I. J. Schoenberg from

1928 dealing with Euler’s function, Harold Davenport showed

the density exists.

In fact, the density Ds(u) of those n with s(n)/n > u exists, and

Ds(u) is continuous.
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Bessel-Hagen Schoenberg Davenport
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Note: The abundant numbers have density Ds(2). A number of

people have estimated this density, recently we learned it to 4

decimal places: 0.2476 . . .

(Mitsuo Kobayashi, 2011).
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The Schoenberg–Davenport approach towards the

distribution function of s(n)/n was highly analytic and technical.

Beginning around 1935, Paul Erdős began studying this

subject, looking for the grand result that would unite and

generalize the work on Euler’s function and s(n), and also to

look for an elementary method.

This culminated in the Erdős–Wintner theorem in 1939.
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The Erdős–Wintner theorem gives some easily checked

conditions for an arithmetic function to behave “like” s(n).

Erdős Wintner
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Surely the wonderful Erdős–Wintner theorem can justify the

low origins of the definition of abundant numbers!

However, their theorem does not cover some other familiar

arithmetic functions, such as ω(n), which counts the number of

distinct primes that divide n.

For example, ω(10) = 2, ω(11) = 1, ω(12) = 2. What can be

said statistically here?
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Hardy and Ramanujan had shown that ω(n)/ ln lnn→ 1 as

n→∞ through a set of asymptotic density 1. This is an

amazing and unexpected result! What should the double

natural logarithm have to do with the number of prime factors

of an integer?

The connection is in a theorem of Euler:

1

ln lnx

∑
p≤x

pprime

1

p
→ 1 as x→∞.
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Ramanujan Hardy
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But still, if the ratio ω(n)/ ln lnn is usually close to 1, what can

be said about the difference ω(n)− ln lnn?

The Erdős–Kac theorem (1939):

For each real number u, the asymptotic density of the set{
n : ω(n)− ln lnn ≤ u

√
ln lnn

}
is

1√
2π

u∫
−∞

e−t
2/2 dt.

This is the Gaussian normal distribution, the Bell curve!
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Kac
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Mark Kac (as quoted by Peter Elliott in 1980):

“If I remember correctly I first stated (as a conjecture) the

theorem on the normal distribution of the prime divisors during

a lecture in Princeton in March 1939. Fortunately for me and

possibly for Mathematics, Erdős was in the audience, and he

immediately perked up. Before the lecture was over he had

completed the proof, which I could not have done not having

been versed in the number theoretic methods, especially those

related to the sieve.”

32



Einstein: “God does not play dice with the universe.”
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Einstein: “God does not play dice with the universe.”

Erdős & Kac: Maybe so but something’s going on with the

primes.
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Einstein: “God does not play dice with the universe.”

Erdős & Kac: Maybe so but something’s going on with the

primes.

(Note: I made this up, it was a joke . . . )

35



Prime numbers, the most mysterious figures in math, D. Wells
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Let us return to the problem of amicable numbers introduced

by Pythagoras 2500 years ago.

Recall: Two numbers are amicable if the sum of the proper

divisors of one is the other and vice versa. The Pythagoras

example: 220 and 284.
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We have seen that amicable numbers have fascinated people

through the intervening centuries. Thābit ibn Kurrah found a

formula, similar to Euclid’s for even perfect numbers, that gave

a few examples. Descartes and Fermat rediscovered Thābit’s

formula, and Euler generalized it, finding 58 amicable pairs.

His generalized formula missed the second smallest pair, found

in 1866 by Paganini at the age of 16: namely 1184 and 1210.

So far we know about twelve million pairs, and probably there

are infinitely many, but we have no proof.
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Beyond individual examples and possible formulas, how are the

amicable numbers distributed within the natural numbers?

Let A(x) denote the number of integers in [1, x] that belong to

an amicable pair. We have no good lower bounds for A(x) as

x→∞, but what about an upper bound?

For perfect numbers, which might be viewed as a subset of the

amicables, we know a fair amount about upper bounds. As a

start, from Euler’s result on perfect numbers being of the form

pm2 with p a prime factor of s(m2) +m2, it follows that the

number of perfect numbers up to x is at most x1/2 lnx.
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However, it is far less clear that the amicable numbers have

density 0, that is, if A(x)/x→ 0 as x→∞.

This was not shown until Erdős did this in 1955. Currently I

have the best result in this vein:

A(x)/x ≤ e−
√

lnx

for all large values of x.
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By a calculus argument, this upper bound for A(x) can be used

to show that the sum of the reciprocals of the amicable

numbers does not diverge; that is, it is either a finite sum or a

convergent infinite sum.

Let A denote the sum of the reciprocals of all of the amicable

numbers.

Can we compute A to a few decimal places?
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Using a complete roster of all amicables to 1014 we can show

the reciprocal sum A satisfies

A > 0.0119841556 . . . .
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Using a complete roster of all amicables to 1014 we can show

the reciprocal sum A satisfies

A > 0.0119841556 . . . .

Bayless & Klyve (2011): A < 656,000,000.
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Using a complete roster of all amicables to 1014 we can show

the reciprocal sum A satisfies

A > 0.0119841556 . . . .

Bayless & Klyve (2011): A < 656,000,000.

Nguyen (2014): A < 4084
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Using a complete roster of all amicables to 1014 we can show

the reciprocal sum A satisfies

A > 0.0119841556 . . . .

Bayless & Klyve (2011): A < 656,000,000.

Nguyen (2014): A < 4084

Nguyen & Pomerance (2019): A < 215.
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Bayless Klyve Nguyen
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Back to Pythagoras:

s(n) is the sum of the proper divisors of n.

A number n is perfect if s(n) = n.

A number n is amicable if s(n) = m 6= n and s(m) = n; that is,

s(s(n)) = n, but not perfect.

So Pythagoras not only invented the first function, but also

the first dynamical system.

Let’s take a look at this system.

Many orbits end at 1, while others cycle:
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10→ 8→ 7→ 1

12→ 16→ 15→ 9→ 4→ 3→ 1

14→ 10 . . .

18→ 21→ 11→ 1

20→ 22→ 14 . . .

24→ 36→ 55→ 17→ 1

25→ 6→ 6

26→ 16 . . .

28→ 28

30→ 42→ 54→ 66→ 78→ 90→ 144→ 259→ 45→ 33→ 15 . . .
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Lenstra (1975):

There are arbitrarily long increasing “aliquot” sequences

n < s(n) < s(s(n)) < · · · < sk(n).

Erdős (1976): In fact, for each fixed k, if n < s(n), then almost

surely the sequence continues to increase for k − 1 more steps.

Nevertheless, we have the Catalan–Dickson conjecture:

Every aliquot sequence is bounded.

Here are some data in graphical form for the sequence starting

with 564. (The least starting number which is in doubt is 276.)

See aliquot.de, maintained by Wolfgang Creyaufmüller.
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564 iteration
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This has been continued for over 3000 iterations, the numbers

that would need to be factored in order to go farther are over

160 decimal digits.

There are 5 numbers below 1000 where it’s not clear what’s

happening:

276, 552, 564, 660, 966,

known as the “Lehmer five”.

The Guy & Selfridge counter conjecture:

For asymptotically all n with n < s(n), the aliquot sequence

starting with n is unbounded.

51



Sir Fred Hoyle wrote in 1962 that there were two difficult

astronomical problems faced by the ancients. One was a good

problem, the other was not so good.
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The good problem: Why do the planets wander through the

constellations in the night sky?

53



The good problem: Why do the planets wander through the

constellations in the night sky?

The not-so-good problem: Why is it that the sun and the

moon are the same apparent size?
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So, was the study of s(n) a good problem in the sense of Hoyle?

It led us to the study of arithmetic functions and their
distribution functions, opening up the entire field of
probabilistic number theory.

It led us to the Lucas–Lehmer primality test and essentially all
of modern primality testing.

The aliquot sequence problem helped to spur on the quest for
fast factoring algorithms.

The study of the distribution of special numbers did not stop
with amicables. We have studied prime numbers, and that has
led us to analytic number theory and the Riemann Hypothesis.

So, maybe having a little fun along the way was okay!
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THANK YOU
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