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Abstract. We study the number and nature of solutions of the equation ¢(n) = ¢(n+ k),
where ¢ denotes Euler’s phi-function. We exhibit some families of solutions when k is even,
and we conjecture an asymptotic formula for the number of solutions in this case. We show
that our conjecture follows from a quantitative form of the prime k-tuples conjecture.
We also show that the prime A-tuples conjecture implies that there are arbitrarily long
arithmetic progressions of equal ¢-values.
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1. Introduction

Our objective in this paper is to study the number and nature of the solutions to
the equation

P(n} = ¢(n + k) (1

for a fixed value of k. Here ¢(n) is Euler’s ¢-function which counts the number
of positive integers less than or equal to n that are relatively prime to n. As we
will be considering the number of solutions to (1), it is convenient to define the
function

P(k;z) = [{n < :¢(n) = $p(n+ k)}|- (2)
In 1972, M. Lal and P. Gillard [11] used an IBM 1620, Model 1, to determine all
solutions to (1) for each 1 < k£ < 30 in therange 1 < n < 10%. They produced a
table of values for P(k;z) for each k in the stated range and = taken in increments
of 10%, Other authors have extended the searches of Lal and Gillard in the case

k = 1. The most extensive computations currently are due to R. Baillie [1], who
found 306 solutions of ¢(n) = é(n + 1) up to 108
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Using 18 Sun Sparc 5 workstations, we have extended Lal and Gillard’s compu-
tations of P(k;z). Our computations were performed in three stages. For the first
stage, we used Mathematica software to compute all solutions to (1) for 1 < k < 30
and n < 10%. In addition to counting the number of solutions to (1) for each &,
we also saved the solutions for further analysis. The built-in Mathematica function
EulerPhi was used to compute the ¢-values in this stage. In the case of k = 1,
our computations agree with those of Baillie.

For the second stage, we extended our computations of solutions to (1} to
1<k <100 and n < 10'. We used the C++ programming language to implement
simple sieving and scanning procedures to compute the necessary ¢-values and
then look for solutions to (1). The values of P(k;z) computed in this stage were
compared to those computed using Mathematica in the first stage to verify the
consistency of the two programs. A summary of these computations is contained
in Table 1.

The final computing stage was motivated by the scarcity of solutions to (1)
found in the first two stages when & = 3 mod 6. We used the same sleving proce-
dure as in the second stage to compute ¢-values, but altered the scanning procedure
to search only for solutions to (1) corresponding to 1 < & < 100 and %k = 3 mod 6.
We checked all values of n satisfying 101° < n < 10!, and found two solutions
to (1) in this range. These solutions are discussed in more detail in the next section.

L. Moser [13] noted that if p and 2p— 1 are both odd primes and n = 2(2p-1),
than ¢(n) = ¢(n+2). More generally, A. Schinzel [17) observed that if p and 2p—1
are primes that do not divide the even number k&, and

n=(2p— 1)k, (3)

then n is a solution of (1). There is a conjecture due to Dickson [4] known as
the prime %-tuples conjecture; a special case of this conjecture is that there are
infinitely many primes p with 2p — 1 prime. Therefore, Dickson’s conjecture com-
bined with Schinzel’s observation implies that (1) has infinitely many solutions
when k is even. In this paper, we generalize Schinzel’s observation to obtain more
solutions to (1). By appealing to a quantitative form of Dickson’s conjecture, we
conditionally prove an asymptotic formuls for the number of solutions to {1) when
k is even.

Our computations imply that solutions of (1) are very sparse when k is odd,
especially when k& = 3 mod 6. Despite this, we believe it is likely that there are
infinitely many solutions to (1} for each k, and that our numerical evidence is
simply not extensive enough to overwhelmingly suggest that this is the case. It
is interesting to note that little is known unconditionally about the number of
solutions to (1). In 1956, W. Sierpiriski [21] showed that for each k there is at least
one value of n such that (1) is satisfied. (The proof is easy: Let p be the smallest
prime not dividing k, and then set n = (p — 1)k.) In 1958, Schinzel [17] showed
that there are at least two solutions to (1) for all £ < 8 x 10*7, and in the following
year Schinzel and A. Wakulicz [19] extended this result to all k < 2 x 108,

We also consider arithmetic progressions of equal ¢ values. For example, we
show that Dickson’s conjecture implies that for any ¢, there is some k and infinitely
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many n such that
¢(n) =d(n+k)=... =d(n+gk)

Tn addition, we have also determined the number of such progressions for
1 < k <100 and n < 10°%, A summary of these results is given in Section 5.

2. Discussion of Table 1

Table 1 gives values of P(k;z) for 1 < k < 100 and « = 10%,10°, and 10'°. It is
immediately evident from the data in Table 1 that the solutions to (1) are much
more common for k even than for k odd. When k is odd, the case k =3 mod 6 is
particularly striking. Up to n = 245 there are a few solutions for various values of
k = 3 mod 6, but then they appear to die out. As we mentioned in the introduction,
we extended our search up to n < 10! for these k. We found only three such values
of n with 245 < n < 10!, The three values are given in Table 2; they correspond
to k = 27,81, and 81 respectively.

The following observations may help to explain why solutions are so rare when
k = 3 mod 6. If ¢(n) = ¢(n'), where n and n’ are both large and close together,
then ¢(n)/n is approximately equal to ¢(n')/n’. The fraction ¢(m)/m depends
solely on the prime factors of m, and is principally determined by the small prime
factors of m. When n' = n + k, where ¥ = 3 mod 6, then one of n and n' is
divisible by 2 (say n for the sake of this discussion), while the other is not, and
either both are divisible by 3 or neither are. Thus the smallest prime 2 pushes
&{n)/n and ¢(n')/n’ apart, and the next smallest prime 3 can not help narrow
the difference. This requires n’ (which is odd) to be divisible by a large number
of small primes greater than 3, and n (which is even) to be free of small prime
factors greater than 3. Moreover, since n’ is divisible by a large number of primes,
@(n') must be divisible by a large power of 2, which in turn forces n to be divisible
by either a large power of 2 or odd primes p such that p — 1 is divisible by a
large power of 2, or some combination of both. (These properties are evident in
our three large solutions above.) All of these constraints seem to conspire to push
additional solutions to (1) for ¥ = 3 mod 6 to very high levels. Note that the three
large solutions all correspond to values of k that are powers of 3. In the discussion
above, this form of k& presents the least difficulty, so perhaps it is not surprising
that these solutions appear first. In general, the more small prime factors k& has,
the more difficult it will be to overcome the constraints described above. In the
case of odd k # 3 mod 6, the effects of these constraints are not as pronounced.
They are evident, though. For example, examine the number of solutions when k
is 5 mod 10.

By contrast, the situation for k even is much clearer. As mentioned earlier,
there are many more solutions to (1) in these cases, and most of these solutions
can be explained in a simple manner. Upon careful study of our computed solutions
to (1) for even values of k, a generalization of Schinzel’s observation (3) emerges.
Once the proper form of the generalization is found, the proof follows easily.
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z\k 1 2 3 4 5 6 7 8 9 10

10 306 125986 2 69131 95 356157 336 38157 2 36579
10° 651 957214 2 517863 202 9679538 737 981341 2 267252
10 1267 7558421 2 4047331 433 20969365 1608 2171817 2 2048937
z\k 11 12 13 14 5 16 17 18 19 20

10° 293 196539 306 66036 4 21532 341 139506 335 52606
10° 655 1455738 649 492095 4 154490 691 1020710 718 385863
10%° 1367 11257702 1354 3818031 4 1171252 1460 7834367 1424 2058324
s\k 21 22 23 24 25 26 27 28 29 30

107 2 16771 378 152036 109 14521 3 36869 361 246694
10° 2 117755 784 1118648 233 101821 3 268658 743 1801600
101 2 883419 1614 8580206 494 761625 4 2054653 1540 13781327
z\k 31 32 33 34 35 36 37 38 39 40

105 347 12416 4 11768 11 78597 321 10748 5 29761
10 726 85540 4 81766 17 560491 715 737 5 211968
10" 1507 634597 4 607615 29 4229528 1530 545468 5 1598241
z\k 41 42 43 44 45 46 47 48 49 50

108 336 142433 364 9900 6 9356 397 8062 3Tl 10160
10° 733 1027337 777 65586 6 62695 813 613668 798 67937
10'® 1513 7797557 1598 480878 6 461469 1673 4631577 1746 495624
z\k 51 52 53 54 55 56 57 58 59 60

108 7 8634 367 56315 70 21054 4 7808 373 155252
10° 7 57053 775 305121 130 147809 4 51634 757 1103503
10 7 415358 1630 2953076 278 1111035 4 376503 1577 8317199
z\k 61 62 63 64 65 66 87 68 69 70

10° 344 17177 4 7462 60 71373 348 7063 6 26705
10° 705 121821 4 47955 143 502432 714 45861 6 184487
109 1486 921142 4 346381 320 3767424 1457 331696 6 1372323
z\k Tl 72 73 74 75 76 77 78 79 %0

10° 356 62338 315 6443 6 6517 371 65363 362 17402
10° 741 434134 665 42124 6 41606 831 460092 738 117374
101 1501 3237951 1338 304249 6 298381 1787 3448231 1500 868497
z\k 8l 82 83 84 85 86 87 88 89 90

10° 4 6016 395 85335 &9 5869 5 6176 366 119562
10° 4 38611 798 598785 193 37285 5 37612 758 838515
W00 4 278338 1614 4463837 463 267235 5 264553 1504 6275296
c\k 91 92 93 94 95 96 97 98 99 100

105 340 5744 5 5536 &84 49553 374 13392 6 14485
10° 738 35682 5 34725 162 339930 756 91555 6 97414
10" 1659 253155 5 247588 363 2513443 1575 677947 6 713868

Table 1: Summary of values for P(k; z)
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$(4135966808) = (4135966835} = 2052864000 = 2'1395%111
4135966808 = 23241'331164817,
4135966835 = 5'7111113119'23131%61%,

$(12407900424) — $(12407900505) = 4105728000 = 2'23%5°11,
12407900424 = 233'241133116481%,
12407900505 = 3571111131923 31%61%;

B{15720219515) = ¢(15720219596) = 7834337280 = 2'5335'7'11'23!,

15720219515 = 517111113174 231292771,
15720219596 — 22577°691'9857".

Table 2: Exceptional solutions to ¢{n) = é(n + k).

Theorem 1. Suppose that § and j + k have the same prime factors {so that k is
even), and let g = (4,7 + k). Suppose that for a positive integer v.

j+k

ﬁr +1 and r+1 (4)
are both primes that do not divide j. If
itk
n—g( ; 'r+1), (5)

then ¢(n} = ¢(n + k).

Proof. We have

j+E
g

$(n) = ¢() " "r = ¢(HG + k)g

and
. g R r
sntk) = 6((+ ) (Ir+1) ) =joG + 07
As j and j + k have the same prime factors, it follows (see [10], Theorem 62} that

(I + k) =jo(j + k),
which completes the proof. |

In order to determine how many solutions n of (1) are of the form (5) in
Theorem 1, we first need to find values of 7 for which 7 and j + & have the same
prime factors. For k& even, 2 < k < 30, Table 3 contains all values of § which
satisfy the hypotheses of Theorem 1. Further analysis of Table 3 is given in the
next section.
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k j
2| 2
444
61 23,6,12,18,48
88
10 | 10,40
12 | 4,6,12,24, 36,96
14 | 2,14,98
16 | 16
18 | 6,9,18,36,54,144
20 | 5,20,80
22 | 22
24 | 3,8,12,24, 48,72, 192
26 | 26
28 | 4,28,196
30 | 2,6,10,15, 18, 20, 24, 30, 45, 50, 60, 90, 120, 150,
162, 240, 270, 375, 450, 720, 1250, 2400

Table 3: Values of j for which 7 and j 4+ %k have the same prime factors.

3. When do j and 5 + k have the same prime
factors?

Let P be a finite set of primes, and let 1 = ny < ns < ... be the integers
composed of primes in P. A result of A. Thue [22] (see also G. Pélya [14] and
R. Tijdeman [23]) states that lim; ,o{n;~1 — n;) = oc. Therefore, for a given k,
there are only finitely many values of 7 such that j and j + &k have the same prime
factors. Tijdeman’s result is effective, so that in principle one could determine all
the desired pairs via an exhaustive search. Unfortunately, the bounds are so large
that such a search is not feasible. However, it turns out that for each even k < 30,
elementary techniques suflice to completely determine all possible values of 5.

To illustrate the techniques used, we focus on the case k = 6. As k=23, it
follows that there are three possibilities for the prime factors of j and 7+ &: j = 29,
j+k=2%7=3% j+k=23%7=2°3% j+k=2°3% in each case, a,b,c,d > 1.
In the first case, we have

2% 4 6 = 2°. (6)

Setting @ = 1 and ¢ = 3 yields a solution to (6) which corresponds to 7 = 2.
Reducing mod 4 shows that there are no other solutions to (6). The case j — 3°,
§+ k= 3% is similar and yields 7 = 3.

For the last case we obtain the equation 2°3? 4+ 6 = 2¢3%. Dividing through
by 6, we have

2@7131371 + 1= 2c—13d—1 (7)
Reducing mod 2 implies that either ¢ = 1 or ¢ = 1. If ¢ = 1, then {7) reduces to
2{17131371 +1= 3d71 (8)
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There are no solutions with d = 1, so we must have d > 2. Reducing mod 3 tells
us that b = 1. Upon writing x = a — 1 and y = d — 1, we see that (8) simplifies to

2 4 1=23v. (9)

Now (9) has solutions with (z,y) = (1,1) and (3,2). These solutions correspond
to j = 12 and j = 48 respectively. Any other solution must have x > 4, which we
now assume. Reducing mod 16 gives y = 0 mod 4; this in turn gives 3¥ = 1 mod 5.
However, we then obtain the congruence 2* = 0 mod 5, which clearly has no
solutions.

The case a = 1 can be done in a similar fashion; it yields a solution correspond-
ing to j = 18 and no others. Thus the values of j given in Table 3 form a complete
list of the values of j such that j and j + 6 have the same prime factors.

We have shown that the other entries in Table 3 are complete. The proofs use
only elementary congruence arguments similar to the one above; however, there
are many tedious cases, and we shall not give the details here. Some of the cases
can be simplified by appealing to results of W.J. LeVeque [12], JW.S. Cassels [3],
and R. Scott [20].

4. Asymptotics

From Theorem 1, we see that for a tixed even number &, to prove that ¢(n} =
¢(n + k) for infinitely many n, it suffices to show that there are infinitely many
integers r such that r +1 and 2r + 1 are both prime. Unfortunately, this is a very
difficult open problem. It is, however, a special case of Dickson’s prime k-tuples
conjecture 4] and Schinzel’s Hypothesis H [18]. Instead of stating these well-known
conjectures in all their generality, we give only the following simple special case,
which is all we shall need.

Conjecture 1. Let a1,a2,...,a, be distinct positive integers. Then there are in-
finitely many integers r such that ayr + 1,027 +1,...,ayr + 1 are all prime.

G.H. Hardy and J.E. Littlewood [9] formulated a more quantitative form of at
least part of the prime k-tuples conjecture, and P.T. Bateman and R.A. Horn [2]
generalized this by formulating Hypothesis H*, which is a quantitative form of
Hypothesis H. Again we only give the following special case.

Let Co be the “twin-prime constant” given by

Cy =[] (1-(»—1)7%) =0.660161815847 .
p>2

Conjecture 2. Suppose that a and b are relatively prime natural numbers with
b < a. Then, as £ — oo,

p—1y f° 1
> 1~ ] / dt. (10)
r<z plabla—b) (P - 2) o log{at)log(bt)
ar+1 prime p>2

br-+1 prime
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We note that the integral on the right side of (10) can be replaced by z/ log? «
without changing the asymptotics. Using Mathematice and the information in
Table 3, we determined the number of solutions to {1) for even k < 30 and n < 10%
that are of the form (5) given in Theorem 1. Table 4 provides a summary of the
number of such solutions as well as the proportion of the total number of solutions
that these special solutions represent. Based on the evidence, we conjecture that
these special solutions have density 1 among the set of all solutions to (1). To
support this conjecture, we prove that it follows from Conjecture 2. But first we
give the following unconditional result.

Theorem 2. Let Pi(k;z) be the number of solutions n < z to ¢(n) = ¢(n + k)
that are not in the form (5) given in Theorem 1. In particular, when k is odd,
Py (k;z) = P(k;z). Then for every k, there is some xo(k) such that if x > xo(k),
then P1(k;z) < z/ exp(log’® ).

Proof. P. Erdds, C. Pomerance, and A. Sérkozy [6] proved Theorem 2 in the case
k = 1. We claim that a small modification of their proof yields the general case.
We indicate the changes in their argument needed to do this, and we refer the
reader to [6] and [16] for the rest of the details.

As in Theorem 2 of [6], let { = exp(logl/3 ), L= exp(%(log z)'/3 loglog ), and
let P{n) denote the largest prime factor of n. We assume that
(iy P(n)>L? and P(n+ k) > L?,
(i) if r* divides n or n + k and a > 2, then r* < [3.
As shown in [6], the number of n < z not satisfying (i) and (ii) is o{z/!). From
these conditions, we see that there are primes p,p’ > L? and integers m, m' such
that n = mp,n+k = m'p’ and (m, p) = (m’, p’) = 1. From this and the assumption
that ¢(n) = ¢(n + k), we see that

P (@(m)m’ — g(m)m) = $(m)(mp + k) — p'$(m'ym
— m(n) +ma(m) + k¢(m) — d(n + K)m — §(m’)m
~ mg(m) — mo(m') + k(m).

Now we separate the n’s into two classes. Class A consists of those n for which
d{m)/m # ¢(m')/m’, and class B consists of those with ¢(m)/m = ¢{(m’)/m/.
The same proof as in [6], Theorem 2, shows that class A contributes o(z/l). To
complete the proof, we will show that all of the n’s in. class B are of the form given
in Theorem 1.

Now assume that 7 is in class B. From the equations ¢(m){p—1) = ¢(m')(p' —1)
and ¢(m)/m = ¢{(m')/m’, we have

¢, $(m) m,
P — 1= ¢(m1) (p - 1) m’ (p 1)
Therefore
mptk=mp =m'(p - D+m =mp-1)+m'. (11)

We deduce that & = m’' — m; in other words, ¢(m)/m = é(m + k)/(m + k).
Therefore, 7 and m + &k have the same prime factors. Now let g = (m,m + k).
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k A B C

2 125986 125199 (0.993753
4 69131 68295 0.987907
6
8

356157 353616 0.992866
38157 37229 0.975679

10 36579 35479  0.969928
12 196539 193729 0.985703
14 66036 65110 0.985977
16 21532 20505 0.952304
18 139506 136715 0.979994
20 52606 51305 0.975269
22 16771 15646 0.932920
24 152936 149779 0.979357
26 14521 13531 0.931823
28 36869 35820 0.971548
30 246694 242021 0.981058

Table 4: A = P{k; 10%).
B = Number of solutions of the form (5} in Theorem 1.
C = The ratio B/A.

Then
m_—l-k(p, ~1)="(p-1) and (m_‘|'k T) _ (12)
g g g g '
We deduce that m/g divides p’ — 1, so there is some r such that
P =2r+1 and p:m+kr+1. (13)
g g
All of this together shows that n is of the form given in Theorem 1, and this
corpletes the proof. a

Corollary 1. If k > 0 is even, let c(k) = 3" 5555 IT" 5, where 3" runs over
all § such that j and j + k have the same prime factors, [[* runs over all primes
p > 2 such that p|jk(j + k)/g3, and g = (j,7 + k). Then 0 < c(k) < oc and if
Conjecture 2 is true, then, as x — oo,

P(k; z) ~ 2Cc(k)—p—. (14)

log” x

Proof. First, we note that if we fix an even number &, there is at least one number j
such that j and 7+ k have the same prime factors, namely 7 = k. Further, as noted
at the beginning of Section 3, it follows from [22] that there are only finitely many
such integers 7. Thus, 0 < ¢(k) < 0o. Now assume that Conjecture 2 is true. For
each j satisfying the hypotheses of Theorem 1, the formula (10}, with a = {j+&)/g
and b = j/g, gives a conditional estimate for the number of pairs of the form (4)
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which are both primes. Summing over each j yields the expression

* srp—1 fj(jik)x 1
2C —_— - - dt 15
ZZ H (P—Q) 2 log(%t) log("'l%kt) ’ (15)

which is asymptotically equal to the right-hand side of (14). Theorem 2 asserts
that the additional solutions not in the form of Theorem 1 are negligible, so the
result follows. O

We remark that for numerical purposes it can be advantageous to replace the
right side of (14) with (15). In Table 5, we give the number of solutions predicted
by the formula given in (15) up to z = 10 for each even k < 30. We also give the
ratio of the predicted number of solutions to the computed number of solutions.

We note that there are other families of solutions to (1) that have the same
flavor as Theorem 1. For instance, suppose b is even and k = be. If

p,pt+h (e+p—e and (c+1)(p+b)—c

are all prime, and n = (p + b)({c + 1)p — ¢), then ¢(n) = ¢(n + k). In this case,
we can use sieve methods to show that the number of such solutions for n < z
is O(x/%log * ). Thus, solutions of this type will contribute to the growth of
P(k;z), but if we assume that Conjecture 2 holds, such solutions will not occur
frequently enough to alter the formula in {14).

One might ask if a typical solution to the equation ¢{a) = ¢(b) with a < b
is of the form given in Theorem 1 (with n = @ and k& = b — a). Especially in
light of the above results it is tempting to conjecture this is the case. To specify
things, let Py(k;z) be the number of solutions n < x of (1) in the form considered
in Theorem 1. Thus, P{k;x) = Py{k;x) + P1(k;z), and Corollary 1 asserts that
if Conjecture 2 is true, then P(k;x) ~ Po(k;x) as x — oo for each fixed even

number k. Is it true that
D P(kiz)~ Y Po(k;z)?
k< k<z

Or perhaps
S Plsa)~ > Polk;2)?
k<z, k even k<y

In fact the answer to both questions is a resounding “No!”
We first note that from the argument in [15] there is a positive constant « such
that

Y Pkz)> Y. Plkz) >3t (16)

<z k<z, k even

for all sufficiently large values of z. {As reported in [15], it had been previ-
ously shown in unpublished correspondence of Davenport and Heilbronn that
%Zkg P{k;x) tends to infinity as x does.) From [7] we may itake « in (16) as
any number less than 1 — e~'/2. It follows from an old conjecture of Frdés that
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k A B C
2 7558421 7536879 0.999796
4 4047331 4043534 0.999062
6 20969365 20957509 0.999435
8 2171817 2168840 0.998629
10 2048937 2043622 0.997406
12 11257702 11244877 0.998861
14 3818031 3813803 0.998893
16 1171252 1166329 0.995797
18 7834367 7821921 (.998411
20 2058324 2951746 0.997776
22 883419 877908 0.993761
24 8580206 8567413 0.998509
26 761625 756547  0.993333
28 2054653 2049723 0.997600
30 13781327 13762152  (.998609

Table 5: A = P(k; 10'%).
B = Number of sclutions predicted by Corollary 1.
C = The ratio BfA.

one may take any a < 1 in (16). From [15] we have that both sums in (16) are
< %/ exp((1 + 0(1)) log z log log log x/ log log z), and from a conjecture there, one
can deduce that the first sum in (16) is equal to this expression.

So what can we say about >, ., Po(k;z)? The following result shows that it
is asymptotic to a constant times x, so it is much smaller than the sums in (16).

Theorem 3. For a natural number m let y(m) denote the largest squarefree divi-
sor of m. Let

br
> 12 (ar + 1)(er = P30 ()
(@9)=1 3,17 prime
{bar+1}=1

Then c < oo and > o, Po(k;x) ~ ez as z — oo.

Proof. First we show ¢ < oc. Note that the summand in the definition of ¢ is less
than 1/abry(a)y(b). From Brun’s method (for example, see Theorem 2.3 in [8],
where we choose g = 2, a3 = @, az = b, by = by = 1, 4 = 1), uniformly in
a, by >1,

3 1 . b-a a b L
r o ¢lb—a) o(a) () log°2y  log’2y’

y<r<2y
ar+1 prime
br-+1 prime
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where we have used [10], Theorem 328, for the last inequality. We apply this with
y=2,75=0.1,..., and so get that

3 % < a'l?p/?, (17)

ar+1 prime
br+1 prime

To show ¢ < oo it suffices to show that

Z a1/2].-7(a) < o0, (18)

a=1

since by (17),

1 =1 g
<X e < (% )

a=1

To see (18), note that 1/a'/?y(a) is a multiplicative function whose value at the
prime power p’ is 1/p'"7/2. Thus the sum in (18) is equal to

11 (1+#+%+~...)= H (1+ﬁ)<oo.

p prime p prime

Now we complete the proof of the theorem. A solution to ¢{n) = é(n + k)
of the type considered in Theorem 1 corresponds to a quadruple g,r,a,b where
a <b,(a,b) =1, ar + 1 and br + 1 are prime, y{a)v(b)|g, and ar + 1, br + 1 do
not divide g. The correspondence is that »n = ga(br 4+ 1) and k = g{(b — a). Thus,
> k<g Folk; ) is the number of such 4-tuples g,7, a,b with ga(br +1) < 7.

For a, b, r given, we count the number of corresponding g’s. This is the number
of g’s with g < z/a{br + 1), g = 0 mod y(a)¥(h) and (g, (ar + 1){br + 1)) = 1.
For this count to be nonzero, it is necessary that {(ab, (ar + 1)(br + 1}) = 1. (Note
that (ab,br +1) = 1 all the time and {a,ar + 1) = 1 all the time, so the only
condition is that (b,ar + 1) = 1.) So the number of g’s is the number of h’s
with h < z/a(br + 1)v(a)y(b) and (A, (ar + 1){br + 1)) = 1. The number of h’s
is < x/abry(a)y(b), and as we have seen above, the sum of this expression over
legal choices for a, b, r converges. So we may ignore, say, those values of a, b, 7 with
abr > /19, For any choice of a, b, r the number of A’s is equal to

T ar br
a(br + )y(a)y(®) ar+1 br+1’

with an error at most 2 in absolute value. Since we need only consider those a, b, r
with abr < '/1°, the errors are negligible and the theorem is proved. 0

One might wonder how it can be that >~ Fy(k; ) can be so much smaller
than Y, . P(k;x). Part of the mystery might be explained by the expression c{k)
in Corollary 2, which decays rapidly as k grows.
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g\ k 6 12 18 24 30 36 42 48
2 320118 183712 130686 102936 245103 73784 121860 58188
3 8461 4852 3520 2807 5518 2018 1883 1617
4 0 0 0 0 450 0 0 0
5 0 0 0 0 16 0 0 0
g\k 54 60 66 72 78 84 90 96
2 §o824 167599 44813 41783 39172 69009 99269 33073
3 1489 3206 1265 1184 1107 1136 2387 974
4 0 60 0 0 0 0 204 0
5 0 10 0 0 0 0 7 0

Table 6: Number of solutions to (19) for n < 10'°

5. Arithmetic progressions

In the course of our investigation, we also determined all solutions for n. < 10%° to
the equation

¢(n) = p(n+k) = ¢(n+2k) = ... = é(n +qk) (19)

for 1 < k < 100. In the case k = 1, there is the well-known progression ¢(5186) =
$(5187) = ¢(5188); we found no other such progressions with common difference 1.
Erdés [5] has conjectured that (19) is solvable for k = 1 and any arbitrary g. Note
that a solution with ¢ > 2 immediately implies that ¢(n) = ¢(n + 3), and so
n > 1011, On the other hand, we know of no reason why such solutions should
not exist. In general, for values of k that are not multiples of 6, we found only
a few progressions of length 3, and none longer. Specifically, there is exactly one
progression of length 3 when k is in the set

{1,2,4,5,8,11,14,23,25, 26, 28,29, 31, 37, 38, 41, 46, 47,52, 53, 55, 56,
58,59, 62, 67,71, 73, 74,76, 79, 80, 85, 86, 89, 92, 94, 97, 98}.

There are exactly two progressions of length 3 when k is in the set
{16,17,22,32, 34,43, 44,61, 82, 83, 88}.

Finally, there are exactly three progressions of length 3 when k = 64 or k = 68.
‘We found no more than three progressions of length 3 for any values of & < 100
that is not a multiple of 6.

By contrast, we found many solutions to (19) when k is a multiple of 6. Table 6
contains a summary of the number of such solutions up to ¢ = 5, the largest value
of g for which a progression was found among the numbers up to 10'°. The first
progression of length 6 that we found has £ = 30; it is

#(583200) = ¢(583230) = $(583260) = $(583290) = $(583320) = $(583350),

with common value 165520.
Theorem 1 may be generalized to a result on arithmetic progressions.
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Theorem 4. Suppose that §,j + k,... ,j + gk all have the same prime factors.
Define B = j(j + k)---(j+gk). Fori=0,...,q, define

__B
2 "J+'Lk’
gzgcd(bg,bl,... ,bq),
by B
y = — = s/———.
g (j+ik)g

Suppose that for some posilive infeger r,
apr+1, a7 +1,.. . ,a,r +1
are all primes that do not divide 7. If

n=sagr+1) = 2 45
then
dn)=¢n+k)=...=¢(n+qgk).

The proof is a straightforward extension of the proof of Theorem 1; we leave it
as an amusing exercise for the reader.

This theorem gives an explanation for why we found a preponderance of arith-
metic progressions when k is a multiple of 6. For if & is a multiple of 6, then the
hypotheses of Theorem 4 are satisfied with ¢ = 2 and a9 = 6,4, = 3,a, = 2. If
6r+1,3r+1, and 2r+1 are all prime and if n = k(6r + 1), then ¢(n) = o(n+k) =
#(n+2k), and Conjecture 1 predicts that there are infinitely many such n. In fact,
Conjecture 1 gives infinitely many solutions to (19) for any ¢.

Corollary 2. Assume that Conjecture 1 is true. Then for any positive integer q,
there exists a positive integer k and infinitely many positive integers n such that

o(n) =p(n+k)=... = ¢p(n+ gk).
Proof. Let j be the product of all primes p < ¢ + 1, and take ¥ = j. Then
{5d+k ... .5 +ek} ={4,24,... ,(g-+1)7}. Since all prime divisors of 1,2, . . . yg+1
divide j, we see that 7, 5 'k, ... , j+¢k all have the same prime factors. In this case,
a; = L/(i-+1), where L = LCM]L, 2, ... , ¢+1]. It remains to note that Conjecture 1
implies that there are infinitely many integers r such that agr+1, a7 +1, . .. y@gr+1
are all prime, so that Theorem 4 completes the proof. O

We have used the construction given in the last proof to search for long arith-
metic progressions of equal phi-values. We took the above construction with ¢ = 9,
so that j =k =[] ,<;,p = 210 and
2520
R
for i = 0,...,9. We scarched for values of r < 10° such that a;r + 1 is prime
for i = 0,...,9. To speed up the search, we sifted out all values of r for which

@
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a;7 + 1 has a prime divisor < 200 for some i. The only solution we found was
r = 950077810. Consequently, taking

n = 210{2520r + 1) = 502781177052210 and k =210
gives an arithmetic progression of length 10 with equal phi-values. In other words,
¢(502781177052210 + 2107) = 114921411897600

for0<:<9.
All of the data described here, as well as the programs used, are available upon
request {rom the second author.
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