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Abstract

In this paper we show how to achieve timed fair exchange of digital signatures of standard
type. Timed fair exchange (in particular, contract signing) has been considered before, but only
for Rabin and RSA signatures of a special kind.

Our construction follows the gradual release paradigm, and works on a new “time” structure
that we call a mirrored time-line. Using this structure, we design a protocol for the timed fair
exchange by two parties of arbitrary values (values lying on their respective mirrored time-lines).
Finally, we apply the blinding techniques of Garay and Jakobsson to turn this protocol into a
protocol for the timed fair exchange of standard signatures.

The length of these mirrored time-lines makes another problem apparent, which is making
sure that the underlying sequence has a period large enough so that cycling is not observed.
We also show how to construct these structures so that, under reasonable assumptions, this is
indeed the case.
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1 Introduction

The exchange of digital signatures, and, in particular, contract signing, where the signatures are
on a common piece of text, constitutes an important part of any business transaction, especially
in settings such as the World Wide Web, where participants do not trust each other to some
extent already. Recently, considerable efforts have been devoted to develop protocols that mimic
the features of “paper contract signing,” especially fairness. A contract signing protocol, or, more
generally, an exchange of digital signatures, is fair if at the end of the protocol, either both parties
have valid signatures, or neither does. In some sense, this corresponds to the “simultaneity”
property of traditional paper contract signing. That is, a paper contract is generally signed by
both parties at the same place and at the same time, and thus is fair.

Early work on fair exchange of secrets/signatures focused on the gradual release of secrets to
obtain simultaneity, and thus fairness [Blu83, EGL85, Gol83] (see [Dam95] for more recent results).
The basic idea is that if each party alternately releases a small portion of the secret, then neither
party has a considerable advantage over the other. Unfortunately, such a solution has several
drawbacks in real situations. One problem is that of uncertain termination: if the protocol stops
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prematurely and one of the participants does not receive a message, he will never be sure whether
the other party is continuing with the protocol, or has stopped—and perhaps even has engaged
in another contract signing protocol! The other problem is how to enforce that neither party has
a considerable advantage over the other. If the method is not designed properly, the party with
more powerful computational resources could abort and employ all of his resources to complete the
computation (e.g., recover the signature by parallel search of the remaining bits), while it might
take much longer or even be infeasible for the weaker party to do so.

These problems have recently been tackled by Boneh and Naor [BN00] using tools based on
moderately-hard problems [DN92]. (A moderately-hard problem is one which is not computationally
infeasible to solve, but also not easy.) They propose an elegant “timing” mechanism based on
modular exponentiation, which is a problem believed not to be well suited for parallelization.
Indeed, considerable efforts have been invested in finding efficient exponentiation algorithms and
still the best methods are sequential. Another important property of this mechanism is verifiability
of the amount of work (number of steps) that would guarantee that a certain value is obtained.
Using this mechanism, they introduce a variety of timed primitives, including timed commitments,
timed signatures, and in particular, timed contract signing, where they show how to fairly exchange
Rabin and RSA signatures of a special kind (namely, with modulus that is a Blum integer that fits
the time structure).

In this paper we show how to achieve fair exchange—and contract signing—of standard sig-
natures (e.g., RSA, DSA, Schnorr) without the modulus restriction above; more specifically, of
signatures that allow for blinding [Cha82]. We build on the construction for timed release of stan-
dard signatures due to Garay and Jakobsson [GJ02]; however, the timed release is a “one way”
operation, from a signer to a receiver, and cannot be directly applied to achieve a fair exchange.
We answer this challenge by introducing a new time structure, which we call a mirrored time-line.
In a nutshell, Garay and Jakobsson called a time-line the [BNOO] structure (vector) of the form:

{67} (modN), (1)

for N a Blum integer and generator g satisfying certain properties, and used an undisclosed value
in the vicinity of the kth point (specifically, the kth point’s square root) as the signature’s blinding
factor. A mirrored time-line is basically obtained by “concatenating” a time-line with its symmetric
image (in other words, in the first half of a mirrored time-line the distance between the points
increases exponentially, while in the second half it decreases like-wise). We then design a protocol—
a “walk” on the mirrored time-line—which allows each party to successively approach the other
party’s undisclosed value in a synchronized way. Finally, by using the blinding techniques of [GJ02],
we obtain a protocol for the timed fair exchange of standard signatures.!

Increasing the length of these time structures poses another problem, which is making sure that
the underlying sequences do not cycle, or at least that their period is large enough, otherwise no
guarantees could be given that a time-line would be traversed sequentially. (In fact, this is also a
problem with “regular,” shorter time-lines, but our construction makes it more apparent.) We also
show in this paper how to construct time-lines so that, under reasonable assumptions, the period
of the underlying sequence will be large enough so that no cycling will occur. To our knowledge,
although work has been done estimating the period of more general sequences [FPS0la, FPS01b],
the case of the period of sequences such as the ones above has not been considered before.

1We observe that, as pointed out in [GJ02], these techniques are more general and can also be applied to other
cryptographic functions, allowing, for example, the fair exchange of (verifiable) ciphertexts (e.g., by using ElGamal
encryption); in this extended abstract we concetrate on the signatures application.



Prior and related work. We already mentioned the work on fair exchange and contract signing
based on the gradual exchange approach. An alternative approach to achieve fairness instead of
relying on the gradual release of secrets has been to use a trusted third party, who is essentially a
judge that can be called in to handle disputes between contract signers. There is also a large body
of work following this approach; see, e.g., [ASW98] and references therein. Our solution follows the
former paradigm.

Regarding work on “time,” or relating time to computational effort, we already mentioned the
work of Dwork and Naor [DN92] on moderately-hard functions, which they used to combat junk
e-mail. Timed primitives have also been designed for cryptographic key escrow. In [Sha95], Shamir
suggested to escrow only partially a DES key, so that to recover the whole key, the government would
need to first obtain the escrowed bits of the key, and then search exhaustively for the remaining
bits. A problem with this type of approach is that the search can be parallelized, thus making
it difficult to give a precise bound on the number of steps needed for the recovery. Bellare and
Goldwasser [BG96, BGI7] later suggested the notion of “time capsules” for key escrowing in order
to deter widespread wiretapping, and where a major issue is the verification at escrow time that
the right key will be recovered.

In another line of work, Rivest, Shamir and Wagner [RSW96] suggested “time-lock puzzles”
for encrypting data, where the goal is to design puzzles that are “intrinsically sequential,” and
thus, putting computers to work together in parallel does not speed up finding the solution. They
base their construction on a problem that, as we mentioned earlier, seems to satisfy that: modular
exponentiation. In their work, however, no measures are taken to verify that the puzzle can be
unlocked in the desired time.

Using a function similar to that of [RSW96]—specifically, the vector (1) above—Boneh and
Naor [BN0O] defined the notion of (verifiable) timed commitments, an extension to the standard
notion of commitments in which a potential forced opening phase permits the receiver to recover
(with effort) the committed value vithout the help of the committer. They show how to use timed
commitments to improve a variety of applications involving time, including timed signatures of a
special kind, and, in particular, contract signing. They show how to exchange Rabin and RSA
signatures when the respective moduli coincide with the one used in vector (1).

Finally, in [GJ02] Garay and Jakobsson show how to generate vector (1)-type structures very
efficiently—they call these “derived time-lines,” and use them together with blinding techniques
for the timed release of standard signatures.

Our work. Our contributions are two-fold:

e We achieve timed fair exchange (and contract signing) of standard signatures—specifically,
of those which admit blinding (e.g., RSA, DSA, Schnorr). We achieve this in three steps.
First, we extend the time structure (1) to what we call mirrored time-lines: points whose
“distance” increases in exponential fashion, followed by points whose distance decreases like-
wise. Second, using this new structure, we design a protocol for the timed fair exchange by
two parties of arbitrary values (values lying on their respective mirrored time-lines). Finally,
we apply the blinding techniques of [GJ02] to turn this protocol into a protocol for the timed
fair exchange of standard signatures.

e Using a “layered safe prime” construction, we show how under reasonable assumptions,
namely, the Hardy—Littlewood version of the prime k-tuples conjecture [HL23], the period of
the underlying sequence can be made large enough so that cycling will not occur in a time-line
whose modulus is the product of two such safe primes.



Organization of the paper. Section 2 contains the necessary background material for the rest
of the paper. The notion of mirrored time-lines, together with considerations on their periods as
well as a protocol to construct them, is presented in Section 3. Section 4 is devoted to timed fair
exchange. First we present the protocol for the fair exchange of arbitrary values (Section 4.1), and
then we show how to turn it into a protocol for the fair exchange of signatures (Section 4.2). We
conclude with some remarks on the efficiency of our protocol.

2 Preliminaries

The generalized BBS assumption. Let N be a Blum integer, i.e., N = p1p2, where p; and po
are distinct primes each congruent to 3 mod 4. Recall the notion of a Blum-Blum-Shub (BBS)
sequence Tg, 1, -, Ty, With g = g2 (mod N) for a random ¢ € Zy, and z; = z; 12 (mod N),
1 <4< n. It is shown in [BBS86] that the sequence defined by taking the least significant bit of
the elements above is polynomial-time unpredictable (unpredictable to the left and to the right),
provided the quadratic residuosity assumption (QRA) holds. Recall also that these sequences are
periodic (although not always purely periodic).

In [BN0OO], Boneh and Naor postulate the following generalization of unpredictability of BBS-
type sequences. Let N and g be as above, and k an integer such that [ < k < u. Then given the
vector

.
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the (I,u,d,€) generalized BBS assumption states that no PRAM algorithm whose running time
k+1
is less than § - 2% can distinguish the element 922 from a random quadratic residue R?, with

probability larger than e. The bound [ precludes the parallelization of the computation, while the
bound u the feasibility of computing square roots through factoring. We refer to [BN0O] for further
details on this assumption.

Time-lines. In [GJ02], Garay and Jakobsson called the partial description of the BBS sequence

{9221 k_, (mod N) as given by input vector (2) a value-hiding time-line, calling the value 9221671 the
time-line’s hidden value. They defined the notion of a (T',¢,€) time-line commitment, which allows
a committer to give the receiver a timed commitment to a hidden value. At a later time, she can
reveal this value and prove that it’s the correct one. However, in case the committer fails to reveal
it, the receiver can spend time 7" and retrieve it.

More specifically, a (T',t,€) time-line commitment consists of three phases: the commit phase,
where the committer commits to the time-line’s hidden value by giving the receiver the description
of the time-line and a proof of its well-formedness; the open phase, where the committer reveals
information to the receiver that allows him to compute the hidden value—and be convinced that
this is indeed the committed value; and the forced open phase, which takes place when the
committer refuses to execute the open phase; in this case, the receiver executes an algorithm that
allows him to retrieve the hidden value, and produces a proof that this is indeed the value. A
time-line commitment scheme must satisfy the following security constraints:

Binding: The value committed to is uniquely defined by the commitment. In particular, it is not
possible to open up the commitment to a value other than that which will be obtained by the
forced opening of the commitment (corresponding to the iterated squaring of the time-line’s
starting value.)



Soundness: After receiving the time-line, the receiver is convinced that the forced open phase will
produce the hidden value in time 7.

Privacy: Every PRAM algorithm whose running time is at most ¢ < T on polynomially many
processors, given the transcript of the time-line commit protocol as input, will succeed in
computing the time-line’s hidden value with probability at most e.

Proving the well-formedness of a time-line involves a computational effort (see [BN0O], and our
variant in Section 3). Garay and Jakobsson [GJ02] show how once a time-line is established and
its properties verified, time-line commitments can be generated at a low cost. At a high level,
the idea is for the committer to create a new time-line from the original time-line by applying a
secret transformation value—the shifting exponent—to the end points of the master time-line, in
such a way that verification of the new time-line’s properties is easy. We will be using time-line
commitments in Section 4. Further details can be found in [GJ02].

3 Mirrored Time-Lines

Recall that, in a nutshell, a time-line is the partial description of a BBS sequence, as given by the
vector (2) in Section 2. In this section we introduce a time structure that is an extension of a
time-line. This new time structure will be used by our applications of Section 4.

Let N be a Blum integer as before (i.e., N = pipy, where p; and py are distinct primes

each congruent to 3 mod 4) and g €r Zy. Let u; def 922 mod N, 0 < ¢ < K, and vj def
K+1_,K—j
922 ’ mod N, 1 < j < K. We call a mirrored time-line (MTL) the result of “concatenating”
SK4+1
two such vectors, and throwing in the initial term g, and the final term ug; = 922 mod N, i.e.:
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(everything mod N). In other words, in the first half of an MTL the distance between the points
grows geometrically, as with original time-lines,while in the second half it decresases like-wise.
Sometimes we will call element ux (= vg) the pivot of the MTL.? Obviously, the length of an MTL
is double that of a basic time-line—for the same K. In fact, our applications will require using
larger values of K (e.g., K ~ 80) than the ones used by the timed applications of [BN00, GJ02]
(K € [30,50]); thus, measures must be taken to guarantee that the period of the underlying sequence
is large enough. In the following, we present a protocol for MTL generation between two parties,
the prover (the party generating the MTL) and the verifier, with the following properties:

1. Tt assures the verifier that with high probability all the points in the received MTL lie on the
same time-line; and

2. it guarantees the prover that the period of the underlying sequence is larger than the length
of the MTL.

2The main application of the MTL, the fair exchange of signatures, will only be using the second half of the
time-line; however, the first half of the time-line will be needed to prove the well-formedness of the second half (cf.
Section 3.2).




As in [BN00, GJ02], property 1 can be achieved rather efficiently, with roughly 2K zero-knowledge
proofs that can be run in parallel. Property 2, however, requires some additional considerations,
which we outline below.

3.1 Obtaining large periods

Given a nonzero integer g and a positive integer n let Per(g,n) be the period of the (ultimately)
periodic sequence (g" mod n);>o, let Peri(g,n) be the period of (9% mod n);>¢, and let Pers(g,n)

be the period of (gQ2l mod n);>9. We have
Pery(g,n) = Per(2,Peri(g,n)) = Per(2, Per(2, Per(g,n))). (4)

Since Per(g,n) is smaller than n, and in fact can be much smaller, it is not clear that a multiple
layering of the Per function is adding complexity. In fact it may be that the reverse is occurring,
and a sequence (9221 mod n);>o has a very short period. Thus, in using a time-line sequence as a
means of imposing a given degree of computational intractability, it seems interesting to know that
the period of such a sequence is suitably large.

If g and n are coprime integers, with n > 0, let ord(g,n) be the multiplicative order of g in Z}.
More generally, even when g and n are not coprime, let ord*(g,n) be ord(g,n*), where n* is the

largest divisor of n that is coprime to g. The following result is well-known.
Lemma 3.1 For nonzero integers g,n with n > 0, Per(g,n) = ord*(g,n).

Proof Write n = ngn*. By the Chinese remainder theorem, our sequence (g* mod n)i>o is equiv-
alent to the sequence of pairs (¢* mod ng, g* mod n*);>. For i large, g° = 0 mod ng, so it has an
ultimate period of length 1. Further, (¢° mod n*);>o is purely periodic with period ord(g,n*). Thus
(¢° mod n);>¢ becomes periodic as soon as g = 0 mod ng, and the length of the period is ord*(g, n).
]

We have at least some lower bound before a repeat in the sequence (2! mod n)i>o. Indeed, if
27 =2" mod nfor j > i > 0, then j > logn. It follows then from (4) that the first |log log(Per(g,n))|

terms of the sequence (ngl )i>o are distinct.

On the other hand, since Pery(g,n) < Pery(g,n) < Per(g,n) (from (4) and Lemma 3.1) if we
have g,n with Pery(g,n) large, it follows that Per;(g,n) and Per(g,n) are large as well.

Here are some possible strategies for choosing a pair g, n with Pery(g,n) large:

e Actually compute Pery(g,n) for randomly chosen parameters g,n (with n a Blum integer) to
see if it is long enough.

e Ignore the problem, hoping that a randomly chosen g,n will do.
e Use layered safe primes as described below.

e Use a combination of the above strategies; that is, use safe primes that are not layered, or
layered to only the next level.

Computing the period for randomly chosen parameters may in fact be difficult, depending on
one’s ability to factor various numbers that arise. In some sense, using layered safe primes allows
for the computation of the period in direct fashion.



Ignoring the problem, which has been the tacit strategy till now, would work in practice if there
are not many pairs g, n where Pers(g,n) is very small. Such a result was shown in [FPS01a, FPS01b]
for the sequence (ghk mod n)g>o, where g, h,n are chosen at random, with n the product of 2 primes
of the same magnitude. A somewhat weaker, but still adequate result is shown in the same papers
for the special case h = 2. It seems likely that for most Blum integers n and for most residues
g mod n, Pery(g,n) > n'~¢ for any fixed € > 0, but this remains unproved at present. A paper
which takes a step in this direction is [MPO03].

A prime p is “safe” if (p —1)/2 is also prime. (In number theory, a prime ¢ with 2¢+1 = p also
prime is known as a Sophie Germain prime.) It has long been recommended to use safe primes in
RSA moduli in order to foil the p — 1 factoring algorithm. However, almost surely this algorithm
would be useless with random primes in an RSA modulus (see [PS95]). Despite this, since it is so
easy to use safe primes, the thought then is “Why not? Let’s use safe primes.” The same logic can
be applied to time-line sequences.

Consider integers s such that

s, r=2s+1, g=2r+1, and p=2¢+1

are all prime. By the Hardy—Littlewood version of the prime k-tuples conjecture [HL23], the number
of such integers s < z is
~ cz/(Inxz)?,

as x — 0o, where

2 6p> —4p + 1
== 1— ———— ) =~ 5.5349.
=3 I (1- g ) =ssms

While it is perhaps not so easy to find large examples of such numbers s, it is not intractable. For
example, in the vicinity of 25°°, about 1 in 26 billion integers will (conjecturally) be valid examples.
A sieve may be used to isolate numbers s which are more likely to work, with a primality test
to finish the job. If successful values s, sy are found, one can construct the modulus N = pips
with these layered safe primes. Doing so ensures that if ged(g® — g, N) = 1 then the period of the
sequence

p prime

@ modN, i=0,1,..., (5)
is either s159 or 25159, where 5153 ~ 2 ®N. Indeed, the condition gcd(¢® — g, N) = 1 implies that
g is coprime to N and that ord(g,p;) > 2 for i = 1,2. Thus, ¢1¢o divides ord(g, N). Similarly,
riry divides ord(2, ¢1¢2) and s1s2 divides ord (2, r172). It follows from Lemma 3.1 and (4) that s1s9
divides Pers(g, N).

We thus have the following theorem.

Theorem 1 Assuming the Hardy-Littlewood version of the prime k-tuples conjecture there are
~ 1.4986 - 2™ /(m — 3)* safe primes p with m bits such that (p—1)/2 = q and (g—1)/2 = r are also
safe primes. Further, if N is the product of any 2 of these primes p and g is any integer satisfying
ged(g® — g, N) = 1, then the period of the sequence (5) is at least 228,

As noted above, having Pers(g, N) large ensures that Pery(g, N) is also large, since Pery(g, N) >
Pery(g, N). This then ensures that the points u;,v; on an MTL under consideration are all dis-
tinct. Indeed, if 71,72 have 500 or more bits each (to make N hard to factor), and if K = 80 as
recommended, we are only looking at a subset of the first 2% terms of a sequence with period

more than 2998,



A less “high tech” way is likely to work to find Blum integers N where the period of (5) is large.
Suppose ¢1,q2 are random primes near 2°°°. Tn [FPS0la, FPSO1b] it is shown that for random
choices of g, h it is highly likely that the period of the sequence

ghl mod q192, i:0717"'7
is greater than (q1g2)! €. Tt is reasonable to conjecture that the same is true for the sequence

2% mod q1 o,

and that this remains true if in addition we insist that both py = 2¢q; + 1,p2 = 2¢g2 4+ 1 are prime.
Assuming this is so, it is an easy matter then to select random primes ¢, g2 near 2°°° such that
(1) p1 =2q +1, ps = 2¢go + 1 are prime, and

(2) the period of the sequence 2° mod q;¢o exceeds 2900,

(One can either hope that property (2) is satisfied without checking it, or one can choose the
primes q1, g2 such that ¢(q1q2) is easy to factor, so that the period of the sequence might actually
be checked.) Then, if N = p;p; and g is chosen with ged(g® — g, N) = 1, then Per;(g, N) > 2900
and the first 900 terms of the sequence (5) are distinct. Both conditions give a quite comfortable
margin to avoid periodicities.

In what follows, we take this last approach of using safe primes p1,ps for N, with p; = 2¢; + 1
for i = 1,2, and with ord(2, q1q2) > 2°%°.

3.2 The mirrored time-line protocol

We now outline the steps of the MTL protocol.

1. Setup. The prover chooses a modulus N = pyps, for p1, po safe m-bit primes as in Theorem 1.
The prover then proves to the verifier in zero-knowledge that N is the product of two safe
primes, using the protocol of Camenisch and Michels [CM99a]. The prover also chooses a
generator g with g3 —¢g € Z’y. Then the order of g in Z7; is either 2¢;¢2 or gi1g2, and the order
of g% is qiq2. The condition that ¢3 — g € Z’y is easily checked by both the prover and the
verifier.

2. Compute the MTL. The prover computes the elements in the MTL, u; = gQQl mod N,
K+1_,K—j
0<i<K,andv; = g% 7 mod N, 1< j < K. Knowing ¢(N) allows the prover to

perform the computations efficiently, by first computing, e.g., a; = 22" mod #(N) and then
u; = g% mod N. The computation of the v;’s is performed similarly.

3.  Prove well-formedness. The prover proves to the verifier that u; = gQ2l mod N, for 0 <
i < K+1,and v; = 922K+1_2K " mod N, for 1 < j < K. The proof for the u;’s is done as in
[BN0O], by showing that each triple < g, u;,u;y1 >, 0 <14 < K, is of the form < g, g7, g“"2 >, for
some z.3 Similarly, the correctness of the “v line” is established by a zero-knowledge proof that
the tuples < g,ux—_1,urx,v1 >, and < g,ux—j,vj—1,v; >, for 2 < j < K, are Diffie-Hellman
tuples. These 2K proofs are performed in parallel.

We now argue how the properties mentioned at the beginning of the section are satisfied upon
completion of the protocol.

3See also [Mao01] for a more efficient protocol.



1. The probability that a cheating prover successfully convinces the verifier that a wrong value
lies on the MTL is 2Ke,, where € is the soundness error of the zero-knowledge protocol of
step 3. Given the safe-prime structure of N, and using the ZK protocol presented in [Mao01]

yields
_ 21 +2¢ -1 4

2q192 VN’
These protocols can be repeated to lower the error.

S

2. A sufficiently large period of the MTL follows from Theorem 1.

Setting up an MTL requires a computational effort, particularly in the Setup phase for the proof
of the safe-prime structure of N [CM99a]. In our applications of Section 4, however, this effort will
be incurred only once, as the prover will use one MTL (call it the master MTL) to spawn many
other MTL’s much more efficiently. We also note the “zero-knowledgeness” of the MTL protocol
above with respect to ¢(N); this will guarantee the timed-release property of the applications that
follow.

4 Timed Fair Exchange of Standard Signatures

We now turn to applications of our MTL construction. One important application is fair exchange.
Recall that in this problem two parties, Alice and Bob, have an item that they wish to exchange
in such a way that either both get the other’s item, or nobody does. In particular, we will be
considering the case of exchange of digital signatures, a specific instantiation of which is contract
signing, where each party would like to receive the other’s signature on a known piece of text. But
before we do that, we first consider the simpler case of the parties fairly exchanging their respective
time-lines’ hidden values (see Section 2). We will then use this building block to allow for the
exchange of standard signatures, by using the committed hidden values to blind the respective
signatures—and prove that this is indeed the case. Note that the simpler building block already
enables other timed applications, such as collective (two-party) coin tossing [Blu81].

4.1 Fair exchange of hidden values

Assume that the two parties, Alice and Bob, have agreed on an integer parameter K. Let T = 2K,
For this application, we envision K to be large (in particular, larger than for previous timed
applications), e.g., K =~ 80. Further, assume that both parties have performed (T,t,€) time-line
commitments to the other party, using the protocol of [GJ02]. As a result, Alice and Bob are
committed to their respective time-lines’ hidden values which now they would like to exchange
fairly. We adapt the definition of fairness of a timed contract signing protocol of [BNOO] to the case
of exchange of hidden values:

Fairness: A hidden-value fair exchange protocol is said to be (a,€)-fair if for any of the parties
(wlog, Alice) working in time ¢ smaller than some security parameter, and running the fair
exchange protocol with the other party (Bob), the following holds: If at some point Alice
aborts the protocol and succeeds in recovering Bob’s hidden value with probability p 4, then
Bob running in time a - ¢t can recover Alice’s hidden value with probability pp, such that

lpa —pB| <€

Intuitively, a is the advantage of the party that aborts. Below we present a hidden-value fair
exchange protocol that is (2,€)-fair, for negligible e. The general idea is as follows. First, the



parties each generate an MTL as described in Section 3. To these MTL’s the parties apply the
time-line commitment protocol of [GJ02]; as a result, new, derived time-lines are generated (much
more efficiently), and the parties become committed to the new time-lines’ hidden values. It turns
out that a much shorter description (only three points) of these new time-lines is sufficient for
the commitment protocol: the end points and the new time-line’s pivot; the hidden value is the
(principal) square root of the right end point, and remains secret. Having established this, the
parties proceed to perform the exchange: starting from the time-line’s pivot, the parties now take
turns, revealing and verifying the v points in ascending order (i.e., from left to right) on the new
time-line., Thus, after K rounds, they both reach and verify each other’s hidden values. Should
any of the parties abort in the middle of the exchange, the other party is assured that the hidden
value can be reached by repeated squaring of the last revealed value. Note that it is possible for a
party to abort after receiving the first party’s commitment and without having sent his own; given
our choice of parameters K and T, however, the amount of work—and time—required to get to
the first party’s hidden value will be gargantuan. We now describe the protocol in detail.

1.  Setup. Both Alice and Bob generate their own mirrored time-line, MTL 4 and MTLp respec-
tively, using the protocol from Section 3, which gets verified by the other party.

2. Commit phase. Both parties, acting as committers, execute the time-line commitment
protocol of [GJ02] using their respective MTL’s as the master time-line. Specifically, each
party i € {Alice, Bob} acting as the committer, performs the following steps on the mirrored
time-line he generated (when necessary, we will be using superscripts to identify the elements
of each party’s time-line; in the following we omit them for simplicity):

2.1 Choose shifting ezponent. The committer picks a random integer o € Zy(n). (If the
committer does not know the value of ¢(N) because of use of an MTL from a trusted
third party, then the committer may choose « at random in [1, N/2].)

2.2 Compute new time-line. The committer computes ¢’ = ¢%, u'x = u%, vk = v}, and
u'k 11 = uf, (mod N). He outputs (¢, v'fc, u'x 1), and keeps v’k secret. v'f is
party ¢’s hidden value.

2.3 Prove well-formedness of new time-line. The committer does not reveal «, but instead
proves to the receiver that

log, g = log,, . u' g = logy,. ., ki1 (= a),

i.e., that the new time-line is correctly derived from the mirrored time-line, using a
(statistical) zero-knowledge proof of equality of two discrete logs modulo the same
number (N) [CEvdG87, CP92, Bao98]. Call this type of proof EQLOG-1(a, N). (For
conciseness, we will sometimes use “[-]” to refer to these zero-knowledge proofs.)

3. Exchange phase. Now the gradual exchange starts, with Alice and Bob taking turns in
revealing their respective v'’s in ascending order (i.e., halving the distance to the hidden value
in each round), together with a proof that they lie on the shifted time-line. Specifically, the
following is being executed from j = 1 to K: Alice sends to Bob

1A

U

(v;‘)a mod Ny, [log,a g'A = log,a v';‘],
J

*This phase of the protocol has to be performed only once, and then the resulting time-lines can be used repeatedly
for several exchanges. It is also possible for both parties to use the same mirrored time-line, say, a “public” mirrored
time-line generated by a third party which each party verifies. For simplicity, we assume that each party generates
its own.
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using an EQLOG-1 proof as before. Bob, after verifying the proof, responds with

o - (U]B)ﬂ mod Nz, [loggB g'B = logUJB v'f],

4. Forced retrieval. Should any of the parties, say, Alice, stop the exchange at round /,
1 < ¢ < K, then Bob proceeds to successively square v’?_l (modN4) to get to vIA}, Alice’s
hidden value, in approximately 25 ~¢ modular multiplications.

We now argue for the security of the protocol. The well-formedness of the derived time-line
in Step 2 follows from the well-formedness of the MTL construction (Section 3) and the proofs
of correct shifting, both in Step 2 and in the gradual exchange of Step 3. Thus, the parties are
assured that the received points lie on the new time-line. Additionally, the new time-line inherits
the long-period guarantee of the original MTL; thus, assuming the generalized BBS assumption
holds, no “shortcuts” are possible for any adversary working in time ¢ < 7', and the probability of
obtaining the other party’s hidden value is at most €. For the fairness, suppose, wlog, that Alice
aborts the protocol after Bob reveals only ¢ < K points v’ on his time-line. Then she can compute
the hidden value in approximately 25 ¢ multiplications (but not faster, based on the generalized
BBS assumption). Bob, on the other hand, has one v’ less than Alice has, and can compute Alice’s
hidden value using approximately 2 - 24 = 2K—¢+1 modular multiplications; thus, his workload
is roughly twice that of Alice’s. Thus we have the following.

Lemma 4.1 Assume the hardness of the discrete logarithm problem, the Hardy—Littlewood version
of the prime k-tuples conjecture, and that the generalized BBS assumption holds for some parameters
(I,u,0,€). Then the protocol above is a (2,€)-fair hidden-value exchange protocol.

As in [BNOO], it is possible to argue the “zero-knowledgness” of a party’s hidden value against
an adversary willing to invest a time less than 7', by constructing a simulator operating in time
proportional to the running time of the adversary that outputs a transcript of the execution that
is indistinguishable from the real execution. This property will additionally guarantee the feature
termed “abuse freeness” in [GJM99] (aka “strong fairness” [BN00]) in contract signing protocols,
which we now consider.

4.2 Fair exchange of signatures

In [GJ02], Garay and Jakobsson show how to use time-line commitments to perform the timed
release of signatures that allow for “blinding” [Cha82] (e.g., RSA, DSA, Schnorr). Timed release of
signatures is closely related to our timed fair exchange problem, except that it is only “one way,”
from a signer to a verifier: the signer time-commits to a signature, and the verifier knows that if
the signer refuses to reveal the signature, he will be able to retrieve it using a “forced-open” phase.
In [GJO02] the time-line’s hidden value is used as the blinding factor for the signature—together with
proofs that, once recovered, the hidden value will produce correct unblinding of the signature. By
applying this transformation to our hidden-value fair exchange protocol, we obtain a fair exchange
protocol for standard signatures.

Note that the Fairness condition of Section 4.1 can be readily modified to account for the
fair exchange of signatures. Two other standard conditions for the case of exchange of signatures
are Completeness (the signature verification algorithms will output “Accept” on signatures that
are the result of correct execution of the protocol), and Unforgeability (the probability that any
polynomial-time adversary will produce a fake signature/contract is negligible); see, e.g., [ASW98,
BNO0O] for further details on these and other definitions.
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We now show how to augment the Commit phase of Section 4.1 to perform the signature
blinding. We exemplify for the case of RSA signatures,® but keep in mind that the technique also
applies to other (e.g., discrete log-based) signatures; also note that the signatures being exchanged
could be of different types. The transformation is taken from [GJ02] almost verbatim (with some
details omitted for readability). We assume that steps 2.1-2.3 regarding the time-line commitment
have already taken place, and, again, we omit indices identifying the parties for readibility, but
bear in mind that both parties are performing this phase, as signers.

2.  Commit™ phase. Let n be the signer’s RSA modulus, (e,n) be the signer’s public key, and d
his secret key, chosen in such that way that z° = z mod n for all values z € Z,. Additionally,
the signer will be performing auxiliary (standard) commitments using a subgroup of order N
in Z%,, for N' = KN + 1 a prime; let h be a generator of this subgroup.

2.4 Normal signature generation. Let M be the message to be signed.® The signer computes
s =M% mod n.

2.5  Application of blinding factor. The signer blinds the signature by computing
§ = s'/% mod n,

where v is his time-line’s hidden value. He sends the pair (M, §) to the verifier.
2.6  Auziliary commitments and proof of uniqueness. The signer computes

b=h"( and B = h"E+! (mod N').
The signer proves to the verifier that log;, b = log, B (= vk), using EQLOG-1(vg, N').

Let INTVL(z € [a,b]) denote a zero-knowledge proof of knowledge that z lies exactly
(i.e., with expansion rate 1) in interval [a,b] [Bou00]. The signer proves to the verifier
that the blinding factor lies in the right interval with INTVL(vg € [0, N — 1]).

2.7 Proof of correct blinding. The verifier computes X = §° mod n.

Let EQLOG-2(z,n1,n2) denote a zero-knowledge proof of knowledge of equality of
two discrete logs (z) in different moduli (n; and ny) [BT99, CM99b]; these proofs
additionally require the strong RSA assumption [BP97]. The signer proves that

log y (M mod n) = logy,(b mod N') (= vk)
using EQLOG-2(vg,n, N').

It is shown in [GJ02] that the above sub-protocol produces a (T,t,¢) timed RSA signature
scheme. This, together with Lemma 4.1, allow us to conclude

Theorem 2 Assume the hardness of the discrete logarithm problem, the Hardy—Littlewood version
of the prime k-tuples conjecture, and that the strong RSA assumption and the generalized BBS
assumption hold, the latter for some parameters (I, u,d,€). Let S = (G, S, V') be a signature scheme
that allows for blinding (e.g., RSA, DSA, Schnorr). Then it is possible to construct protocols for
the timed fair exchange of signatures based on §S.

*Timed contract signing using RSA (and Rabin) signatures was also discussed in [BN00], but for the case when
the same modulus is used for both the signature and the time-line construction. Here we consider the general case of
arbitrary moduli.

For simplicity, we omit here the issue of secure padding schemes for digital signatures.
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4.3 Efficiency

Regarding efficiency, the number of rounds of our protocol is roughly the same as the protocol
of [BNOO] for special signatures (K). The computational cost of our protocol in each round is
higher, though: generation and verification of a zero-knowledge proof of knowledge, vs. a simpler
verification operation (e.g., a squaring in the case of Rabin signatures) in the case of [BN00]. On
the other hand, the setup cost is lower, as the cost involved in the generation of the mirrored
time-line is incurred only once, after which derived time-lines are generated for each execution of
the protocol, which require a constant number of proofs of knowledge.

Acknowledgements: The authors thank Markus Jakobsson for valuable discussions on the sub-
ject, and the anonymous reviewers for FC’03 for their useful comments.
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