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As we all know, functions in mathematics

are ubiquitous and indispensable.

But what was the very first function

mathematicians studied?

I would submit as a candidate, the

function s(n) of Pythagoras.
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The sum-of-proper-divisors function

Let s(n) be the sum of the proper divisors of n:

For example:

s(10) = 1 + 2 + 5 = 8,

s(11) = 1,

s(12) = 1 + 2 + 3 + 4 + 6 = 16.

In modern notation: s(n) = σ(n)− n, where σ(n) is the sum of

all of n’s natural divisors.
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Pythagoras noticed that s(6) = 1 + 2 + 3 = 6.

If s(n) = n, we say n is perfect.

And he noticed that

s(220) = 284, s(284) = 220.

If s(n) = m, s(m) = n, and m 6= n, we say n,m are an amicable

pair and that they are amicable numbers.

So 220 and 284 are amicable numbers.
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So, not only did Pythagoras give us the first function, he

suggested iterating it, giving us the first dynamical system.

Let’s take a look.

1→ 0

2→ 1→ 0

3→ 1→ 0

4→ 3→ 1→ 0

5→ 1→ 0

6→ 6→ 6 . . .
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10→ 8→ 7→ 1→ 0

12→ 16→ 15→ 9→ 4→ 3→ 1→ 0

14→ 10 . . .

18→ 21→ 11→ 1→ 0

20→ 22→ 14 . . .

24→ 36→ 55→ 17→ 1→ 0

25→ 6→ 6 . . .

26→ 16 . . .

28→ 28

30→ 42→ 54→ 66→ 78→ 90→ 144→ 259→ 45→ 33→ 15 . . .
...
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Some questions:

• Are there infinitely many perfect numbers? (There are 49

known, all of them in the Euclid–Euler form: 2p−1(2p − 1).)

• Are there infinitely many amicable pairs? (There are over

109 known.)

• Are there any 3-cycles?

• Can cycles be arbitrarily long? (The longest cycle known

has length 28.)
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• Are there infinitely many sociable numbers (i.e., numbers

involved in a cycle)?

• Do the sociable numbers have asymptotic density 0?

• Is every orbit bounded?

• Is the orbit starting with 276 bounded?



In 1888, Catalan, inspired by a question raised by Oltramare

the previous year, proposed the following “empirical theorem”:

Every orbit either terminates at 0 or reaches a perfect number.

In 1913, Dickson corrected this to: Every orbit is bounded.

This is now known as the Catalan–Dickson conjecture.

But there is also the Guy–Selfridge counter conjecture

(1975): Discarding a set of asymptotic density 0, orbits

starting from an odd number are bounded, while orbits starting

from an even number are unbounded.

7



The reasoning behind Catalan–Dickson: It just takes a single

prime to kill off the sequence, or a single sociable number. If a

sequence should diverge to infinity, it would have to dodge

these stoppers infinitely often.

The reasoning behind Guy–Selfridge: The average value for

s(n)/n for n even is larger than 1. (It is about 1.056.) So, for n

even, there is an average tendency to grow. In addition, it

should be very unusual for a sequence to switch parity when

one is at high levels. This occurs only when one hits a square

or the double of a square.
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Some of the extensive calculations in computing orbits are

summed up in these graphs taken from aliquot.de maintained

by Wolfgang Crayaufmüller.
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840 10



976950 11



980460 12



17490 13



2856 14



1578 15



276 16



Before discussing further numerical studies, it is fair to ask if

there are any relevant theorems.

Lenstra (1975):

There are arbitrarily long increasing “aliquot” sequences

n < s(n) < s(s(n)) < · · · < sk(n).

Erdős (1976): In fact, for each fixed k, if n < s(n), then

almost surely the sequence continues to increase for k − 1 more

steps.
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Erdős claimed his proof would go through for decreasing chains

(if it decreases at the first step, almost always it will continue

to decrease for k − 1 more steps), but this claim was retracted

in a later paper with Granville, P, & Spiro. (We were able to

prove it for k = 2.)

We also showed the k-steps decreasing assertion would follow

from the following conjecture: If A is a set of integers of

asymptotic density 0, then s−1(A) also has density 0.
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The set of perfect numbers have asymptotic density 0, a result

essentially due to Euler. The best we know is that the number

of them up to x is at most xo(1) as x→∞ (Hornfeck &

Wirsing 1957).

Erdős (1955): The amicable numbers have asymptotic density

zero.

P (2015): The number of amicable numbers below x is at

most x/e
√

logx, when x is large.

Kobayashi, Pollack, & P (2009): The even sociable numbers

have asymptotic density 0. The odd ones have density at most

about 0.002.
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When iterating s, already at the second level we are not looking

at all numbers, just numbers that are in the range of s.

What can we say about the set s(N)? Again there is a

bifurcation between odd and even:

Asymptotically all odd numbers are in s(N), while a positive

proportion of even numbers are missing.

These results are due to Erdős (1973).
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The case of odd numbers goes as follows: If p, q are different

primes, then s(pq) = p+ q + 1. A slightly stronger form of

Goldbach’s conjecture asserts that every even number n ≥ 8 is

the sum of two different primes, and so a corollary would be

that every odd number ≥ 9 is in s(N). (In addition,

s(2k) = 2k − 1, so 1, 3, and 7 are also in s(N).) Goldbach’s

conjecture is still unproved, but we do know that those even

numbers not the sum of two different primes has asymptotic

density 0.
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The Erdős proof that a positive proportion of evens is missing

is a bit trickier. It can be shown that but for a set of n of

asymptotic density 0, we have σ(n) divisible by every prime

power up to (log logn)1−ε. In particular, 12 | σ(n) almost

always. So s(n) ≡ −n (mod 12) almost always. If we wish to

look for s-values that are multiples of 12, almost all of them

come from numbers n that are also multiples of 12. But

s(n) ≥ 4
3n when 12 | n, so at least 1

4 of the multiples of 12 are

not in s(N).

This gives a set of at least density 1/48 missing from s(N)

(De Koninck & Luca 2007). Chen & Zhao (2011) achieved

at least density 0.06 missing.
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Luca & P (2015): The set s(N) contains a positive proportion

of even numbers. In fact, it contains a positive proportion of

any fixed residue class.

Does the set of numbers missing from s(N) have an asymptotic

density?

Pollack & P (2016): Heuristically, yes, and this density is

lim
y→∞

1

log y

∑
a≤y,2|a

1

a
e−a/s(a) ≈ 0.1718.

P & Yang (2014): To 109 the density is 0.1658.

Pollack & P (2016): To 1010 the density is 0.1682.

Mosunov (2016): To 1012 the density is 0.1712.
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Recently Bosma did a statistical study of aliquot sequences

with starting numbers below 106. About one-third of the even

starters are still open and running beyond 1099. Evidence for

Guy–Selfridge?

But: he and Kane (2010) found the geometric mean of the

ratios s(2n)/2n asymptotically; it is slightly below 0.97.

Evidence for Catalan–Dickson?

P (2016): The asymptotic geometric mean of the ratios

s(s(2n))/s(2n) is the same as for s(2n)/2n. Assuming the

conjecture of Erdős, Granville, P, & Spiro, for each fixed k,

there is a set Ak of asymptotic density 1 such that the

asymptotic geometric mean of sk(2n)/sk−1(2n) on Ak is the

same as for s(2n)/2n on all n.
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One more new result: How large is the set s−1(n)?

P (2016): For n odd, n > 1, the number of m 6= pq with

s(m) = n is O(n3/4 logn).

For n even, #s−1(n) ≤ n2/3+o(1) as n→∞.
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Last week Richard Guy wrote me about some calculations he’s

been doing. He is looking at a few even numbers close to 2256

which might be a struggle for the Guy–Selfridge conjecture. He

is choosing only those starters that do not have an “updriver”

(a divisor that predicts the sequence will contnue to increase

for a few or more than a few steps). He chose 27 numbers and

began iterating. Of these, one of them collapsed to 1. The

remaining 26 are still chugging along well beyond 100 digits.

It seems fitting, don’t you think!
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Happy Birthday Richard!
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