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As we all know, functions in mathematics

are ubiquitous and indispensable.

But what was the very first function

mathematicians studied?

I would submit as a candidate, the

function s(n) of Pythagoras.
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Sum of proper divisors

Let s(n) be the sum of the proper divisors of n:

For example:

s(10) = 1 + 2 + 5 = 8, s(11) = 1,

s(12) = 1 + 2 + 3 + 4 + 6 = 16.

In modern notation: s(n) = σ(n)− n, where σ(n) is the sum of

all of n’s natural divisors.
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Pythagoras noticed that s(6) = 1 + 2 + 3 = 6

If s(n) = n, we say n is perfect.

And he noticed that

s(220) = 284, s(284) = 220.

If s(n) = m, s(m) = n, and m 6= n, we say n,m are an amicable

pair and that they are amicable numbers.

So 220 and 284 are amicable numbers.
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This talk:

• The age of numerology

• The age of formulas and examples

• The age of statistics

• Is it good mathematics?
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St. Augustine wrote about perfect

numbers: “Six is a perfect number in

itself, and not because God created all

things in six days; rather the converse is

true — God created all things in six days

because the number is perfect.”
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Ibn Khaldun, ca. 600 years ago in

“Muqaddimah”:

“Persons who have concerned themselves

with talismans affirm that the amicable

numbers 220 and 284 have an influence

to establish a union or close friendship

between two individuals.”
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In Genesis: To win his brother’s friendship, Jacob gave his

brother Esau 220 goats and 220 sheep.

“Our ancestor Jacob prepared his present in a wise way. This

number 220 is a hidden secret, being one of a pair of numbers

such that the parts of it are equal to the other one 284, and

conversely. And Jacob had this in mind; this has been tried by

the ancients in securing the love of kings and dignitaries.”

(Abraham Azulai, ca. 400 years ago)
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In “Aim of the Wise”, attributed to Al-Majriti, ca. 1050 years

ago, it is reported that the erotic effect of amicable numbers

was successfully put to the test by:

“giving any one the smaller number 220 to eat, and himself

eating the larger number 284.”

In case you’re curious, it’s reported elsewhere that this might

involve pomegranate seeds or raisins.
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This was a very early application of number theory, far

predating public-key cryptography . . .

And here’s a more modern application:
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Available for £9 from mathsgear.co.uk
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The age of computation and formulas overlaps the age of

numerology:

Euclid came up with a formula for perfect numbers 2300 years

ago:

If 2p − 1 is prime, then 2p−1(2p − 1) is perfect.

Euler proved that all even perfect numbers are given by

Euclid’s formula.

What about odd perfect numbers? Well, there are none known.
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Detail from Raphael’s mural The School of Athens, ca. 1510
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Probably Euclid knew that a necessary condition for 2p − 1 to

be prime is that p is prime, and that this condition is not

sufficient. He gave as examples p = 2,3,5,7, but not 11,

presumably because he knew that 211 − 1 is composite. Here

are Euclid’s perfects:

2(22 − 1) = 6, 22(23 − 1) = 28, 24(25 − 1) = 496,

26(27 − 1) = 8128.
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By 1640, Fermat knew that prime exponents 13, 17, 19 work,

and 23 doesn’t. In 1644, Mersenne wrote that in the range 29

to 257, the only primes that work are 31, 67, 127, and 257.

The correct list in this range is 31, 61, 89, 107, and 127, but

Mersenne was not shown to be wrong till 1883, with the

discovery of 61 by Pervouchine. Mersenne was right that there

are few primes that work in this range, and we still call primes

of the form 2p − 1 Mersenne primes.

We now know 48 Mersenne primes, the largest having exponent

57,885,161 (though they have only been exhaustively searched

for to about half this level).
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The modern search for Mersenne primes uses the

Lucas–Lehmer test:

Let Mp = 2p − 1. Consider the iteration s0 = 4, s1 = 14,

s2 = 194, . . . , where the rule is sk = s2
k−1 − 2 (mod Mp).

Then, for p > 2, Mp is prime if and only if the sp−2 = 0.

This test makes best sense when viewed through the lens of

finite fields. In my survey article “Primality testing: variations

on a theme of Lucas” I argued that the whole edifice of

primality testing rests squarely on a foundation laid by Lucas

140 years ago.
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Probably there are no odd perfect numbers. Here’s why I think

so:

One might view the residue s(n) (mod n) as “random”, where

the event that n is perfect implies s(n) ≡ 0 (mod n). It’s been

known since Euler (and easy to prove) that an odd perfect

number n must be of the form pm2 where p is prime and

p | σ(m2) (= s(m2) +m2). In particular, there are at most

c logm possibilities for p, once m is given. Once one of these

p’s is chosen, we will have s(pm2) ≡ 0 (mod p), so there

remains at best a 1/m2 chance that pm2 will be perfect. Since∑
(c logm)/m2 converges, there should be at most finitely many

odd perfect numbers. But we know there are no small ones, so

it is likely there are none.
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Nicomachus
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Nicomachus, ca. 1900 years ago:

A natural number n is abundant if s(n) > n and is deficient if

s(n) < n. These he defined in “Introductio Arithmetica” and

went on to give what I call his ‘Goldilocks Theory’:

“ In the case of too much, is produced excess, superfluity,

exaggerations and abuse; in the case of too little, is produced

wanting, defaults, privations and insufficiencies. And in the

case of those that are found between the too much and the

too little, that is in equality, is produced virtue, just measure,

propriety, beauty and things of that sort — of which the most

exemplary form is that type of number which is called perfect.”
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So, what is a modern number theorist to make of all this?

Answer: Think statistically.

In 1929 in a survey article, Erich Bessel-Hagen asked if the

asymptotic density of

{n : s(n) > n} = {n : σ(n) > 2n},

the set of abundant numbers, exists.
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In his 1933 Berlin doctoral thesis, Felix Behrend proved that if

the density exists, it lies between 0.241 and 0.314.

And later in 1933, building on work of I. J. Schoenberg from

1928 dealing with Euler’s function, Harold Davenport showed

the density exists.

In fact, the density Dσ(u) of those n with σ(n)/n ≤ u exists,

and Dσ(u) is continuous.
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Bessel-Hagen Schoenberg Davenport
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Note: The abundant numbers have density 1−Dσ(2). A

number of people have estimated this density, recently we

learned it to 4 decimal places: 0.2476 . . .

(Mitsuo Kobayashi, 2011).
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The Schoenberg–Davenport approach towards the distribution

function of σ(n)/n was highly analytic and technical.

Beginning around 1935, Paul Erdős began studying this

subject, looking for the great theorem that would unite and

generalize the work on Euler’s function and σ, and also to look

for an elementary method.

This culminated in the Erdős–Wintner theorem in 1939:
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The Erdős–Wintner theorem:

For a positive-valued multiplicative arithmetic function f , let

g(n) = log f(n). For f to have a limiting distribution it is

necessary and sufficient that

∑
|g(p)|>1

1

p
,

∑
|g(p)|≤1

g(p)2

p
,

∑
|g(p)|≤1

g(p)

p

all converge. Further, if
∑
g(p) 6=0 1/p diverges, the distribution is

continuous.

Example: f(n) = σ(n)/n, so that g(p) = log(1 + 1
p) < 1

p.

24



Erdős Wintner

25



Surely this beautiful theorem can justify the low origins of the

definition of abundant numbers!

But what of other familiar arithmetic functions such as ω(n),

which counts the number of distinct primes that divide n?

This function is additive, so it is already playing the role of

g(n).
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However, ω(p) = 1 for all primes p, so the 2nd and 3rd series

diverge.

The solution is in how you measure. Hardy and Ramanujan had

shown that ω(n)/ log logn→ 1 as n→∞ through a set of

asymptotic density 1. There is a threshold function, so one

should be studying the difference ω(n)− log logn.
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Ramanujan Hardy
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The Erdős–Kac theorem (1939):

For each real number u, the asymptotic density of the set{
n : ω(n)− log logn ≤ u

√
log logn

}
is

1√
2π

u∫
−∞

e−t
2/2 dt.

This is the Gaussian normal distribution, the Bell curve!

29



Kac
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Mark Kac (as quoted by Elliott in 1980)

“If I remember correctly I first stated (as a conjecture) the

theorem on the normal distribution of the prime divisors during

a lecture in Princeton in March 1939. Fortunately for me and

possibly for Mathematics, Erdős was in the audience, and he

immediately perked up. Before the lecture was over he had

completed the proof, which I could not have done not having

been versed in the number theoretic methods, especially those

related to the sieve.”
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Let us return to the problem of amicable numbers introduced

by Pythagoras 2500 years ago.

Recall: Two numbers are amicable if the sum of the proper

divisors of one is the other and vice versa. The Pythagoras

example: 220 and 284.
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We have seen that amicable numbers have fascinated people

through the intervening centuries. Thābit ibn Kurrah found a

formula, similar to Euclid’s for even perfect numbers, that gave

a few examples. Descartes and Fermat rediscovered Thābit’s

formula, and Euler generalized it, finding 58 amicable pairs.

His generalized formula missed the second smallest pair, found

in 1866 by Paganini at the age of 16: namely 1184 and 1210.

So far we know about twelve million pairs, and probably there

are infinitely many, but we have no proof.
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Beyond individual examples and possible formulas, how are the

amicable numbers distributed within the natural numbers?

Let A(x) denote the number of integers in [1, x] that belong to

an amicable pair. We have no good lower bounds for A(x) as

x→∞, but what about an upper bound?

For perfect numbers, which might be viewed as a subset of the

amicables, we know a fair amount about upper bounds. First,

from Davenport’s theorem on the continuity of the distribution

function of σ(n)/n it is immediate that the perfect numbers

have asymptotic density 0.
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There are much better upper bounds for the distribution of

perfect numbers. Erdős made a fundamental contribution here,

but the champion result is due to Hornfeck and Wirsing: the

number of perfect numbers in [1, x] is at most xo(1).

But amicables form a larger set, maybe much larger.

Erdős (1955) was the first to show A(x) = o(x), that is, the

amicable numbers have asymptotic density 0.

His insight: the smaller member of an amicable pair is

abundant, the larger is deficient. Thus, we have an abundant

number with the sum of its proper divisors being deficient.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

37



Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.

P (1981): A(x) ≤ x/ exp((logx)1/3), x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would
give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.

P (1981): A(x) ≤ x/ exp((logx)1/3), x large.

P (2014): A(x) ≤ x/ exp((logx)1/2), x large.

Note that the last two results imply by a simple calculus
argument that the reciprocal sum of the amicable numbers is
finite.
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So, what is this sum of reciprocals? Using a complete roster of

all amicables to 1014 we can show the reciprocal sum A satisfies

A > 0.0119841556 . . . .
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So, what is this sum of reciprocals? Using a complete roster of

all amicables to 1014 we can show the reciprocal sum A satisfies

A > 0.0119841556 . . . .

Bayless & Klyve (2011): A < 656,000,000.

43



So, what is this sum of reciprocals? Using a complete roster of
all amicables to 1014 we can show the reciprocal sum A satisfies

A > 0.0119841556 . . . .

Bayless & Klyve (2011): A < 656,000,000.

Nguyen (2014): A < 4084
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Back to Pythagoras:

A number n is perfect if s(n) = n.

A number n is amicable if s(s(n)) = n, but not perfect.

That is, Pythagoras not only invented the first function, but

also the first dynamical system.

Let’s take a look at this system.

Many orbits end at 1, while others cycle:
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10→ 8→ 7→ 1

12→ 16→ 15→ 9→ 4→ 3→ 1

14→ 10 . . .

18→ 21→ 11→ 1

20→ 22→ 14 . . .

24→ 36→ 55→ 17→ 1

25→ 6→ 6

26→ 16 . . .

28→ 28

30→ 42→ 54→ 66→ 78→ 90→ 144→ 259→ 45→ 33→ 15 . . .
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Some orbits are likely to be arbitrarily long. For example,

consider the orbit

25→ 6→ 6.

It can be preceded by 95:

95→ 25→ 6→ 6.

And again preceded by 445:

445→ 95→ 25→ 6→ 6.

What’s happening here: To hit an odd number m, write m− 1

as the sum of two different primes: p+ q = m− 1. Then

s(pq) = m. So, Goldbach’s conjecture implies one can back up

forever.
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Lenstra (1975):

There are arbitrarily long increasing “aliquot” sequences

n < s(n) < s(s(n)) < · · · < sk(n).

Erdős (1976): In fact, for each fixed k, if n < s(n), then

almost surely the sequence continues to increase for k − 1 more

steps.

Nevertheless, we have the Catalan–Dickson conjecture:

Every aliquot sequence is bounded.

Here are some data in graphical form for the sequence starting

with 564. (The least starting number which is in doubt is 276.)

See aliquot.de, maintained by Wolfgang Creyaufmüller.
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564 iteration
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This has been continued for over 3000 iterations, the numbers

that would need to be factored in order to go farther are over

160 decimal digits.

There are 5 numbers below 1000 where it’s not clear what’s

happening:

276, 552, 564, 660, 966,

known as the “Lehmer five”.

The Guy & Selfridge counter conjecture:

For asymptotically all n with n < s(n), the aliquot sequence

starting with n is unbounded.
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One can also ask about cycles in the s-dynamical system

beyond the fixed points (perfect numbers) and 2-cycles

(amicable pairs). There are about 12 million cycles known,

with all but a few being 2-cylces, and most of the rest being

1-cycles and 4-cycles. There are no known 3-cycles, and the

longest known cycle has length 28.

Say a number is sociable if it is in some cycle. Do the sociable

numbers have density 0? Erdős showed this is the case if one

restricts to cycles of bounded length. Recently, Pollack, P, &

Kobayashi showed that sociable numbers that are not odd and

abundant have density 0. We also computed that the density of

odd abundant numbers is about 0.002. There is more work to

do!
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Sir Fred Hoyle wrote in 1962 that there were two difficult

astronomical problems faced by the ancients. One was a good

problem, the other was not so good.
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The good problem: Why do the planets wander through the

constellations in the night sky?

The not-so-good problem: Why is it that the sun and the

moon are the same apparent size?
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So, was the study of s(n) a good problem in the sense of Hoyle?

It led us to the study of arithmetic functions and their
distribution functions, opening up the entire field of
probabilistic number theory.

It led us to the Lucas–Lehmer primality test and essentially all
of modern primality testing.

The aliquot sequence problem helped to spur on the quest for
fast factoring algorithms.

The study of the distribution of special numbers did not stop
with amicables. We have studied prime numbers, and that has
led us to analytic number theory and the Riemann Hypothesis.

So, maybe having a little fun along the way was okay!
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THANK YOU
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