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ABSTRACT

Based on his earlier work on the vibrations of ‘drums with fractal boundary’, the first author has
refined M. V. Berry’s conjecture that extended from the ‘smooth’ to the ‘fractal’ case H. Weyl’s
conjecture for the asymptotics of the eigenvalues of the Laplacian on a bounded open subset of R"
(see [16]). We solve here in the one-dimensional case (that is, when n = 1) this ‘modified Weyl-Berry
conjecture’. We discover, in the process, some unexpected and intriguing connections between
spectral geometry, fractal geometry and the Riemann zeta-function. We therefore show that one can
‘hear’ (that is, recover from the spectrum) not only the Minkowski fractal dimension of the
boundary—as was established previously by the first author—but also, under the stronger assumptions
of the conjecture, its Minkowski content (a ‘fractal’ analogue of its ‘length’).

We also prove (still in dimension one) a related conjecture of the first author, as well as its
converse, which characterizes the situation when the error estimates of the aforementioned paper are
sharp.

1. Introduction

Let Q be an open set in R” (n =1), with boundary I' = 3Q. We assume that Q is
non-empty and bounded (or, more generally, of finite volume), but otherwise
arbitrary. We consider the following eigenvalue problem:

p {—Au =Au in Q, (1.1)
(P) u=0 onT, (1.2)
where A = Y7_, 3*/3x% denotes the Dirichlet Laplacian on Q.

In this general setting, the problem (P) is interpreted in the variational sense.
More precisely, the scalar A is said to be an eigenvalue of (P) if there exists u #0
in H)(Q) (the closure of C5(RQ), the spaceé of smooth functions with compact
support contained in Q, in the Sobolev space H'(Q2)) satisfying equation (1.1) in
the distributional sense. (See, for example, [23; 28, § II; 16, § 2.2].)

As is well-known, the spectrum of (P) is discrete and consists of a sequénce

(A,)7=1 of eigenvalues (with finite multiplicity) written in increasing order
according to their multiplicity:

o< sh=s..<As.., withi —>+oasr—ow
Let N(A) denote the (eigenvalué) ‘counting function’ of (P); that is, for A >0,
NRAQ)=#{r=1: A, <A} (1.3)

is the number of eigenvalues of (P) up to A, counted according to multiplicity.
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Generalizing H. Weyl’s classical theorem, G. Métivier [28] showed that

NA)=(1+0(1)p(2), asi—+x, (1.4)
where the ‘Weyl term’ @(A) is given by
e(R) = 2m) "B, |Q, A" (1.5)

Here, |A|, denotes the n-dimensional Lebesgue measure or ‘volume’ of A c R”
and %, is the volume of the unit ball in R".

It is natural to wonder whether the asymptotic expansion of N(1) admits a
second term. In the ‘smooth’ case, this was conjectured by H. Weyl [35] as
follows. If I' = 3Q is ‘sufficiently regular’, then

NA)= @A) = €, |T|,; A"V +0(A"7D7?), as A— +x, (1.6)

where €, is a positive constant depending only on n. Here, |I|,_; denotes the
(n — 1)-dimensional volume of T; for example, the length of I c R? if n =2.

An important step.on the way to Weyl’s conjecture was made by R. T. Seeley
[30, 31], and then, when n =4, by Pham The Lai [29]. Extending, in particular,
earlier work of L. Hormander [11], they showed that if T is ‘smooth’ (that is, of
class C™), then the following sharp remainder estimate holds:

NA) = @(A) + O(A®D2) a5 A— +, (1.7)

Further, V. Ja. Ivrii [13,14] has established (1.6) under an additional
assumption (roughly, that the set of ‘multiply reflected periodic geodesics in Q is
of measure zero’). Therefore, under these hypotheses, the conclusion of Weyl’s
conjecture is true. (For related results, see also R. B. Melrose’s work [26, 27]; a
synthesis of the methods of Ivrii and Melrose is provided in [12].)

What happens if the boundary is ‘non-smooth’? The physicist M. V. Berry
[1, 2}—motivated in part by the study of the scattering of waves from rough
surfaces and the study of porous media—conjectured that if I is ‘fractal’, then

N(A) = @A) — €, wH(H ; T)AH? + o(AH?),  as A— + o, (1.8)

where €, is a positive constant depending only on n and H. Here, H denotes
the Hausdorff dimension of the boundary I' and %#(H ;) the (normalized)
H-dimensional Hausdorff measure of I'. (Of course, if I' is ‘smooth’, say of class
C', then H=n —1 and (at least formally) we recover (1.6) from (1.8).) Berry [1,
Equation 2, p. 51], by analogy with the ‘smooth’ case, even stated an explicit
value for €, ;; namely,

6. = (4(47)"°T(1 + 3H)) ™", (1.9)

where I'(s) denotes the classical gamma function.

Unfortunately, Berry’s beautiful conjecture has turned out to be false. In an
important paper [6], J. Brossard and R. Carmona disproved Berry’s conjecture
and suggested that the Minkowski dimension was more appropriate than the
Hausdorff dimension to measure the ‘roughness’ of the boundary I'. In fact,
under suitable hypotheses, they obtained one- and two-sided estimates for the
second term (expressed in terms of the Minkowski dimension) in the asymptotic
expansion of the ‘partition function’ Z(f) = X7, e~*, a well-known ‘smoothing’
of the ‘counting function’ N(1). Although it is known how, via Tauberian theory,
to get the asymptotics for the second term for Z(¢) from such a result for N(1),
no known Tauberian theorem allows us to go in the other direction.
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A specific reformulation of Berry’s conjecture on N(A), called the ‘modified
Weyl-Berry conjecture’, was made by the first author in [16]. In order to state it
precisely, we first discuss the, perhaps not so well-known, concepts of Minkowski
dimension and measurability.

Let D = D(I') denote the Minkowski dimension of I'. Recall that D is the
infimum of the numbers d =0 such that the (d-dimensional) upper Minkowski
content

M*(d ;T):=lim sup e Ir,NQ|, < +, (1.10)

where T',, the e-neighbourhood of T, is the set of x ¢ R" within a distance less
than ¢ from I'; moreover, M.(d ;T), the (d-dimensional) lower Minkowski
content of T, is defined just as #*(d ; T), but by means of the lower limit rather
than the upper limit in (1.10). We say that I' is Minkowski measurable if
0<My(D ;T)=M*(D ;T)<+> and then call this common number #(D ;T),
the Minkowski content of T'. (Note that these definitions not only involve T, but
the set Q as well.)

The larger D is, the more irregular ' is. The (easy) fact that D=D(I) e
[n—1, n] since T'=0R, with Q open and non-dense in R", is proved in [16,
Corollary 3.2]. Following [16], we say that T is ‘fractal’ if D € (n — 1, n], and
‘non-fractal’ otherwise (that is, if D = n — 1, the topological dimension of I'). We
stress that no assumption of self-similarity, in the sense of [24], is made about T.

The real number D, also called ‘entropy’ or ‘box’ dimension in the literature,
was first extensively studied by G. Bouligand in [4]. For an equivalent definition
and further properties of D, see, for example, [16, § 3], especially Corollary 3.1,
and [7,8,9,18,25,34]. We refer to [3,10,15,33] for specific properties and
alternative definitions of D when n = 1, which is the case of most interest to us in
this paper.

We now recall the statement of the ‘modified Weyl—Berry (in short, MWB)
conjecture’ [16, Conjecture 5.1, § 5.2, p. 520], for the Dirichlet problem:

ConEcTURE 1 (modified Weyl-Berry conjecture). If Q has ‘fractal’ boundary T
with Minkowski dimension D € (n —1, n) and if T is ‘Minkowski measurable’,
then

N(A) = @(A) = ¢ pM(D ; T)AP? + 0(AP?), as A— +oo, (1.11)

where c, p is a positive constant depending only on n and D.

In [16, Theorem 2.1, Corollary 2.1, and Theorem 2.3, pp. 479-480 and
482-483], M. L. Lapidus has partially solved a more general form of this
conjecture by proving, in particular, that if I" is ‘fractal’ with #*(D ;T) < 4o,
then Weyl’s asymptotic law with error term holds:

N(A) = @(A) + O(AP?), as A— +x, (1.12)

(Also see [20].)

Moreover, the first author has shown by means of examples that the remainder
estimate in (1.12) is sharp in every possible ‘fractal’ (that is, Minkowski)
dimension D € (n — 1, n). (See [16, Example 5.1, pp. 512-514] when n =1, and
its generalization to n =1 [16, Example 5.1', pp. 514-515].)
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In this paper, we shall prove Conjecture 1 (the ‘MWB conjecture’) when n = 1.
(See Corollary 2.3 below.) In the process, we shall establish some unexpected and
intriguing connections with the Riemann zeta-function. Indeed, we shall show
that the constant ¢, p occurring in (1.11) is given by

c1.0=2"1"Px~2(1 - D)(- (D)), (1.13)

where { = {(s) denotes the Riemann zeta-function. (Since n=1, we have
D €(0, 1) and thus {(D) <0, so that ¢; , >0.)
In proving these results, a key step consists, for a fixed D € (0, 1), in obtaining
a necessary and sufficient condition for the Minkowski measurability of I' = 8Q in
terms of the sequence of lengths (/;);=; of the connected components (open
intervals) of the open set Q c R; namely, if (/;);-, is chosen to be non-increasing
(which is always possible since |Q|; = ¥;_; /; < +), this condition is given by
lim[;j'? =L, for some L>0. (1.14)
j—®
We also examine here the case when I' is not (necessarily) Minkowski

measurable. In particular, in [16], the following conjecture was made (see [16,
Conjecture 5.1', §5.2, p. 521)):

CoNJECTURE 1’ (sharp remainder estimates). If Q has ‘fractal’ boundary T with
Minkowski dimension D e (n—1,n) and if 0<M (D ;T)<M*(D ;T) <+,
then A~P2(@(X) — N(R)) is bounded between two positive constants for all large A.

In this paper, we not only prove Conjecture 1’ for n = 1, we show the converse
as well. (See Theorem 2.4.)

A good illustration of this result is provided by the Cantor set, studied in
Example 4.5 below. Let Q be the complement in [0, 1] of the triadic Cantor set .
Then I' = 3Q and the sequence (/;);-,; of interval lengths is given by

%a év _91-, 27> %7 5177 275 <
where there are 2°~! copies of 37%, for k =1, 2, ... . Then clearly, (1.14) does not
hold, so that I' is not Minkowski measurable. However, the hypothesis of
Conjecture 1’ holds, so that from our result in the one-dimensional case, the
two-sided estimate of Conjecture 1’ holds. In fact, we prove that the asymptotic
expansion of N(A) does not admit a second term (or, more precisely, that
A~P2(p(A) — N(A)) does not converge, as A— +©).

It is somewhat a surprise to us that the supposedly ‘trivial’ case n =1 contains
so many non-trivial results. The natural question is how much of this work
generalizes to the cases where n =2. In a subsequent paper, we shall show in fact
that Conjecture 1 is not true when n=2. It turns out that, at least for several
classes of examples, what plays the role of {(s) in the case where n =1 are
various Epstein zeta-functions and other Dirichlet series. We still conjecture that
Minkowski measurability implies the existence of a second term in the expansion
of N(X) that is proportional to A”2 However, the constant coefficient of this
term must depend on £ in a more complex way than is suggested in the
conjecture. In fact, a revised form of Conjecture 1 will be presented in this
forthcoming paper that gives the constant in terms of a limit involving the
spectral zeta-function associated with the boundary value problem (P).
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The remainder of this paper is organized as follows. In the next section, we
present more precisely some of our results. In §3, we prove, in particular,
Conjecture 1', as well as its converse, when n = 1. We also give several examples
that illustrate the pathologies that may occur (see §3.3). In §4, we prove the
‘MWB conjecture’ (Conjecture 1) when n =1 and establish in the process the
connection with the Riemann zeta-function (see §4.2). We also obtain the
aforementioned characterization of ‘Minkowski measurability’ (see §4.1).
Moreover, in § 4.3, we illustrate our results by two instructive examples.

Some of the results of this paper were announced earlier in [22].

2. Statement of the main results

Let Q be a (non-empty) open subset of R, of finite length ||, and with
boundary I' = 3Q. We write Q as the union of its connected components:

a=U1,
j=1

where the open intervals I; are pairwise disjoint and of length /. Since
1|, = Xj=1 [; <+, we can assume without loss of generality that

LhzhL=.2z[=...>0.

(The case when Q is a finite union of open intervals is of no interest here.
Further, the ‘lengths’ /; are repeated according to their ‘multiplicity’.)

Unless explicitly stated otherwise, (/;)j; will always denote the sequence
associated with Q in this manner.

Recall that the eigenvalues of the differential operator —d*/dy* on the
bounded open interval /:= (a, ) with Dirichlet boundary conditions at « and
B (u(a)=u(B)=0), are u,=(x/I)’%k?*, for k=1,2,..., where I=8—a. Let
N(A ; I) denote the associated eigenvalue counting function. Then if [v] denotes
the integer part of v, it follows that for A >0,

N(A ;D) =#{k=>1: k<I(VA)/x}=[(VA)/n]. 2.1)

Consequently, we deduce from (2.1) and, for example, [16, Lemma 4.2, p.
493], that

. N(A)=2> N(A;L)= > [lx], where x:=a""A%, 2.2)
j=1 j=1

(Recall that N(4) denotes the eigenvalue ‘counting function’ associated with Q.)

Let £(s) denote the Riemann zeta-function (see, for example, [32]). Recall that
E(s)=X;=1j* for Res >1 and that {(s) has a meromorphic extension to all of C
with a single, simple pole (with residue 1) located at the point s = 1. In particular,
the meromorphic continuation of £ to the region Re s >0 is given by

E(s) = s_iT + f:w (] —t~*)dt, for Res>0; (2.3)

indeed, this identity is obvious for Re s > 1 and the integral in the right-hand side
of (2.3) is analytic for Re s > 0.
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2.1. Existence of a second term: resolution of Conjecture 1
We can now state our first result:

THEOREM 2.1. (a) Let (1;);-, be an arbitrary, positive, non-increasing sequence
such that

L~Lj™"P, asj—c, for D €(0,1) and L>0. (2.4)
Then .
> [x]= (Z li)x + E(D)LPx® + 0(xP), asx— +co. (2.5)
j=1 j=1

(b) In particular, if the sequence (};)i=1 associated with Q satisfies hypothesis
(2.4) and if (A):= n~"|Q|, A}, we deduce from (2.2) and (2.5) that

N(A) = @(A) + &~ PE(D)LPAP? + 0(AP?), as A— +. (2.6)

Recall that in (2.4), the condition /; ~ Lj~"? means that [;j'? — L, as j— .

The following theorem provides, in particular, a characterization (of independ-
ent interest) of the case when I'=9Q is Minkowski measurable with D =
D(T) e (0, 1).

THEOREM 2.2 (characterization of Minkowski measurability). The sequence
()j=1 associated with Q satisfies hypothesis (2.4) if and only if T=09Q is
Minkowski measurable and has Minkowski dimension D € (0, 1) (that is, if and
only if the hypotheses of the ‘modified Weyl—Berry conjecture’ are satisfied). In
addition, in this case, we have
1-D

2
./tt(D;F)=1_D

LP. 2.7)

By combining Theorems 2.1(b) and 2.2, we can now establish Conjecture 1 [16,
Conjecture 5.1, p. 520] in the case when n =1. We also obtain the exact value of
the constant ¢, p which is expressed in terms of {(D).

CoroLLARY 2.3 (resolution of the modified Weyl-Berry conjecture in the
one-dimensional case). Let Q be a bounded open subset of R such that T = 3Q is
Minkowski measurable and of Minkowski dimension D € (0, 1). Then

N(A) = @(X) — ¢, pM(D ; T)AP? + 0(A"?), as A— +, (2.8)
where (1) =" |Q|, A and the positive constant ¢1.p is given by
¢1.p:=2"U"Dg=D(1 - D)(-&(D)). (2.9)

2.2. Sharp remainder estimates: resolution of Conjecture 1’

Let {v}:=v—[v] in [0, 1) denote the fractional part of the real number v. If
f(x), g(x) are real-valued functions defined on a subset of R, we write
‘f(x)=g(x) as x—a’ if there are positive constants c;, ¢; such that ¢,f(x) <
g(x) <c,f(x) for all x in some neighbourhood of a and in the domains of both f
and g. Here, a e R U {£x}.

The following result not only settles Conjecture 1’ in the case where n =1, but
the converse and more.
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THEOREM 2.4. Let Q be a bounded open subset of R, let (1;);-, be the associated
sequence, and let. D € (0, 1). The following assertions are equivalent:
(i) §;=j""Pas j—oo;
(ii) F 3Q has Minkowski dimension D and

0< My (D ;T)< M*D ;T)< +;

(iii) Ly {lx} =x? as x> +oo;
(iv) (p(A) N(A)=<AP? gs A— +oo,

Note that (2.2) gives the identity @(A) — N(A) = L7, {lx} with x = n7'A%, so
that the equivalence (iii) & (iv) in Theorem 2.4 is immediate.

We shall also provide additional results connected with the one-sided estimates
of [16, Theorem 2.1 and Corollary 2.1, pp. 479-480] (see § 3.3). In particular, we
shall show that when n =1 and D € (0, 1), the error estimate (1.12) is equivalent
to the hypothesis #*(D ;T) < +. (See Theorem 3.10.)

Note that the assumption in our results that Q is bounded may be relaxed to
|Q[; < +0o.

Since, when n =1, the Sobolev space Hy(Q)c H'(Q) is composed of con-
tinuous functions (see, for example, [S, Theorem VIIL.7, p. 129]), the Dirichlet
boundary condition ‘u =0 on I in equation (1.1) can be understood pointwise
here.

We can of course deduce (by an abelian argument) from the results of §2.2
two-sided estimates for the asymptotics of the ‘partition function’

-] <00
Zit)=>, e""‘=f e MdN(A);
r=1 0

namely, (iv) of Theorem 2.4 yields
Y(t)—Z(@)=t™P?, ast—0",

where ¥(¢):=(47)7%|Q|, t~%. Similarly, we deduce from the results of §2.1 a
second term for the asymptotics of Z(¢); namely, equation (2.8) yields

Z(@)=vy(t)—c, pT (1 +3D)M(D ;T)t™ P2+ 0(t=°?), ast—0",

with ¢, p given by (2.9). These results extend those of [6] in the case where
n=1.

It is natural to wonder whether Theorem 2.1 admits a converse. After this work
was completed, M. L. Lapidus and H. Maier [21] addressed this question and
connected it with the Riemann hypothesis. More precisely, they have shown that
a somewhat weaker form of the converse of Conjecture 1 when n=1 (equi-
valently, of Corollary 2.3 or of Theorem 2.1 above) is true for a given value of
D € (0, 1) if and only if {= {(s) does not have a zero on the corresponding
vertical line Res = D. In particular, it is not true when D =3 (the ‘midfractal’
case, in the sense of [16]), and is true everywhere else (that is, for all D € (0, 1),

#1) if and only if the Riemann hypothesis is true.

3. Proof of Conjecture 1' in the case of dimension one

3.1. Two-sided estimates
We shall first derive expressions for #,(D ;T’) and #*(D ;T') that depend only
on the sequence (/;);-, associated with Q. Since I', N Q =7, ((3L)). N I;), and
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since |(31;), N I;|, = min(/;, 2¢), we have
IL. N Q=2 1(3]). N[l =2eJ2e) + 3, |

i1
j=1 J>J(2¢€)
where, for € >0,

J(e):=max{j=1: [;=¢}. (3.1)
(By convention, if /; < ¢ for every j =1, we set J(¢) =0.) Hence, if
Lp(e):=2e"I(2e) + €2~ > I, (3.2)
j>J(2¢)

we have that

M(D ;T)=liminf Lp(¢) and M*(D ;T)=Ilimsup Ly(¢). (3.3)
e—0* e—0"*

In the rest of this section, it will be convenient to adopt the following notation
and terminology. If D €[0, 1] and (/;);~; is any non-increasing sequence tending
to zero, we set

My = Mo(D ; (1)) :=liminf Ly(e), M* = M*(D ; (1)) :=limsup Lp(g), (3.4)
e—0* e—0*

where Lj(g) is defined by (3.2), with J(¢) given by (3.1). We define the
‘Minkowski dimension’ of (/;);Z, as the infimum of those D with #* =0. This is
also equal to the supremum of those D with #* = 4+, If 0 < M, = M* < +0, we
write M =M(D ;(l;)) for this common value. We then say that the sequence
()= is ‘Minkowski measurable’ (with Minkowski dimension D) and has
‘Minkowski content’ #. (Of course, if (/;);_, is the sequence associated with the
open set Q, then I'=0Q is Minkowski measurable if and only if (/) is;
moreover, in this case, by (3.3) and (3.4), the associated values of # coincide.)
Further, we let

a=a(D ;(})):=liminf[j"? and B=pB(D;(})):=limsupj"". (3.5)
Jjoo J—ro

We can now state the following result that will be used, in particular, in the
proofs of Theorems 2.4 and 2.2:

Tueorem 3.1. Given D€ (0,1), let (;);-, be any positive non-increasing
sequence such that 0< a < < +o (that is, I; <j~"P, as j— ).
(a) Then (l;);~, has Minkowski dimension D and

fla, B)s M < M*<f(B, @), (3.6)
where

1-D

(b) In particular, if @ = B= L, for some L>0 (that is, if |~ Lj~"', as j— ),
then (l;);=, is Minkowski measurable (with Minkowski dimension D) and its
Minkowski content is given by

flu,v):= 2””(14" + uvD“). 3.7

21—D
1-D

M(D (1) = L°. (3.8)



RIEMANN ZETA-FUNCTION AND FRACTAL DRUMS 49

Proof. Part (b) clearly follows from Part (a). We now establish Part (a). Let a;
be defined by /; = a;j~". Thus, by (3.5), « =liminf a; and B = lim sup a;. From
the definition (3 1) of J(e) we have

J(2e) =max{j=1: j<(2¢)"°(a))"}.
Thus
(a+0(1)°Qe) P<JRe)<(B+ o(l))D(2£)' as e—>0". 3.9
Note that since D € (0, 1),

D
S e Tl (D) a5 T—s 40,
j>T -

Thus .
D
(@+o()) =5 UQe) " P< 3 a

j>J(2¢) )
< (B +0(1) ;25 (U(26) ",

as e—> 0% (3.10)
Putting (3.9) into (3.10) and. noting that 1 — (1/D) <0, we have as ¢— 07,

(e + 0()(B +o (D)™ (26) > 2
< z —1/D Z 1
j>J(Q2¢) j>J(2¢)

<(B+o(1))a+0(1)°'(2e)'"? -D

Multiplying (3.9) by 2¢” and (3.11) by £”~!, we deduce upon adding them
that, as e—> 0",

(3.11)

21‘D<aD+a b1 +o(1))SLD(.';)=2¢5”J(2.¢:)+.€D‘1 > I

J
j>J(2¢)

1-D

<2!-P (ﬁD + BaP! + 0(1)). (3.12)
1-D

In view of definition (3.4), we now obtain (3.6) by taking the lower and upper

limits as €é—0" in (3.12). Further, (3.6) implies that (/;);2, has Minkowski

dimension D. This establishes Part (a) and concludes the proof of Theorem 3.1.

Here and henceforth, it will be convenient to adopt the following notation. If
(;);=1 is any positive non-increasing sequence such that Y., [; <+, we set, for
x>0,

a(x):=§)11,.x 2[1x] Z{u} (3.13)
j=
moreover, we let
8, :=liminfx~®8(x) and &*:=Ilimsupx26(x). (3.19)
X—> 4 X— +00

The previous theorem contained the implication (i) = (ii) in Theorem 2.4. The
next theorem contains the implication (i) = (iii).



50 MICHEL L. LAPIDUS AND CARL POMERANCE

Theorem 3.2. Given De(0,1), let ()i, be an arbitrary positive non-
increasing sequence such that 0< a < f < + (that is, [; <j~"P, as j— ). Then

D _ D -
'1_—Da’ﬂD 1$6*$5*<ﬁ0+1—_5ﬁa’0 L (3.15)

Proof. We have
é(x)= 2 () + 2 {x}= 2 {x}+x 3 I

jsIGY =Y isIGTY J>IY
so that using 0 <{v} <1 for all v, we obtain

x7PY L=sxTPO(x)<sx7PI(xT) 41 Y L (3.16)

j>J(x"h j>Jxh
From (3.9) with 2¢ =x"!, we have as x — +,

xPrx )< BP +0(1).

1

Similarly, f;om (3.11) with 2e =x~", we have as x — +x,

b=t +o(1)sx'"? [ <Ba”! +0(1).
W Tt oM< 3 < pat T+ o)
Putting these inequalities into (3.16) yields, as x — +,
D-1 < -D < D D—-1 .
af 1_D-i-o(l) x 70(x)=B” + Ba 1__D+o(1),

from which, in view of definition (3.14), the conclusion (3.15) of Theorem 3.2
follows at once.

3.2. Proof of Conjecture 1' and of its converse
The following result contains the implication (iii) = (i) in Theorem 2.4.

~ Tueorem 3.3. Let [,=1,=...>0 be such that ¥,;_,l;<+» and let 6(x) be
defined by (3.13). Assume that for some D € (0, 1),

S(x)=xP, asx— +. (3.17)
Then

vD

L=j="", asj—o (3.18)

Proof. By assumption, there exist positive constants, c;, ¢, and x, such that

c1xP? < 8(x) < cxP, for all x =x,. (3.19)
Let k=2 be a fixed integer with k > (2c,/c,)"*~?, so that
kP <1c k. (3.20)
Let
U= D {lx} and V:= > {lx}, (3.21a)

ey <k~ Lxy=k~!
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so that
d(x)=2 {lx}=U+V. (3.21b)
j=1

Thus, since k{v} = {kv} for {v} <k~!, it follows from (3.19) and (3.20) that for
X 2x, (and hence kx =x,),

kU= Y {lkx}<d(kx)

{lix}<k™!
= CszxD = %clkxD < %ké(x).

Consequently, U <48(x) and hence, by (3.21b), V >16(x). We deduce from
the last inequality that the number of j with {[x}=k"" is greater than 15(x)
(since each {l/x} is less than 1); a fortiori, the same is true of the number of j
with [x = k™" or, equivalently, /; = (kx)™".

Thus, with J(€) defined as in (3.1), it follows from the above discussion that

J(1/kx)>36(x) = 4c, x> (3.22)

Since /|0, there exists a positive integer j; such that [, <(kx,)~'; so that
xo<(kl;)™', for all j=j,. Fix j=j, and consider x with xo<x < (k/)™'; so that
[; < (kx)~'. Then, by definition of J(&) and by (3.22), -

sexP <J(1/kx) <j. : (3.23)

This is true for all x €[xo, 1/kl;); so letting x— (1/kl;)™ in (3.23), we obtair
ic1(1/kl)P <j, which implies that

Li"P = k™' (3c,)VP for all j=j,.
Thus
=liminf [;j"? = k~'(3¢,)""" > 0. (3.24)

J—o

Next, let ¢ denote the number of j e (J(2/x), J(l/x)] with {/x} =1 and let ©
denote the number of j in this interval with {[x} <3. Then

o+ t=J(1/x)-J(2/x). (3.25a)
But, by definition of o and 8(x),
30<06(x). (3.25b) .
11
2

Further, if j is counted by 7, then { x} =13. (Indeed, J(1/x) =j > J(2/x) implies
that 3 <3/x <1 and hence {/3x} = 3x 21.) So

‘ %1: < 6(3x). (3-25¢)
Therefore, (3.25) yields
J(1/x)=J(2/x) = 0+ 1<28(x) + 28(3x)
<2(1 4+ 27P)coxP < dcpx®; (3.26)
this is valid for all x = 2x,,.

Now, for any x = 2x,, let m = m(x) be that integer such that

X > X
= xo>2——m+1-
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Then, since x/2™ ' = 2x,, we can apply estimate (3.26) with x replaced by x/2*,
for k=0, ..., m —1, and since also 1/2x,<2™/x, we have successively

Q)= 0E) )G
<5 lz) v
<3 lz) +)
=1—42-D" ”(zio)

Let Jy:=J(1/2x,) and let j > Jy; further, let x :=1/l;, so that x >2x,. Then we
deduce from (3.27) and (3.1) that

(3.27)

_2'

1’1/D<< j )l/D( 4C2 )I/D
! Jj—J 1-2"2/ ~

=1 1P < <_2
B n}stup T=5b

Together with (3.24), this yields (3.18) and hence proves Theorem 3.3.

4
JO<]<J(X) D+JO=%5(I,)‘D+JO,

from which we obtain

Thus
/D
) < 40, (3.28)

ReMARk 3.4. We have used the full hypothesis (3.17) to prove (3.24), but only
the assumption 6*:=limsup, ., .x 28(x)< + to prove (3.28). In other
words, with the notation of (3.5) and (3.14), 6* < +« implies that § < +o. On
the other hand, @ >0 seems to require both §,>0 and 8* < +x. We shall
discuss this issue later in this section.

The next result contains part of the implication (ii) = (i) in Theorem 2.4:

THEOREM 3.5. Suppose that |, =1,=...>0 and 0< M, < M* < +x, for some
D €(0, 1). Then a>0.

We note that in the above statement, a >0 means that « € (0, +]. It should
be clear from the context when we use such a convention elsewhere in the paper.
In order to prove Theorem 3.5, we shall use the following lemma.

LemMa 3.6. If liminf,_ o £°J(€) >0, then a> 0.

Proof of Lemma 3.6. Let o;:=1;j"°. If |;=1,,,, then a; < a;,,. Thus

= lim inf a; = lim inf a;. (3.29)

J—oo J: I>I,+|
Suppose lim inf,_o+ €°J(€) > 0. Then there is some C >0 with £°J(&) = C for all
€>0. Say [;>1,,,. For any ¢ in (/;;, };), we have J(¢) = and hence £°=C;
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that is, €= C"?j~"P. Since this is true for any ¢ € (.1, }), we may let e— I},
and obtain

lj+1 > Cl/Dj—l/D > Cl/D(j + 1)—1/D.

Thus @, =+1(j + 1) > C"P and hence

liminf a;,, = C"? > 0;
Jil>li

which in view of (3.29), implies that o >0, as required.

Proof of Theorem 3.5. Since M* <+, it follows from definitions (3.2) and
(3.4) that there is some finite constant M such that

P Y <M, (3.30)

Jj>J(2¢)

for all €>0. From Lemma 3.6, in order to prove that o >0, it is sufficient
to show that liminf,_, €2J(¢)>0. Suppose the contrary is true, that is,
liminf,_o+ £°J(€) = 0. Let &, > &,> ... be a sequence such that lim,_... (¢,)°J(g,)
=0. Let

0, :=(&,)°I (e,). (3.31a)

We may assume that each 6, <1. Let
Ng = (Oq)_%eq’ (3.31b)
so that 25, > 2¢, and hence J(219,) <J(2¢,) <J(g,). We then have, by (3.2),
Lp(ng)=m)"™" X L+2(n,)™I(2n,)

i>4(2ng)

=) X b+ X h+2(n)°I(2n,)
J(2n)<i=<J(2¢4) J>J(2¢e,)

=:E,+F,+G,, say. (3.32)

Now, in view of (3.31),
G, =2(ng)"I (2n,) < 2(n,)"JI (e,)
=2(6,)"""(e,)"J (g,)
= z(oq)l—(DIZ) < 2(6(])(,_0),2. (333)

Similarly, since /; <27, whenever j >J(2n,), we have as in (3.33),

E,=(m)*™" X L<(n)" "2nJ(Q¢,)

J@2ng)<j<i(2e,)
<2(n,)"J(g,)
<2(6,)'~27, (3.39)
Finally,
Ei=(m)°' 2 L=(0)"""%(e)°™" X
J>J(2¢g) J>I(2ey)
<M(6,)" "7, ' (3.35)

where we have used (3.30) in the last inequality of (3.35).
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Putting together (3.32)-(3.35), we obtain
0<Lp(n,) < (M +4)(6,)" " (3.36)

But 6, = (g,)%J(g,)— 0, as g— »; so Lp(n,)— 0, which contradicts the assump-
tion A, >0.

The following result is really a corollary of Remark 3.4 and of the proof of
Theorem 3.2. It completes our proof of Theorem 2.4.

oo

TaeoreM 3.7. Let I, =1,=... >0 with Y7, [; < +oo. If M* <+, then f < +.

Proof. Recalling the definition (3.2) of Lp(g), we deduce from the easy
inequality (3.16) that

' 1
xPo(x)<x7PI(x ) +x'P D l,=20‘1LD(2—x). (3.37)
j>I(x)

Hence

1

6* =lim sup x"28(x) < lim sup 2D“LD(—> =201 ¢*,
x—>+x . xX—>+o Zx

Since by assumption, #* <+, we thus have 6* <+w. The fact that § <+

now follows from Remark 3.4.

ReMark 3.8. From the above proof, we deduce that M*< +oo implies
8* < 4+, 2 (one-dimensional) result contained in [16].

3.3. Further related results: one-sided estimates and examples

Recall the definitions of ,, M*, «, B, 6., 6* from (3.4), (3.5) and (3.14).
These quantities are functions of a number D €[0, 1] and a non-increasing
sequence (/;);=; of positive numbers.

We establish here further results related either to Conjecture 1’ or to its
converse. We obtain, in particular, an analogue of Theorem 2.4 for one-sided
estimates; to do so, we shall need the following converse to Theorem 3.7.

THEOREM 3.9. Let D € (0, 1). Assume that [,=1,=...>0 and ¥;., ;< +o.
Then B < +o implies that M* < +o.

Proof. Assume that 8 < +. Then, in view of definitions (3.4) and (3.2), we
have :

M* = lirerlzgp <2£D](2£) +eP7t Yy l,-). (3.38)

>J2¢)

It follows from (3.9) that
2ePJ(2e) <2'"PBP + 0(1), as e—0"; (3.39)
thus there is some finite number Q with

J(e)<e PQ, for all £>0. (3.40)
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Now, by (3.40) and since J(2¢)<J(e)<J(3e)<...and [;<27**'¢ for j>
1(2_k+18),

ol J(27%e)
S4=3 >
j>J(2¢) k=0 j=J(2 % 'e)+1

<D IR TFe< Y (27%)TPQ2H e,
k=0 k=0
Thus, since D —1<0,

D> 1<2QZ(2" V=205

< 400,
i>J(2¢) 20 !

In view of (3.38), our result follows from this inequality and (3.39).

We can now state the counterpart of Theorem 2.4 for one-sided (upper)
estimates. It shows, in particular, that (when n =1 and D € (0, 1)) the conclusion
of [16, Theorem 2.1, p. 479] (in the case of the Laplacian) is equivalent to its
hypothesis.

THeoreM 3.10. Let D €(0, 1) and let (l));=, be an arbitrary non-increasing
positive sequence such that Y.7.,l;<+o. Then the following statements are
equivalent:

(i) ;= 0G"?), as j—o;

(i) M* < +oo;

(i) 8(x) = O(xP), as x— +x;
and if, in addition, (;);_, is the sequence associated with Q,

(iv) N(A) = @(4) + O(AP?), as A— +x,

Proof. The fact that (i) implies (ii) follows from Theorem 3.9; (ii) implies (iii)
is just the one-dimensional case of [16, Theorem 2.1 or Corollary 2.1, pp.
479-480], and an independent proof of it was given above (see Remark 3.8).
Finally, the fact that (iii) implies (i) follows from Remark 3.4. (Statements (iii)
and (iv) are obviously equivalent.)

We now turn our attention to one-sided lower estimates. It turns out that the
natural analogue to Theorem 3.10 is not true. First we record two simple
implications concerning lower estimates.

THeoREM 3.11. Let D €(0,1) and let (I;);-, be an arbitrary non-increasing
positive sequence such that Y7, 1; < +o. Then a>0 implies M, >0 and 6,>0
implies M, > 0.

Proof. In view of definitions (3.2) and (3.4), the first assertion follows
immediately from the first inequality in (3.9). The second assertion follows
immediately from taking x — + in (3.37).

It turns out that there are no other relationships between «, #, and §, than
those given in Theorem 3.11. That is, it is possible for a >0 with 8, =0, for
M.>0 with «=68,=0, and for 6,>0 with a=0. The following examples
illustrate these phenomena.
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ExampLE 3.12. Consider the multi-set of elements /, where we have 2+’
copies of 5% for k=1,2,.... Then D =log2/log5, «=1>0 and &, =0. The
proof is routine and left to the reader (as with the next two examples). The
authors would be happy to send details upon request.

ExampLE 3.13. Consider the multi-set of /; where we have [2%'?] copies of
4 fork=1,2,.... Then D=}, a=5,=0and A, =2}>0,

ExampLe 3.14. Consider the set of /, where we have [22*’3] numbers in
arithmetic progression from 472" to 4~ —2hn ,fork=1,2,.... Then D=}, a=0
and 0 <4, < +c.

4. Proof of Conjecture 1 in the case of dimension one

4.1. Characterization of Minkowski measurabzlu‘y

Let (/)= be a non-increasing sequence of positive numbers such that

j=1l; <+ and let Ly(&) be given by (3.2), with D € (0, 1). We have shown in
Theorem 3.1(b) that if §;~ Lj~"?, for some L >0, then the sequence ()72, is
Minkowski measurable (that is, llme_,m L, (&) exists in (0, +©)) with Minkowski
dimension D and its Minkowski content / is given by

1-D

L”.

M= lim Lp(e)=
em0* o()=1"p
We establish here the converse of this result and hence characterize the

situation when (/;);=, is Minkowski measurable with D € (0, 1). Hence Theorem
2.2 follows from Theorem 3.1(b) and Theorem 4.1 below.

THeEOREM 4.1. Suppose that (I;);-, is a non-increasing sequence of positive
numbers with Y-, ; <+ and such that for some L>0 and DE(O 1), the
following limit exists and is given by

LD
el_ig){ LD(8)=2"DE. (4.1)
Then we have
L~Lj~"P, asj— . 4.2)

Proof. The proof of Theorem 4.1 is rather long and difficult, although of an
elementary nature; it is divided into two steps. The heart of the proof, provided
in Step 1, consists in establishing the theorem under the assumption that the
sequence (/;);-, is strictly monotone and /;.,/[;— 1. Then, in Step 2, we show that
the general case can always be reduced to the special case treated in Step 1.

Step 1. We assume that ([;), is strictly decreasing and that [,,/[;—1, as
j--) oo, .
For each j, define aj, B; by the equations
li - a]—l/D’ 2 lk ﬁ]l 1 (l/D)

k>j
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Since (/;);~, is strictly decreasing, we have, with J(¢) defined by (3.1),
J()=j, forallj=1.
Then, in view of (3.2),
Lp(3)=2""P()% + 2P ()"~ 2 ke

k>j
— 21_0(0’-)0 + 21~D((¥-)D_lﬂ~ D
7 () f) 1 - D *
Since [;— 07, it thus follows from (4.1) that
. _ D LP
i (()° + @)°"67=5) =7 - “3)
We now show that
limsup B; < L. (4.4)
j—»oo
Define a positive number y; by the equation
Ly D _()°
(aj)D + (CV,-)D 1ﬁjm = 1 _’ D .

From (4.3), y,— L, as j— . For fixed b>0 and D € (0, 1), the minimum value
of a® + (a®~'bD/(1 — D)) on the interval (0, +) occurs when a = b and is equal
to b2/(1- D). Thus (8;)°/(1 — D) <(y;)?/(1 — D) and hence B; <y, for each j,
which proves (4.4).

Next we show that

liminfa;<L and limsup ;= L. 4.5
Jjre J—roo

If the first inequality in (4.5) fails, then there is some 0 >0 w1th «;>L+ 6, for

all large j. Then for large j,

ﬂI_D__jl (1/D)_El _2 a'k—'”D>(L+0)Zk_”D

1 D k>j k>j k>j
+o0 D
>(L+0)f 7P dt=(L+0)——(j +1)'"WD),
j+1 1-D

where the last inequality holds since D e(0,1) and the function =7 is
decreasing for ¢t >0. Thus lim inf §; = L + 6, which contradicts (4.4).
To show the second inequality in (4.5), let

p :=limsup a;.

)
Then an argument analogous to the one just completed shows that

lim sup B; <limsup a; = p.
j— Jj—o
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Let j, <j,<... be a sequence of natural numbers for which lim,_,., a;, = p. Then
B, < a;, +0(1), as k— . Thus

Ui (@)% + (@7 B = (0,)° + (@)° 25+ 0((2,)°7)
@) o .
=T D+o(( ®,)°""), ask—o,

By Theorem 3.5, we have p >0. (Note that p was denoted by §in § 3.) So that
o((a;,)°~") = 0(1), as k— . Since ¥;— L and &;, — p, we deduce that
D D
L < p ,
1-D 1-D

showing that L < p and establishing (4.5).
Next, suppose lim sup;_,.. ; > L. Then there are some 6 >0 and an infinite set
of subscripts j with a; > L + 6. Let

(L + %B)D

re = ,

*“\L+6

so that 0<ro <1. If j, is large with a;, > L + 0, let jo=[roj,] and let j, be the
least subscript greater than j; with a;, <L + (1/j,). By the first inequality in (4.5),
J- exists. Since /;,,/l;— 1, by assumption, we have a;.,/a;— 1, which implies that

a;,— L as j,—  through those numbers with &;, > L + 6. Thus by (4.3), B;,— L.
If jo<j<ji, then [;>; so that

sN\-VD L+l
a/f> ajl(jil) > a/il(rﬂ)llo o L+ 29 >L+ 29

Further, if j, <j <j,, then &; > L. Hence

j2—1

ﬁjOI__DB(jO)l—(UD)—Z l > Z (L+10)]_”D+ 2 L]_“D+ 2,

i>Jjo j=jo+1 j=ih+1 i=j2

>L t“"’dt+%6 VP dr + Z l;

Jo+1 Jo+1 j=j2+1

D . - . \1—
=L =5 o+ )™M = (j2)'""?)

D . - \1-
+36— (Uo+ ' = () )

+ B,z—— (j2)' 7P

/ fo (/D)~1 io (/D)—-1
(7 I VI
g Jo+1 J2
. (/D)1 -\ (1/D)—1 -\ (/D)-1
i) )
Jot+1 J1 Ja

Therefore,
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Since B;,— L, we thus have

Biy= L +36(1— ()" + 0(2).
This contradicts (4.4) if j, is sufficiently large (which, of course, forces j, to be
large). Thus we deduce that

limsup o; <L. (4.6)

Jj—wo

To conclude the proof of Step 1, we need to show that liminf_.. a;= L.
Suppose not. Then there are some 6 with 0< 6 <1 and an infinite set S of
subscripts j with o; < L(1— 0) for all j € S. Let

e=9—%0-((1—0)"’—1).

Since (1-6)"?<1-(1-D)# and (1-6)"°>1, it easily follows that 0<
e<8.
For each large j, € S, there is a unique j, = jo(j;) such that
jo<ji, @,>L(—¢), and ifj,<j<j,, then a;<L(1— ¢).

Indeed, the existence of j, for all large j, € S follows from the second inequality in
(4.5). For any j, > j,, we have

B s =3 4= S 4+ 3 443

i>jo Jj=jo+1 J=h+1 i=j2

noo . D . ._
sL(l-¢) 2 J7YP + (s -, + ﬁjzm)‘(lz)l e

Jj=jo+1

sL(-¢) D ((]‘0)1—(1/0) — (j,)Im WP

b LQL= 02— ) + B ()2

Therefore,

go=ra-o(t- (") + La- o2 1)(2)" LD

-\ (/D)=1,; \ (/D)1
o) ()
J2 J1

We now choose j, =[(1 — 8)7?j,]. Using (4.4), we have

B. <L(1—£)+(L+0(1))< )(“D) l

x (— (1—¢)+(1-6)((1—6)> - 1)%+ (- o)l-D), (4.7)

where the ‘o(1)’ tends to 0 as j,— o through S.
The large parenthetical expression in (4.7) is

—1+£+(1—6)(0;62_1)—_14-1)5—9+8+1;De((1—9)—0—1)=0,
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by our choice of &. Thus from (4.7), we deduce that
Bi,<L(1-¢)+o(1).

Now, from the definition of j, and the assumption /,/[;—1, we have
@;,= L(1— €) + o(1). Consequently,

_ D LP(1-¢)”
(aio)D + (a}o)D 1ﬁf0 1-D =< 1-D

+0(1),

contradicting (4.3) as j1i—», ji€S. Hence S is not infinite and we conclude that
liminf_,. a;= L. Together with (4.6), this shows, as desired, that o;— L, as
j— o (that is, [;~ Lj~"?) and concludes the proof of Step 1.

Step 2. We now show that we may reduce the general case to the situation
where (;);Z, is strictly decreasing and /;,,/l;— 1. To this end, let (/});-, be an
arbitrary sequence satisfying the hypothesis of the theorem.

If [;> 1, we have J(/)=j and

235)°I (1) =2 (a;)°.
We conclude from (3.2) and (4.1) that
lim sup a; < L(1 — D)~"".

Jili>l
Ifl;=L,=..=} >, then a; < a;,; <... < &, so that

limsup o5 < L(1— D)™"". (4.8)

j—xo

We now show that the hypothesis of the theorem forces

L
lim—L=1, (4.9)
J=e b
which is one of the two facts we need to complete the proof.
Suppose ;= e>1,,. Then J(g)=j. Writing € =rl, where 1=r>1[_,/l;, we
have
Lo(e) =2(3e)%j + (3e)°71 X [ =2""0rP()% + 272271 (1)P " T
k>jf k>j
= rDAj + rD‘lBj, say.

Then A;+ B, = L(3,)—2'"PLP/(1 - D), as j— through numbers with /;>
liyy. Since each A;, B;>0, the set {(A;, B)): [;>1.,} is contained in some
compact subset K of R*— {(0, 0)}.

Suppose there is some 6 € (0, 1) such that /;.,/l; <1— 6 for infinitely many j.
For any fixed A, B, let w(A, B) denote the difference between the maximum and
minimum values of the function r°A + r°~'B on the compact interval [1 - 6, 1].
It is an elementary exercise that (A, B) is continuous and positive on
R?- {(0, 0)}. Hence it assumes a positive minimum 7 on the compact set K.

Thus for each j with /;,,/l; <1— 0, there are r;, r, € [1 - 6, 1] with
LD(%rllj) - LD(%rzlj) =n>0.
This contradicts (4.1), so we have (4.9).
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For any real number € >0 and j € N, define Ly(¢, j) by
Lp(e, j):=2e% + P71 D I,
k>j

For example, Ly(¢, J(2¢€)) = L(¢g), with Lp(€) given by (3.2). We now show
that if j, is any integer with [, =/,,.), then no matter how j. is chosen for each
€>0, we have

lim Ly(e, j.) = lim Lp(e). (4.10)
e—0% e—0*

Given £ >0, write j = j, and j,=J(2¢). Then

Jo
Lo(e, ) = Lo(e) =26°G =jo) + £ 3. &

k=j+1
= (jo—j)(—2&” + €271}
= &7 '(jo— j)(—2& + ).
Thus '
0=<Lp(e,j)— Lp(e) <7 jo(—2e +1).
This last expression is a decreasing function of & for €>(3—3D~"),. From
(4.9), if € is sufficiently small (so that j, is large), we have
£> %lj(,+l > (% - %D—l)ljn-

Thus replacing & with 3/, ,, makes the expression larger, so that

0

0=<Lp(&,j) = Lp(€) <2'7P(Lys1)” Yo =ligrs + 1)

=21—D(1j0+1)0j0<_1+ lfn )

L1

—nl-D D jO _ ljn )
27 7(yr1) fo+1< 1+1,.0+1 :
Thus (4.8) and (4.9) imply (4.10).
We now define a sequence (m;)-, of non-negative reals with the following
properties. We let m,=0. If [;>[;,,, we let m;,, = 0. If

b=ba=. =l >k,

we let 0<m;,,<m; ,<..<mj, <ljixsr—li+r. Further, we choose the
positive m values so small that, as j— =,

> my=0((l;)' ) and m;=o(l). (4.11)
>j
Then the positive sequence (I, — m;)i, is strictly decreasing and [, ~ Lj~"? if and
only if [, —m;~ Lj~"P, as j—> . ,
We now show that (I; — m;)[_, satisfies the same hypothesis (4.1) as (/;);=,, thus
completing our proof. Let J'(¢) be the analogue of the function J(¢) for the
sequence (/; —m;);_;. We need to prove that

Lp(e):=2e"I'Qe)+ e > (,—m)
j>172€)

satisfies Lp(e)—2'"PL?/(1— D), as €é—0". To this end, it will suffice to show
that Lp(e) — Lp(e)— 0. '
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From the above construction, we have I, =1, for any £>0. Indeed, since

li—m;<l;, we have J'(g) <J(¢). If J'(¢) <J(¢), then since

J
1!'(5) — My =E> lj -m;
for all j >J'(¢) and since ;)= ¢, we have m; >0 for j=J'(¢) +1, ..., J(¢). Thus

lJ'(e) = l.l(s)-
We write

Lix(e) = Lp(e) = (Lp(e) — Lp(e, J'(2€))) + (Lo(e, J'(2€)) — Lp(e)).  (4.12)
Now, by (4.10), Ly(&, J'(2¢)) — Lp(g)— 0 as e— 0. Further,
ILp(e) = Lo(e, I'(2€))| = €21 > m,
q>J'(2¢)
= O(ED_I(IJ'(ze))l—D) = 0(80-1(11(25))1—0):
by (4.11). Further, by (4.9), /;;.)~2€ as €—0". Thus the above expression is

o(1). We conclude from (4.12) that Lp(e)—Lp(e)—0, as £¢—0%, which
completes our proof of Theorem 4.1.

4.2. Existence of a second term: the Riemann zeta-function .
We conclude here the proof of Corollary 2.3 (Conjecture 1 in the case where
n = 1) by proving Theorem 2.1, which we restate as follows:

THeorReM 4.2. Suppose |, =1,=... >0 and

L~Lj™"P, asj—w, for L>0andDe€(0,1). (4.13)
Let 6(x) =X, {lx}, as in (3.13). Then
8(x)~—E(D)LPxP, asx— +x, (4.14)

where £ = C(s) denotes the Riemann zeta-function.

Proof. Let J(€) be defined by (3.1). We easily deduce from (4.13) that
J(g)~LPe P, ase—>0". (4.15)

Let k =2 be an arbitrary fixed integer. Using J(1/x) =J(2/x) =..., the fact that
J(g/x)<j=J((q —1)/x) implies [[ix] =g — 1, and various elementary rearrange-
ments of sums, including partial summation, we obtain

k  J((q=1/x)

dxy=x X L+ X {x}+2 X {lx}

j>I(1x) j=<J(kix) =2 j=J(qlx)+1
k J((q-1)/x)

=x > L+ X {x3+Y X (x—(g-1)
j>J(1ix) J=J(kix) q=2 j=J(q/x)+1

=x > L+ X {lix}_‘éz(q_l)(‘,<l_l>_”<g))

j>I(kix) j=<J(kix) X X
k—1 q k
=x 3 1+ S -3 1(—) + (k- 1)1(—). (4.16)
j>I(kix) j<J(kix) g=1 \X X
In the light of (4.16), we can write
dx)=A+B+C, 4.17)
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where
A=x > I, (4.18a)
j>J(kix)
. E _ k—1 g
B.—-kJ(x> Eglj(x) (4.18b)
and
C:= Y ({lx}-1). © (4.18¢)
j=<J(k/x)

Note that in (4.17) and (4.18), A, B and C depend on x. We now estimate, for
fixed k, each of these terms, as x — +,
We first observe that since ~1<{/x} —1<0, we have —J(k/x)<C=<Q0; it
thus follows from (4.15) that (for fixed k),
0 —(Lx)™°C<(Lx)™PJ(k/x)—> k™, asx—> +ox, (4.19)

Next, we deduce from (4.15) and (4.18b) that

k—1
(Lx)™”B—k'"P -3 q7°, asx— +mx. (4.20)
q=1
Further, we claim that
D
(Lx) " PA— k'~P —p ®* +00; (4.21)

indeed, according to (4.13) and (4.15), for each small £ >0, there is some x,>0
such that for all x =x,, we have [, € (L — £)j "2, (L + €)j~"P) for all j > J(k/x).
Thus, by (4.18a), we have for all x = x,,

o0

A<x D (L+e)j "P<x(L+¢) t~VP dt

j>J(kix) I (kix)

=x(L+ €)

1-(1/D)
—p Uk/x))' =™,

Hence, by (4.15),

A<(1+ o(l))k‘_D% (L+€)LP %P, asx— +o,
A similar computation shows that

A=(1+ o(l))kl‘D% (L—-€)LP'x?, asx— +ox,

Since € >0 can be chosen arbitrarily small, we have (4.21).
Now, we combine (4.20) and (4.21) to obtain that for fixed k,

1 kKl 1
(Lx)™P(A+B)»——=k'? = X g P=fi(D)+——, asx—+», (4.22)
1-D = 1-D

where

foy=[ -t (=—pe =S ),
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The sequence of entire functions {fi(s)}z-, converges uniformly as k— % on
every compact subset of Re s >0 to the function

f(s):= r =[]~ dt, (4.23a)
which is thus analytic in the domain Re s > 0. Further, as noted in (2.3), we have
fls)= _IL—S— {(s), for Res>0. : (4.23b)

Hence
f(D) +ﬁ—> —¢(D), ask—> o, (4.24)

From (4.17), (4.19) and (4.22), we deduce that for each fixed k =2,

1
~k™? 4 (D) + T—p <liminf (Lx)"°3(x)

1
<lim sup (Lx)"?8(x) <f(D) + ——.
X—> 40 1 - D
By letting k— « and using (4.24), we obtain (Lx) ?8(x)— —§(D) as x— +;
that is, (4.14) holds, as desired.

4.3. Examples

We illustrate our main results with two instructive examples. The first is
actually a family of examples that illustrate Conjecture 1 (equivalent to Corollary
2.3) for all values of D e (0, 1). Working out the details for this family of
examples (with expert help on the computer from Mr Vivek Shivpuri) actually
led us to our main results in this paper. This family was also used to illustrate the
error estimates (in the case where n=1) in [16]. The second example is the

complement in [0, 1] of everybody’s ‘favourite fractal’ in dimension one, namely
the ternary Cantor set. This example illustrates Conjecture 1’ and its converse

(see Theorem 2.4) and, in particular, shows that these results are the best
possible.

ExampLE 4.3 (cf. [16, Example 5.1, pp. 512-514]). Let a >0 be fixed, but
arbitrary. Let Q = Q(a) ==, [;, where [;=((j +1)7% j~°). Thus Q is a dense
open subset of [0,1]. We have '=3Q = {j™: j=1} U {0} and

=i =+ ) ~a

as j—> . Thus (2.4) is satisfied with L=a and D =(a+1)"'. It follows from
Theorem 2.2 (or, for the present example, from [16, Theorem C of Appendix C,
pp- 523-524)) that I is Minkowski measurable and

21—D b al(a+1)
) —(a+1)<;) .

In addition, we deduce from Corollary 2.3 that (not only does ¢(1) — N(1) < AP?
as A— +o, as was shown for this example in [16, equation (5.8), p. 513], but also

M(D ;T) =
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“that) the asymptotic expansion of N(A) admits a second term, given by
N(A) = a7 A1 — ¢, pM(D ; T)AP™ + 0(AP?)
= a7 'A2 + E(D)(a/m)PAP? + 0(AP?), (4.25)

as A— +o. (Since |Q|; =1 in this case, we have (1) = 77 'A% here.)

REMARK 4.4. Recall from [16] that since I is countable, we have H =0 for
every a >0 and thus Berry’s original conjecture [1, 2] (expressed in terms of the
Hausdorff dimension H rather than the Minkowski dimension D of T') clearly fails
for this family of examples. As was pointed out in [16, Remarks 5.2(a), (b), p.
514], this is due to the fact that the Hausdorff measure is countably additive
whereas the pre-measure induced by the Minkowski content is only finitely
sub-additive.

ExampLE 4.5 (the Cantor set). Consider now the set T of x € [0, 1] which have
a ternary expansion devoid of ones. This is the familiar ternary Cantor set. It is
uncountable, compact and has (one-dimensional) Lebesgue measure 0. If Q is the
complement of I in [0, 1], we have that Q R is open and dense in [0, 1] with
8Q =T. The sequence (/;);Z; of interval lengths of the components of Q is

111 1 4 1 1

399995279275 275275+
where we have 27! copies of 37* for k=1,2,.... We now compute
D, a, B, 64, 6%, My, M* for T=0Q (that is, for the sequence (J;)7-,). In
particular, we shall see that 0 < o < f# <+ and the same relationship holds for
04, 0* and for M., M*. Thus, in some sense, Theorem 2.4 is the best possible.

THEOREM 4.6. The sequence (I;)7-,, where we have 2*~' copies of 37* for
k=1,2,..,satisfies D=1In2/In3, a=3%, =1, 6,=1, 6*=2,

1-D\? [1-D\"0=Dh 9 /ln3\!n¥m3
a=2((52) +(50) ) =i ()
* D D In3 \In4

M* = 22—D — 22—(ln2lln3).

and

Proof. Let
j=jk)=1+2+.. +2K1=2k—-1,
Thus j ~2* as k— . We have [;=37% [,,,=37%"'. Hence
1jj|n3/ln2 —~ 1 and' l/+1(j + 1)ln3/ln2 _ %

as k— oo, It is clear now that D =In2/In3, =3 and B=1.
We now compute &, and 8*. Let x be large and let k be a positive integer with
3*<x <3 Then

x'Dé(x)=.x'D > {xy+xtP Y

lix=1 fix<1

k oo
=x7P X 2737} +x'7P Y 213
i=1

i=k+1

b

k
=x7P > 27437k} +x' P2 (4.26)
i=1
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The first term at the end of equation (4.26) is non-negative and the second is
minimized for x in [3%, 3**') at x =3* But the first term is 0 at x = 3%, so for
x € 3%, 3**"), x“P8(x) is minimized when x = 3* and the value there is exactly 1
(using D =1In2/In 3 and hence 3° =2). Thus 6, = 1.

The expression at the end of equation (4.26) is less than

k
X_D 2 2i—1 +x1—D(%)k =x—D(2k _ 1) +x1—D(%)k;
i=1
that is, we have just replaced each {37%} with 1. Thus
x7P8(x) <x~P2* + x'"P(3), (4.27)
for all x in [3%, 3**"). For x in [3%, 3¥*'], the expression on the right-hand side of
(4.27) is maximized at the end points of this interval and has the value 2 at both
end points (again using D =In2/In3). Thus 6*<2. Further, by choosing
x=3*""-37% we have each {37} in equation (4.26) nearly equal to 1; it is
1-37%" For this value of x, we have x” =2**}(1 + O(37%)). Thus we deduce
from equation (4.26) that
x7P8(x) =271+ 0(37*)(2 + O(1)) + B)'(1 + 0B~*)NB)*
=2+0(1), ask— .

We conclude that 6* =2.

Finally, we compute #, and #(*. Suppose £ >0 is small. Let k be a positive
integer with 37 =2£>37%"!. Then

' J2e) =142+ ... 421 =21,
Further,
> L= 23 2737 =03
i>J(2€) i=k+1
Thus, recalling (3.2), we have
Lp(e)=2e"I(2e) + &7 XY ;=262 - 1)+ 27"
j>J(2e)
= gP2k* 1 4+ 271D + 0(D),

as £é—>07%. The expression £°2*! + £27!(3)* is minimized for 2¢ in (37%~!, 37¥]
at ¢ = (1 - D)/(2D . 3*) and has the value (using D =In2/In 3)

1-D\P 1-D\~U-D)
»2((50) + (%))
D D
there. Further, it is maximized at 37%/2 (that is, at the right-hand end point) and
has the value 2%~ 7 there. This concludes our computation of #(, and #(*.

RemaRks 4.7. (a) According to Theorem 4.6, 0 < M, < M* <+ and thus the
Cantor set I' = 9Q is not Minkowski measurable; further, 0 <, < 6* <+ and
hence the asymptotic expansion of N(4) does not admit a monotonic second term
(that is, A7?(N(A) — @(1)) does not converge). Consequently, the error estim-
ates of [16] (or of Theorem 3.10) are optimal and cannot be improved in this case;
further, this example shows that the hypothesis of Minkowski measurability is
necessary in the statement of Conjecture 1.
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(b) Intuitively—and paradoxically in view of the comments made in [1]—the
fact that N(A) does not admit an asymptotic second term is due to the symmetry
of the boundary I' (here, the self-similarity of the Cantor set). Indeed, this
symmetry gives rise to high multiplicities in the eigenvalues (equivalently, in the
interval lengths (/)7~;) and thus causes the function A2Z(N(1)— @(A)) to
oscillate. ‘

(c) Since the Cantor set T is self-similar and satisfies the ‘open set condition’,
its Minkowski and Hausdorff dimensions coincide: D = H =1n2/In 3, the ‘simila-
rity dimension’ of I'. (See, for example, [25, Theorem 4.19, p. 20].)

4.4. Remarks ‘
We close this section with two related comments. As should be clear to the
reader, the second one is of a purely speculative nature.

4.4.a. Let M=M(D;T) be the normalized Minkowski content of I. (If
AcR", M(d;A):=M(d;A)B,_q, with B, := 7%|T(1 + $m), even if m is not
an integer; here, I'(s) denotes the classical gamma function. When d is an integer,
this normalization is standard in geometric measure theory (see [9, p. 273]); in
this case, when A is ‘sufficiently regular’ (that is, ‘d-rectifiable’ (9, pp. 251, 275]),
then M(d ;A)=|A|,, the (ordinary) d-dimensional Lebesgue measure of A.)
Then, in (2.9) (and in (4.25) above), we have

¢, pM(D ;T)=A(D)M(D ;T), ' (4.28)
where

1
rG(1-s))

The function A = A(s) (discovered in this somewhat surprising manner) is entire
and satisfies the functional equation (equivalent to that of ¢ (see, for example, [32,

§ 11]))

A(s):= (Gm) a2 (=¢&(s)), forseC. (4.29)

BGr)YA(s)=(Gna)' Al —s), forallseC. (4.30)

Moreover, A has the same zeros as  in the ‘critical strip> 0 <Re s <1.

Finally, we note that clearly, even when D = H and the Minkowski content is
normalized as above, the associated normalized constant é, , := A(D) does not
coincide with the corresponding value of 4, ;; (with H = D) conjectured by Berry
in [1]. (Compare equations (1.9) and (4.29) above.)

4.4.b. Could there exist a notion of ‘complex fractal dimension’ which would
enable us to obtain a natural interpretation of { and A in the ‘critical strip’
0<Res<1? If so, we might extend to the complex domain the following
observation: the vertical line Res =0 to the left of the ‘critical strip’ would
correspond to the least ‘fractal’ (that is, ‘non-fractal’) case. Similarly, the vertical
line Res=1 to the right of the ‘critical strip’ would correspond to the most
‘fractal’ case. Moreover, the symmetries of { and A with respect to the ‘critical
line Res =13 (the ‘midfractal’ case, in the sense of [16]) could naturally be
reinterpreted in terms of the ‘conjugate fractional exponents’ s and 1-s
(introduced in [16, Remarks 4.10 and 5.3(a), pp. 507-508, 515] for s € [0, 1]).



68 MICHEL L. LAPIDUS AND CARL POMERANCE

Acknowledgements

The first author is grateful to his programmer, Mr Vivek Shivpuri, the
Advanced Computational Methods Center (ACMC) of the University of Geor-
gia, as well as to the Department of Applied Mathematics of the Université
Blaise Pascal (Clermont II) in Clermont-Ferrand, France, where he was Professor
Invité in June 1988 at the beginning of this work, and to the Department of
Mathematics of Yale University where he was Visiting Professor during the
completion of the manuscript.

The second author is grateful to the Institute for Advanced Study in Princeton,
New Jersey, for its hospitality during the completion of work on this paper.

Part of this work was presented (by M.L.L.) at the special session on
‘Geometric Spectral and Inverse Spectral Problems’ of the Annual Meeting of the
American Mathematical Society held in Louisville, Kentucky, in January 1990, as
well as (see [19]) to the ‘UAB International Conference on Mathematical Physics
and Differential Equations’ held in Birmingham, Alabama, in March 1990.

References

1. M. V. BERRY, ‘Distribution of modes in fractal resonators’, Structural stability in physics (eds W.
Giittinger and H. Eikemeier, Springer, Berlin, 1979), pp. 51-53.

2. M. V. BERRY, ‘Some geometric aspects of wave motion: wavefront dislocations, diffraction
catastrophes, diffractals’, Geometry of the Laplace operator (eds R. Osserman and A.
Weinstein), Proceedings of Symposia in Pure Mathematics 36 (American Mathematical Society,
Providence, R. 1., 1980), pp. 13-38.

3. A. S. BesicovitcH and S. J. TAYLOR, ‘On the complementary intervals of a linear closed set of
zero Lebesgue measure’, J. London Math. Soc. 29 (1954) 449-459.

4. G. BouLIGAND, ‘Ensembles impropres et nombre dimensionnel’, Bull. Sci. Math. (2) 52 (1928)
320-344, 361-376.

5. H. BRrEzis, Analyse fonctionnelle: théorie et applications (Masson, Paris, 1983).

6. J. BROSSARD and R. CARMONA, ‘Can one hear the dimension of a fractal?’, Comm. Math. Phys.
104 (1986) 103-122.

7. G. CHERBIT (ed.), Fractals, dimensions non entiéres et applications (Masson, Paris, 1987).

8. Y. DupraiN, M. MENDES-FRANCE, and C. TricOT, ‘Dimension des spirales’, Bull. Soc. Math.
France 111 (1983) 193-201.

9. H. FEDERER, Geometric measure theory (Springer, Berlin, 1969).

10. J. HAwWkES, ‘Hausdorff measure, entropy, and the mdependence of small sets’, Proc. London
Math. Soc. (3) 28 (1974) 700-724. :

11. L. HORMANDER, ‘The spectral function of an elliptic operator’, Acta Math. 121 (1968) 193-218.

12. L. HORMANDER, The analysis of linear partial differential operators, vols III, IV (Springer, Berlin,
1985).

13. V. Ja. Ivril, ‘Second term of the spectral asymptotic expansion of the Laplace-Beltrami
operator on manifolds with boundary’, Functional Anal. Appl. 14 (1980) 98-106.

14. V. JA. Ivri, Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds
with boundary, Lecture Notes in Mathematics 1100 (Springer, Berlin, 1984).

15. J.-P. KAHANE and R. SALEM, Ensembles parfaits et séries trigonométriques (Hermann, Paris,
1963).

16. M. L. Laribus, ‘Fractal drum, inverse spectral problems for elliptic operators and a partial
resolution of the Weyl-Berry conjecture’, Trans. Amer. Math. Soc. 325 (1991) 465-529.

17. M. L. LapPIDUS, ‘Can-one hear the shape of a fractal drum? Partial resolution of the Weyl-Berry
conjecture’, Geometric analysis and computer graphics, Proceedings, MSRI, Berkeley, May
1988 (eds P. Concus, R. Finn, and D. A. Hoffman), Mathematical Sciences Research Institute
Publications 17 (Springer, Berlin, 1991), pp. 119-126.

18. M. L. LariDUS, ‘Minkowski dimension and lattice points in homogeneously expanding domains
with fractal boundary’, in preparation.

19. M. L. Laripus, ‘Spectral and fractal geometry: from the Weyl-Berry conjecture for the
vibrations of fractal drums to the Riemann zeta-function’, Differential equations and mathe-
matical physics, Proceedings of the UAB International Conference on Mathematical Physics
and Differential Equations, Birmingham, Alabama, March 1990 (ed. C. Bennewitz, Academic
Press, New York, 1992), pp. 151-182.



RIEMANN ZETA-FUNCTION AND FRACTAL DRUMS 69

20. M. L. LApiDUS and J. FLECKINGER-PELLE, ‘Tambour fractal: vers une résolution de la conjecture
de Weyl-Berry pour les valeurs propres du laplacien’, C. R. Acad. Sci. Paris Sér. I Math. 306
(1988) 171-175.

21. M. L. Laribus and H. MaiER, ‘The Riemann hypothesis, inverse spectral problem for vibrating
fractal strings and the modified Weyl-Berry conjecture’, J. London Math. Soc. (2) to appear.
Announced in ‘Hypothése de Riemann, cordes fractales vibrantes et conjecture de Weyl-Berry
modifiée’, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 19-24.

22. M. L. Laripus and C. POMERANCE, ‘Fonction z&ta de Riemann et conjecture de Weyl-Berry
pour les tambours fractals’, C. R. Acad. Sci. Paris Sér. I Math. 310, No 6 (1990) 343-348.

23. J. L. Lions and E. MAGENES, Non-homogeneous boundary value problems and applications, vol.
I, English translation (Springer, Berlin, 1972).

24. B. B. MANDELBROT, The fractal geometry of nature, revised and enlarged edition (W. H.
Freeman, New York, 1983).

25. O. MARTIO and M. VUORINEN, ‘Whitney cubes, p-capacity, and Minkowski content’, Exposition.
Math. 5 (1987) 17-40.

26. R. B. MELROSE, ‘Weyl’s conjecture for manifolds with concave boundary’, Geometry of the
Laplace operator (eds R. Osserman and A. Weinstein), Proceedings of Symposia in Pure
Mathematics 36 (American Mathematical Society, Providence, R. I., 1980), pp. 254-274.

27. R. B. MELROSE, ‘The trace of the wave group’, Microlocal analysis (eds M. S. Baouendi, R.
Beals, and L. P. Rothschild), Contemporary Mathematics 27 (American Mathematical Society,
Providence, R. 1., 1984), pp. 127-167.

28. G. METIVIER, ‘Valeurs propres de problemes aux limites elliptiques irréguliers’, Bull. Soc. Math.
France, Mém. 51-52 (1977) 125-219.

29. THE LAl PHAM, ‘Meilleures estimations asymptotiques des restes de la fonction spectrale et des
valeurs propres relatifs au laplacien’, Math. Scand. 48 (1981) 5-38.

30. R. T. SEELEY, ‘A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a
domain of R” Adv. in Math. 29 (1978) 244-269.

31. R. T. SEELEY, ‘An estimate near the boundary for the spectral function of the Laplace operator’,
Amer. J. Math. 102 (1980) 869-902.

32. E. C. TITCHMARSH, The theory of the Riemann zeta-function, 2nd edn (revised by D. R.
Heath-Brown, Oxford University Press, 1986).

33. C. Tricort JR, ‘Douze définitions de la densité logarithmique’, C. R. Acad. Sci. Paris Sér. 1 Math.
293 (1981) 549-552.

34, C. Tricot JR, ‘Two definitions of fractal dimension’, Math. Proc. Cambridge Philos. Soc. 91
(1982) 57-74.

35. H. WEvL, ‘Uber die Abhangigkeit der Eigenschwingungen einer Membran von deren Begren-
zung’, J. Angew. Math. 141 (1912) 1-11.

Department of Mathematics Department of Mathematics
Sproul Hall Boyd Graduate Studies Research Center
University of California University of Georgia
Riverside Athens
California 92521-0135 Georgia 30602

US.A. US.A.



