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As we all know, functions in mathematics

are ubiquitous and indispensable.

But what was the very first function

mathematicians studied?

I would submit as a candidate, the

function s(n) of Pythagoras.
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The sum-of-proper-divisors function

Let s(n) be the sum of the proper divisors of n:

For example:

s(10) = 1 + 2 + 5 = 8, s(11) = 1,

s(12) = 1 + 2 + 3 + 4 + 6 = 16.

In modern notation: s(n) = σ(n)− n, where σ(n) is the sum of

all of n’s natural divisors.
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Pythagoras noticed that s(6) = 1 + 2 + 3 = 6

If s(n) = n, we say n is perfect.

And he noticed that

s(220) = 284, s(284) = 220.

If s(n) = m, s(m) = n, and m 6= n, we say n,m are an amicable

pair and that they are amicable numbers.

So 220 and 284 are amicable numbers.
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Some problems

• Are there infinitely many perfect numbers?, And what can
we say about their distribution?

• Are there infinitely many amicable pairs?, And what can we
say about their distribution?

• What can we say about the s-dynamical system?

• What can we say about the distribution of the fractions
s(n)/n?

• What numbers are of the form s(n)?
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Euclid came up with a formula for perfect numbers 2300 years

ago:

If 2p − 1 is prime, then 2p−1(2p − 1) is perfect.

Euler proved that all even perfect numbers are given by

Euclid’s formula.

What about odd perfect numbers? Well, there are none known.
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Probably Euclid knew that a necessary condition for 2p − 1 to

be prime is that p is prime, and that this condition is not

sufficient. He gave as examples p = 2,3,5,7, but not 11,

presumably because he knew that 211 − 1 is composite. Here

are Euclid’s perfects:

6 = 2(22 − 1),

28 = 22(23 − 1),

496 = 24(25 − 1),

8128 = 26(27 − 1).

6



By 1640, Fermat knew that prime exponents 13, 17, 19 work,

and 23 doesn’t. In 1644, Mersenne wrote that in the range 29

to 257, the only primes that work are 31, 67, 127, and 257.

The correct list in this range is 31, 61, 89, 107, and 127, but

Mersenne was not shown to be wrong till 1883, with the

discovery of 61 by Pervouchine. Mersenne was right that

there are few primes that work in this range, and we still call

primes of the form 2p − 1 Mersenne primes.

We now know 48 Mersenne primes, the largest having exponent

57,885,161 (though they have only been exhaustively searched

for to about half this level).
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The modern search for Mersenne primes uses the

Lucas–Lehmer test:

Let Mp = 2p − 1. Consider the iteration a0 = 4, a1 = 14,

a2 = 194, . . . , where the rule is ak = a2
k−1 − 2 (mod Mp).

Then, for p > 2, Mp is prime if and only if ap−2 = 0.

This test makes best sense when viewed through the lens of

finite fields. In my survey article “Primality testing: variations

on a theme of Lucas” I argued that the whole edifice of

primality testing rests squarely on a foundation laid by Lucas

140 years ago.
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Probably there are no odd perfect numbers. Here’s why I think

so:

One might view the residue s(n) (mod n) as “random”, where

the event that n is perfect implies s(n) ≡ 0 (mod n). It’s been

known since Euler (and easy to prove) that an odd perfect

number n must be of the form pm2 where p is prime and

p | σ(m2) (= s(m2) +m2). In particular, there are at most

O(logm) possibilities for p, once m is given. Once one of these

p’s is chosen, we will have s(pm2) ≡ 0 (mod p), so there

remains at best a 1/m2 chance that pm2 will be perfect. Since∑
(logm)/m2 converges, there should be at most finitely many

odd perfect numbers. But we know there are no small ones, so

it is likely there are none.
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Let us return to the problem of amicable numbers introduced

by Pythagoras 2500 years ago.

Recall: Two numbers are amicable if the sum of the proper

divisors of one is the other and vice versa. The Pythagoras

example: 220 and 284.
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In the 9th century, Thābit ibn Qurra found a formula, similar

to Euclid’s for even perfect numbers, that gave a few

examples. Descartes and Fermat rediscovered Thābit’s

formula, and Euler generalized it, finding 58 amicable pairs.

His generalized formula missed the second smallest pair, found

in 1866 by Paganini at the age of 16: namely 1184 and 1210.

So far we know about twelve million pairs, and probably there

are infinitely many, but we have no proof.
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Beyond individual examples and possible formulas, how are the

amicable numbers distributed within the natural numbers?

Let A(x) denote the number of integers in [1, x] that belong to

an amicable pair. We have no good lower bounds for A(x) as

x→∞, but what about an upper bound?

For perfect numbers, which might be viewed as a subset of the

amicables, we know a fair amount about upper bounds. For

example, the heuristic argument mentioned earlier for odd

perfect numbers can be fashioned into a proof that the number

of perfect numbers to x is O(
√
x logx).
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There are much better upper bounds for the distribution of

perfect numbers. The champion result is due to Hornfeck and

Wirsing: the number of perfect numbers in [1, x] is at most

xo(1).

But amicables form a larger set, maybe much larger.

Erdős (1955) was the first to show A(x) = o(x), that is, the

amicable numbers have asymptotic density 0.

His insight: the smaller member of an amicable pair is

abundant (meaning s(n) > n), the larger is deficient (meaning

s(m) < m). Thus, we have an abundant number with the sum

of its proper divisors being deficient.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

14



Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.

P (1981): A(x) ≤ x/ exp((logx)1/3), x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would
give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.

P (1981): A(x) ≤ x/ exp((logx)1/3), x large.

P (2014): A(x) ≤ x/ exp((logx)1/2), x large.

Note that the last two results imply by a simple calculus
argument that the reciprocal sum of the amicable numbers is
finite.
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So, what is this sum of reciprocals? Using a complete roster of

all amicables to 1014 we can show the reciprocal sum A satisfies

A > 0.0119841556 . . . .
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So, what is this sum of reciprocals? Using a complete roster of

all amicables to 1014 we can show the reciprocal sum A satisfies

A > 0.0119841556 . . . .

Bayless & Klyve (2011): A < 656,000,000.
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So, what is this sum of reciprocals? Using a complete roster of
all amicables to 1014 we can show the reciprocal sum A satisfies

A > 0.0119841556 . . . .

Bayless & Klyve (2011): A < 656,000,000.

Nguyen (2014): A < 4084
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Back to Pythagoras:

A number n is perfect if s(n) = n.

A number n is amicable if s(s(n)) = n, but not perfect.

That is, Pythagoras not only invented the first function, but

also the first dynamical system.

Let’s take a look at this system.

Many orbits end at 1, while others cycle:
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10→ 8→ 7→ 1

12→ 16→ 15→ 9→ 4→ 3→ 1

14→ 10 . . .

18→ 21→ 11→ 1

20→ 22→ 14 . . .

24→ 36→ 55→ 17→ 1

25→ 6→ 6

26→ 16 . . .

28→ 28

30→ 42→ 54→ 66→ 78→ 90→ 144→ 259→ 45→ 33→ 15 . . .
...

80→ 106→ 56→ 64→ 63→ 41→ 1
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Some orbits are likely to be arbitrarily long. For example,

consider the orbit

25→ 6→ 6.

It can be preceded by 95:

95→ 25→ 6→ 6.

And again preceded by 445:

445→ 95→ 25→ 6→ 6.

What’s happening here: To hit an odd number m, write m− 1

as the sum of two different primes: p+ q = m− 1. Then

s(pq) = m. So, Goldbach’s conjecture implies one can back up

forever.
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Lenstra (1975):

There are arbitrarily long increasing “aliquot” sequences

n < s(n) < s(s(n)) < · · · < sk(n).

Erdős (1976): In fact, for each fixed k, if n < s(n), then

almost surely the sequence continues to increase for k − 1 more

steps.

Nevertheless, we have the Catalan–Dickson conjecture:

Every aliquot sequence is bounded.

Here are some data in graphical form for the sequence starting

with 564. (The least starting number which is in doubt is 276.)

See aliquot.de, maintained by Wolfgang Creyaufmüller.
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564 iteration
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This has been continued for over 3000 iterations; the numbers

that would need to be factored in order to go farther are over

160 decimal digits.

There are 5 orbits starting below 1000 where it’s not clear

what’s happening:

276, 552, 564, 660, 966,

known as the “Lehmer five”.

The Guy & Selfridge counter conjecture:

For asymptotically all n with n < s(n), the aliquot sequence

starting with n is unbounded.
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Recently Bosma did a statistical study of

aliquot sequences with starting numbers

below 106. About one-third of the

even starters are still open and running

beyond 1099. Strong evidence for Guy–

Selfridge?
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One can also ask about cycles in the s-dynamical system

beyond the fixed points (perfect numbers) and 2-cycles

(amicable pairs). There are about 12 million cycles known,

with all but a few being 2-cycles, and most of the rest being

1-cycles and 4-cycles. There are no known 3-cycles, and the

longest known cycle has length 28.

Say a number is sociable if it is in some cycle. Do the sociable

numbers have density 0? The Erdős result on increasing

aliquot sequences shows this if one restricts to cycles of

bounded length. Recently, Kobayashi, Pollack, & P showed

that apart possibly from sociable numbers that are odd and

abundant, they have density 0. Further, we computed that the

density of odd abundant numbers, whether or not they are

sociable, is about 0.002.
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Earlier we mentioned abundant numbers (s(n) > n) and

deficient numbers (s(n) < n). These terms were defined by

Nicomachus in the 1st century. More generally, one can ask

about

{n : s(n) > un}

for each nonnegative real number u. Does this set have an

asymptotic density? If so, how does it vary as u varies?

The question was first posed for u = 1 by Erich Bessel-Hagen

in 1929.
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In his 1933 Berlin doctoral thesis, Felix Behrend proved that if

the density exists, it lies between 0.241 and 0.314.

And later in 1933, building on work of I. J. Schoenberg from

1928 dealing with Euler’s function, Harold Davenport showed

the density exists.

In fact, the density D(u) of those n with s(n)/n > u exists, and

D(u) is continuous.
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Bessel-Hagen Schoenberg Davenport
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A number of people have estimated D(1), the density of the

abundant numbers; recently we learned it to 4 decimal places:

0.2476 . . .

(Mitsuo Kobayashi, 2011).
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The Schoenberg–Davenport approach towards the

distribution function of s(n)/n was highly analytic and technical.

Beginning around 1935, Paul Erdős began studying this

subject, looking for the great theorem that would unite and

generalize the work on Euler’s function and s, and also to look

for an elementary method.

This culminated in the Erdős–Wintner theorem in 1939 (with

echoes from Kolmogorov):
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The Erdős–Wintner theorem:

For a positive-valued multiplicative arithmetic function f , let

g(n) = log f(n). For f to have a limiting distribution it is

necessary and sufficient that

∑
|g(p)|>1

1

p
,

∑
|g(p)|≤1

g(p)2

p
,

∑
|g(p)|≤1

g(p)

p

all converge. Further, if
∑
g(p) 6=0 1/p diverges, the distribution is

continuous.

Example: f(n) = σ(n)/n, so that g(p) = log(1 + 1
p) < 1

p.
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Erdős Wintner
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But what of other familiar arithmetic functions such as ω(n),

which counts the number of distinct primes that divide n?

This function is additive, so it is already playing the role of

g(n).
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However, ω(p) = 1 for all primes p, so the 2nd and 3rd series

diverge.

The solution is in how you measure. Hardy and Ramanujan

had shown that ω(n)/ log logn→ 1 as n→∞ through a set of

asymptotic density 1. There is a threshold function, so one

should be studying the difference ω(n)− log logn.
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Ramanujan Hardy
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The Erdős–Kac theorem (1939):

For each real number u, the asymptotic density of the set{
n : ω(n)− log logn ≤ u

√
log logn

}
is

1√
2π

u∫
−∞

e−t
2/2 dt.

This is the Gaussian normal distribution, the Bell curve!
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(!) Kac
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In 1973, Erdős considered the range of s(n): which integers m

are in the form s(n)? He showed that

• Almost all odd numbers are of the form s(n) (assuming a

slightly stronger form of Goldbach’s conjecture, every odd

number except 5 is in the range).

• There is a positive proportion of even numbers not in the

range.

Last year Luca and P showed that a positive proportion of

even numbers are in the range, and the same goes for any

residue class.
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This theorem, more likely the proof, may help with the

following.

Erdős, Granville, P, Spiro Conjecture: If A is a set of natural

numbers of positive lower density then s(A) has positive lower

density.

A consequence of this is a conjecture of Erdős: For each k,

but for a set of density 0, if n > s(n), the sequence

n, s(n), s2(n), . . . , sk(n) is decreasing.

As mentioned, Erdős proved the analogous result when

n < s(n).
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This year, Pollack and P gave a heuristic argument for the

density of the range of s. The heuristic is based on the

theorem that for a given positive integer a, we have, apart from

a set of density 0, that a | n if and only a | s(n). Further, the

ratio s(n)/n is usually closely determined by the small prime

factors of n. Assuming randomness otherwise, we came up

with the expression

lim
y→∞

1

log y

∑
a≤y
2 | a

1

a ea/s(a)

for the density of integers not in the range of s. This limit is

not so easy to compute, but the value of the expression at

y = 2 · 1010 is about 0.171822, while the frequency of numbers

not in the range to 1010 is about 0.168187. Maybe the density

is about 0.17?
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Sir Fred Hoyle wrote in 1962 that there were two difficult

astronomical problems faced by the ancients. One was a good

problem, the other was not so good.
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The good problem: Why do the planets wander through the

constellations in the night sky?

The not-so-good problem: Why is it that the sun and the

moon are the same apparent size?
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So, was the study of s(n) a good problem in the sense of
Hoyle?

It led us to the study of arithmetic functions and their
distribution functions, opening up the entire field of
probabilistic number theory.

It led us to the Lucas–Lehmer primality test and essentially all
of modern primality testing.

The aliquot sequence problem helped to spur on the quest for
fast factoring algorithms.

The study of the distribution of special numbers did not stop
with amicables. We have studied prime numbers, and that has
led us to analytic number theory and the Riemann Hypothesis.
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So, maybe having a little fun along the way was okay!



Thank you
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