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1. Introduction

The first of “Landau’s problems” on primes is to show that there are infinitely many

primes p for which p − 1 = �, that is, a perfect square. Heuristics [5,15] suggest

that

#{p 6 x : p− 1 = �} ∼ 1
2S

∫√x
2

dt

log t
(x→∞),

where S ..=
∏
p>2

(
1 − (−1/p)/(p − 1)

)
and (−1/·) is the Legendre symbol. The

problem being as unassailable now as it was in 1912 when Landau compiled his

famous list, we consider the problem of counting pairs (p, q) of distinct primes for

which (p− 1)(q − 1) = �.

Let P denote the set of all primes and let

S ..= {(p, q) ∈ P× P : p 6= q and (p− 1)(q − 1) = �} .

For x > 2, let

S(x) ..= #{(p, q) ∈ S : p, q 6 x},

1
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Theorem 1.1. There exist absolute constants c2 > c1 > 0 such that for all x > 5,

c1x/ log x < S(x) < c2x/ log x.

We remark that the lower bound S(x)� x/ log x gives

S′(x) ..= #{n 6 x : n = pq, (p, q) ∈ S} > 1
2S(
√
x)�

√
x/ log x,

improving on the bound S′(x)�
√
x/(log x)4 of the first author [10, Theorem 1.2],

and independently, [4]. Let φ denote Euler’s function. Note that for primes p, q

we have φ(pq) = � if and only if (p, q) ∈ S. The distribution of integers n with

φ(n) = � has been considered recently also in [3] and [8, Section 4.8], while the

distribution of integers n with n2 a totient (that is, a value of φ) has been considered

in [14]. We remark that our proof goes over with trivial modifications to the case

of (p + 1)(q + 1) = �, that is, σ(pq) = �, where σ is the sum-of-divisors function.

A similar result is to be expected for solutions to (p + b)(q + b) = � for any fixed

nonzero integer b.

In [4,10] solutions to (p−1)(q−1)(r−1) = m3 are also considered, where p, q, r

are distinct primes, and more generally φ(n) = mk, where n is the product of k

distinct primes. In [4], the authors show that if the primes in n are bounded by

x, there are at least ckx/(log x)2k solutions, while in [10], it is shown that there

are at least ckx/(log x)k+2 solutions. Our lower bound construction in the present

paper can be extended to give at least ckx/(log x)k−1 solutions. We do not have a

matching upper bound when k > 3.

In addition to notation already introduced, p, q will always denote primes, 1P
denotes the indicator function of P,

π(x) ..=
∑
p6x

1, π(x; k, b) ..=
∑
p6x

p≡b mod k

1,

Λ denotes the von Mangoldt function, µ denotes the Möbius function, ω(n) de-

notes the number of distinct prime divisors of n, and (D/·) denotes the Legen-

dre/Kronecker symbol. Note that A = O(B), A� B and B � A all indicate that

|A| 6 c|B| for some absolute constant c, A � B means A � B � A, A = Oα(B)

and A �α B denote that |A| 6 c(α)|B| for some constant c depending on α, and

A �α B denotes that A�α B �α A. Also, A = o(B) indicates that |A| 6 c(x)|B|
for some function c(x) of x that goes to zero as x tends to infinity.

2. Auxiliary lemmas

We will use the following bounds in the proof of Theorem 1.1.

Lemma 2.1. (i) If x > 2 and d > 1 then∑
n6x

1

φ(n)
� log x,

∑
n>x

1

φ(n2)
� 1

x
, and

∑
n>x
d|n2

1

φ(n2)
� d1/2

φ(d)x
.
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(ii) If n > 2 then ∑
m<n

n2 −m2

φ(n2 −m2)
� n.

Proof. (i) We have
∑
n6x 1/n 6 1 +

∫x
1

dt/t = 1 + log x, and the first bound

follows by using the identity n/φ(n) =
∑
m|n µ(m)2/φ(m) and switching the order

of summation. The second bound follows similarly, noting that
∑
n>x2 1/n2 � 1/x

and that φ(n2) = nφ(n). For the third bound, write d = d1d
2
2, where d1 is squarefree,

and note that d | n2 if and only if d1d2 | n. Thus,∑
n>x
d|n2

1

φ(n2)
=
∑
n>x
d1d2|n

1

nφ(n)
6

1

d1d2φ(d1d2)

∑
m>x/(d1d2)

1

φ(m2)
. (2.1)

If d1d2 6 x/2, this last sum is, by the second part, O(d1d2/x), leading to∑
n>x
d|n2

1

φ(n2)
� 1

φ(d1d2)x
=

d

φ(d)d1d2x
6

d1/2

φ(d)x
.

Finally, if d1d2 > x/2, the last sum in (2.1) is O(1), leading to∑
n>x
d|n2

1

φ(n2)
� 1

d1d2φ(d1d2)
� 1

xφ(d1d2)
6

d1/2

φ(d)x
.

(ii) For any positive integer k we have

k

φ(k)
=
∑
d|k
d26k

µ(d)2

φ(d)
+
∑
d|k
d2>k

µ(d)2

φ(d)
=
∑
d|k
d26k

µ(d)2

φ(d)
+O

(
k−1/3

)
�
∑
d|k
d26k

µ(d)2

φ(d)
,

using the elementary bounds

d/φ(d)� log log(3d) and
∑
d|k µ(d)2 = 2ω(k) = kO(1/ log log k).

Thus, ∑
m<n

n2 −m2

φ(n2 −m2)
�
∑
m<n

∑
d|n2−m2

d<n

µ(d)2

φ(d)
=
∑
d<n

µ(d)2

φ(d)

∑
m<n

d|n2−m2

1.

If d is squarefree and d | n2 − m2, then d = d1d2 for some d1, d2 with n + m ≡
0 mod d1 and n − m ≡ 0 mod d2. These congruences are satisfied by a unique m

modulo d1d2 = d, and there are 2ω(d) ways of writing a squarefree integer d as an

ordered product of 2 positive integers. Hence∑
d<n

µ(d)2

φ(d)

∑
m<n

d|n2−m2

1 =
∑
d<n

µ(d)2

φ(d)

∑
d1d2=d

∑
m<n
d1|n+m
d2|n−m

1� n
∑
d<n

µ(d)22ω(d)

dφ(d)
� n.
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We will need uniform bounds for π(x; k, b) for k up to a small power of x. The

following form of the Brun–Titchmarsh inequality is a consequence of a sharp form

of the large sieve inequality due to Montgomery and Vaughan [13].

Lemma 2.2. If 1 6 k < x and (b, k) = 1 then

π(x; k, b) <
2x

φ(k) log(x/k)
.

Proof. See [13, Theorem 2].

We do not have a matching lower bound for all k up to a power of x because

of putative Siegel zeros, however these only affect a very few moduli k that are

multiples of certain “exceptional” moduli.

Lemma 2.3. For any given ε, δ > 0, there exist numbers ηε,δ > 0, xε,δ, Dε,δ such

that whenever x > xε,δ, there is a set Dε,δ(x), of at most Dε,δ integers, for which∣∣∣∣π(x; k, b)− x

φ(k) log x

∣∣∣∣ 6 εx

φ(k) log x

whenever k is not a multiple of any element of Dε,δ(x), k is in the range

1 6 k 6 x−δ+5/12,

and (b, k) = 1. Furthermore, every integer in Dε,δ(x) exceeds log x, and all, but at

most one, exceed xηε,δ .

Proof. See [1, Theorem 2.1].

In fact we will need to count primes p ≡ b mod k for which the quotient (p−b)/k
is squarefree. We apply an inclusion-exclusion argument to Lemma 2.3.

Lemma 2.4. There exist absolute constants η > 0, x0, D such that whenever

x > x0, there is a set D(x), of at most D integers, for which∑
a6x/k

µ(a)21P(ak + b) >
x

100φ(k) log x

whenever 36k is not a multiple of any element of D(x), k is in the range 1 6 k 6
x1/3, and (b, k) = 1 with 1 6 b < k. Furthermore, every integer in D(x) exceeds

log x, and all, but at most one, exceed xη.

Proof. Let 1 6 b < k 6 x1/3 with (b, k) = 1. Using µ(a)2 > 1 −
∑
p2|a 1 and

switching the order of summation, we obtain∑
a6x/k

µ(a)21P(ak + b) >
∑
a6x/k

1P(ak + b)−
∑

p6
√
x/k

∑
c6x/(p2k)

1P(cp2k + b)

> π(x; k, b)−
∑

p6
√
x/k

π(x; p2k, b)−
√
x/k.
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Let 1 6 y < z <
√
x/k. Trivially, we have∑

z<p6
√
x/k

π(x; p2k, b) 6
∑
p>z

x

p2k
� x

kz log z
.

Here we have used the bound
∑
p>z 1/p2 � 1/(z log z), which follows from the

bound π(x)� x/ log x by partial summation. By Lemma 2.2 we have∑
y<p6z

π(x; p2k, b) <
2x

log(x/(z2k))

∑
p>y

1

φ(p2k)
6

2x

φ(k) log(x/(z2k))

∑
p>y

1

p(p− 1)
,

using φ(p2k) > φ(p2)φ(k).

We set y = 3 and z = log x so that log(x/(z2k)) ∼ log(x/k) > 2
3 log x. We verify

that
∑
p>3 1/(p(p− 1)) < 0.1065. Combining everything gives∑

a6x/k

µ(a)21P(ak + b) > π(x; k, b)− π(x; 4k, b)− π(x; 9k, b)− 0.32x

φ(k) log x

for all sufficiently large x. We complete the proof by applying Lemma 2.3 with

ε = 1/1000 and δ = 1/12, noting that 1− 1/2− 1/6− 3ε− 0.32 > 1/100.

We remark that with more work, a version of Lemma 2.4 can be proved as an

equality, with the factor 1/100 replaced with ck + o(1) (as x → ∞), where ck is

Artin’s constant
∏
p(1− 1/(p(p− 1)) times

∏
p|k(1− 1/(p3 − p2 − p)).

Lemma 2.5. Fix δ ∈ (0, 1] and let x > 3. There is a set Eδ(x) of quadratic,

primitive characters, all of conductor less than x, satisfying #Eδ(x) �δ x
δ and

such that the following holds. If χ is a real, primitive character of conductor d 6 x
and χ 6∈ Eδ(x), then ∏

y<p6z

(
1− χ(p)

p

)
�δ 1

uniformly for z > y > log x.

Proof. See [6, Lemma 3.3]. The authors of [6] state that the proof of their lemma

borrows from [11, Proposition 2.2], and the authors of [11] state that their propo-

sition is essentially due to Elliott [9]. (The lemma, as stated here, is quoted from

[14, Lemma 7], and is equivalent to [6, Lemma 3.3].)

Lemma 2.6. If x > 2 then∑
a6x

aµ(a)2

φ(a)2

∏
2<p6

√
x

(
1− (−a/p)

p

)2

� log x.

Proof. First, we note that for y > 1 we have the elementary bound∑
a>y

a2

φ(a)4
� 1

y
. (2.2)
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To see this, let h be the multiplicative function satisfying a4/φ(a)4 =
∑
m|a h(m),

so that

h(m) = µ(m)2
∏
p|a

(
p4

p4 − 1
− 1

)
.

Then ∑
a>y

a2

φ(a)4
=
∑
a>y

1

a2
a4

φ(a)4
=

∫∞
y

2

t3

∑
y<a6t

a4

φ(a)4
dt

6
∫∞
y

2

t2

∑
m6t

h(m)

m
dt <

2

y

∑
m>1

h(m)

m
.

This last sum has a convergent Euler product, so (2.2) is established.

For a positive squarefree integer a, let χa be the Dirichlet character that sends

an odd prime p to (−a/p), and such that χa(2) = 1 or 0 depending on whether

a ≡ 3 mod 4 or not, respectively. The character χa is primitive and has conductor

a if a ≡ 3 mod 4 and 4a otherwise.

The product in the lemma (without being squared) resembles L(1, χa)−1, in

fact,

L(1, χa)−1 =
∏
p

(
1− (−a/p)

p

)
.

Our first goal is to show that we uniformly have

L(1, χa)
∏

2<p6
√
x

(
1− (−a/p)

p

)
� 1 (2.3)

for all small a and most other values of a 6 x. Suppose that a 6 (log x)4. Consid-

ering the φ(4a) residue classes r mod 4a that are coprime to 4a, we see (since the

conductor of χa divides 4a) that (−a/p) = 1 or −1 depending on which class p lies

in, with 1
2φ(4a) classes giving 1 and 1

2φ(4a) classes giving −1. It follows from the

Siegel–Walfisz theorem [7, §22 (4)] that∑
p>
√
x

(−a/p)
p

=

∫∞
√
x

1

t2

∑
√
x<p6t

(−a/p) dt� φ(4a)

∫∞
√
x

1

t(log t)5
dt� 1.

Exponentiating, we get (2.3).

Now suppose that a > (log x)4. We break the interval ((log x)4, x] into dyadic

intervals of the form Ij ..= [2j , 2j+1), where the first and last intervals may overshoot

a bit. Using Lemma 2.5 with δ = 1
4 , y =

√
x, and letting z →∞, we have (2.3) for

all a ∈ Ij except for possibly O
(
2j/4

)
values of a. Using the trivial estimate

∏
2<p6

√
x

(
1− (−a/p)

p

)2

� (log x)2
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and a/φ(a)2 � (log log a)2a−1, the contribution of these exceptional values of a ∈ Ij
to the sum in the lemma is

� 2j/4(log j)22−j(log x)2,

which when summed over integers j being considered gives O
(
(log log x)2/ log x

)
.

Thus, we may ignore these exceptional values of a, so assuming that (2.3) always

holds.

By the Cauchy–Schwarz inequality we have

∑
a∈Ij

aµ(a)2

φ(a)2
L(1, χa)−2 6

(∑
a∈Ij

a2

φ(a)4

)1/2(∑
a∈Ij

µ(a)2L(1, χa)−4
)1/2

.

Now the first sum is O
(
2−j
)

by (2.2), and the second sum is O
(
2j
)

by [11, Theorem

2] (with z = −4) and the subsequent comment about Siegel’s theorem. Thus, the

contribution from a ∈ Ij to the sum in the lemma is O(1), and since there are

O(log x) choices for j, the lemma is proved.

We remark that [2, Section 10] has a similar calculation as in Lemma 2.6.

3. Proof of Theorem 1.1

Our proof begins with the observation that every positive integer has a unique

representation of the form an2, where a and n are positive integers with a squarefree.

Thus, (p − 1)(q − 1) = � if and only if p = am2 + 1 and q = an2 + 1 for some

squarefree a. It follows that for all x > 0,

S(x+ 1) =
∑
a6x

µ(a)2
∑

m,n6
√
x/a

m6=n

1P(am2 + 1)1P(an2 + 1). (3.1)

3.1. The lower bound

Let x > 4 and consider a dyadic interval

Iy ..= [y/2, y) ⊂ [1, x1/6].

Also let

NIy (a) ..=
∑
n∈Iy

1P(an2 + 1). (3.2)

Letting I denote a collection of disjoint dyadic intervals Iy, we deduce from (3.1)

that

S(x+ 1) >
∑
Iy∈I

∑
a6x/y2

µ(a)2(NIy (a)2 −NIy (a)). (3.3)
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By the Cauchy–Schwarz inequality, for every Iy ∈ I we have( ∑
a6x/y2

µ(a)2NIy (a)

)2

6
x

y2

∑
a6x/y2

µ(a)2NIy (a)2. (3.4)

Lemma 3.1. Given an interval Iy = [y/2, y) and an integer a, let NIy (a) be as in

(3.2). (i) Uniformly for 2 6 y <
√
x, we have∑

a6x/y2

NIy (a)� x

y log(x/y2)
.

(ii) Uniformly for 2 6 y 6 x1/6, we have∑
a6x/y2

µ(a)2NIy (a)� x

y log x
.

Proof. (i) We change the order of summation and apply Lemma 2.2:∑
a6x/y2

NIy (a) =
∑
n∈Iy

∑
a6x/y2

1P(an2 + 1)�
∑
n∈Iy

π(x;n2, 1)�
∑
n∈Iy

x

φ(n2) log(x/n2)
.

We have
∑
n∈Iy 1/φ(n2)� 1/y by the second bound in Lemma 2.1 (i).

(ii) Let 2 6 y 6 x1/6 and let I ′y be the subset of those n ∈ Iy for which∑
a6x/n2

µ(a)21P(an2 + 1) >
x

100φ(n2) log x
.

Letting NI′y (a) ..=
∑
n∈I′y

1P(an2+1) we see, after switching the order of summation,

that ∑
a6x/y2

µ(a)2NIy (a) >
∑

a6x/y2

µ(a)2NI′y (a) >
∑
n∈I′y

∑
a6x/n2

µ(a)21P(an2 + 1),

and hence ∑
a6x/y2

µ(a)2NIy (a) >
x

100 log x

∑
n∈I′y

1

φ(n2)
.

We claim that ∑
n∈I′y

1

φ(n2)
� 1

y
, (3.5)

whence the result. The claim follows from the second bound in Lemma 2.1 (i) if

I ′y = Iy, so let us assume that I ′y ( Iy.

If n ∈ Iy \ I ′y then n2 6 x1/3, and so if x is sufficiently large (as we assume),

36n2 is a multiple of an element of the “exceptional set” D(x) of Lemma 2.4. Hence,
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by the third bound in Lemma 2.1 (i),∑
n∈Iy\I′y

1

φ(n2)
6

∑
d∈D(x)

∑
n∈Iy
d|36n2

1

φ(n2)
�

∑
d∈D(x)

∑
n∈Iy
d|(6n)2

1

φ((6n)2)

6
∑

d∈D(x)

∑
m>3y
d|m

1

φ(m2)
� 1

y

∑
d∈D(x)

d1/2

φ(d)
� log log x

y(log x)1/2
,

where the last bound holds because, by Lemma 2.4, there are at most D elements in

D(x), and all elements in D(x) are greater than log x. Since our estimate is o(1/y)

as x→∞, we have (3.5), and so the lemma.

Deduction of the lower bound. Combining (3.4) with Lemma 3.1 (i) and (ii),

we see that if Iy = [y/2, y), then, uniformly for (log x)2 6 y 6 x1/6,∑
a6x/y2

µ(a)2(NIy (a)2 −NIy (a)) >
y2

x

( ∑
a6x/y2

µ(a)2NIy (a)

)2

−
∑

a6x/y2

NIy (a)

� x

(log x)2
.

Letting I = {[2j−1, 2j) : (log x)2 6 2j 6 x1/6} and applying (3.3), we conclude

that

S(x)�
∑
Iy∈I

x

(log x)2
� x

log x
.

3.2. The upper bound

By (3.1) we have S(x+ 1) = 2S1(x) + 2S2(x), where

S1(x) ..=
∑

a6x2/3

µ(a)2
∑

n6
√
x/a

∑
m<n

1P(am2 + 1)1P(an2 + 1)

6
∑

a6x2/3

µ(a)2
( ∑
n6
√
x/a

1P(an2 + 1)

)2 (3.6)

and

S2(x) ..=
∑

x2/3<a6x

µ(a)2
∑

n6
√
x/a

∑
m<n

1P(am2 + 1)1P(an2 + 1)

6
∑

n<x1/6

∑
m<n

∑
a6x/n2

1P(am2 + 1)1P(an2 + 1).
(3.7)

Lemma 3.2. (i) Uniformly for x > 2 and 1 6 a 6 x2/3, we have∑
n6
√
x/a

1P(an2 + 1)�
√
x/a

log x

a

φ(a)

∏
2<p6

√
x

(
1− (−a/p)

p

)
.
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(ii) Uniformly for 1 6 m < n < x1/3, we have∑
a6x/n2

1P(am2 + 1)1P(an2 + 1)� x

(n log x)2
· (m,n)

φ((m,n))
· n2 −m2

φ(n2 −m2)
.

Proof. (i) Given x > 2 and 1 6 a 6 x2/3, let

ρa(p) ..= #{b mod p : ab2 + 1 ≡ 0 mod p}.

A routine application of Brun’s sieve [12, Theorem 2.2] gives∑
n6
√
x/a

1P(an2 + 1)�
√
x/a

∏
p6
√
x

(
1− ρa(p)

p

)
.

Since 1− ρa(p)/p = (1− 1/p)(1− (ρa(p)− 1)/(p− 1)), Mertens’ theorem gives∏
p6
√
x

(
1− ρa(p)

p

)
� 1

log x

∏
2<p6

√
x

(
1− ρa(p)− 1

p− 1

)
.

Now, ρa(p)− 1 = (−a/p) for odd p - a, and ρa(p) = 0 for p | a, hence∏
2<p6

√
x

(
1− ρa(p)− 1

p− 1

)
6

a

φ(a)

∏
2<p6

√
x

(
1− (−a/p)

p− 1

)
,

which proves the inequality in the lemma with p − 1 in the denominator instead

of p. But 1− (−a/p)/(p − 1) = (1− (−a/p)/p)
(
1 +O

(
1/p2

))
so the bound in the

lemma holds.

(ii) Given 1 6 m < n < x1/3, let

ρm,n(p) ..= #{b mod p : (bm2 + 1)(bn2 + 1) ≡ 0 mod p}.

Again by Brun’s sieve [12, Theorem 2.2],∑
a6x/n2

1P(am2 + 1)1P(an2 + 1)� x

n2

∏
p6
√
x

(
1− ρm,n(p)

p

)
.

By Mertens’ theorem we have∏
p6
√
x

(
1− ρm,n(p)

p

)
=
∏
p6
√
x

(
1 +

p(2− ρm,n(p))− 1

(p− 1)2

)(
p− 1

p

)2

� 1

(log x)2

∏
p6
√
x

(
1 +

p(2− ρm,n(p))− 1

(p− 1)2

)
.

Now, for any prime p we have

ρm,n(p) =


2 if p - mn(m2 − n2),

1 if p | mn(m2 − n2) and p - (m,n),

0 if p | (m,n),
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hence

∏
p6
√
x

(
1 +

p(2− ρm,n(p))− 1

(p− 1)2

)
6

∏
p|(m,n)

(
p

p− 1

)2 ∏
p|m2−n2

p-(m,n)

p

p− 1

=
∏

p|(m,n)

p

p− 1

∏
p|(m2−n2)

p

p− 1
.

Combining gives the result.

Deduction of the upper bound. By (3.6), Lemma 3.2 (i) and Lemma 2.6, we

have

S1(x)� x

(log x)2

∑
a6x2/3

aµ(a)2

φ(a)2

∏
2<p6

√
x

(
1− (−a/p)

p

)2

� x

log x
.

By (3.7) and Lemma 3.2 (ii) we have

S2(x)� x

(log x)2

∑
n<x1/6

1

n2

∑
m<n

(m,n)

φ((m,n))
· n2 −m2

φ(n2 −m2)
.

To bound the double sum, we write g = (m,n), m = gm1, n = gn1 and change the

order of summation to obtain∑
g6x1/6

1

g2

∑
n16x1/6/g

1

n21

∑
m1<n1

(m1,n1)=1

g

φ(g)
· g2(n21 −m2

1)

φ(g2(n21 −m2
1))

6
∑

g6x1/6

1

φ(g)2

∑
n16x1/6/g

1

n21

∑
m1<n1

(m1,n1)=1

n21 −m2
1

φ(n21 −m2
1)
.

This is equal to O
(∑

n16x
1/n1

)
= O(log x) by Lemma 2.1 (ii). Recalling that

S(x) = 2S1(x) + 2S2(x) and combining gives

S(x)� S1(x) + S2(x)� x

log x
.

This completes the proof of the theorem.
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