On Giuga Numbers

Florian Luca, Carl Pomerance, and Igor Shparlinski

Received November 18, 2007; Revised July 31, 2008

Abstract

A Giuga number is a composite integer n satisfying the congruence $\sum_{j=1}^{n-1} j^{n-1} \equiv-1$ $(\bmod n)$. We show that the counting function $\# \mathcal{G}(x)$ of the Giuga numbers $n \leq x$ satisfies the estimate $\# \mathcal{G}(x)=o\left(x^{1 / 2}\right)$ as $x \rightarrow \infty$, improving upon a result of V . Tipu.

Keywords: Giuga numbers, Carmichael numbers.
2000 Mathematics Subject Classification: 11A41, 11N25.

1 Introduction

1.1 Background

Fermat's Little Theorem immediately implies that for n prime,

$$
\begin{equation*}
\sum_{j=1}^{n-1} j^{n-1} \equiv-1 \quad(\bmod n) \tag{1.1}
\end{equation*}
$$

Giuga [3] has conjectured that there are no composite integers n fulfilling (1.1); a counterexample is called a Giuga number. With \mathcal{G} the set of all Giuga numbers, it is known that $n \in \mathcal{G}$ if and only if n is composite and

$$
\begin{equation*}
p^{2}(p-1) \mid n-p \tag{1.2}
\end{equation*}
$$

for all prime factors p of n. In particular, n is squarefree. Furthermore, it is also a Carmichael number; that is, the congruence $a^{n} \equiv a(\bmod n)$ holds for all integers a.

We refer the reader to [5, pp. 21-22] and the introduction to [7] for more properties of the Giuga numbers. In [1], the relation (1.2) is relaxed to $p^{2} \mid n-p$, and it is shown that this property is equivalent to the sum of the reciprocals of the prime factors of n being $1 / n \bmod 1$. We call such a composite number a weak Giuga number. There are several examples known, the smallest one being 30 (see sequence A007850 in [6]).

[^0]
1.2 Our result

For a positive real number x we put $\mathcal{G}(x)=\mathcal{G} \cap[1, x]$. While Giuga's conjecture asserts that \mathcal{G} is empty, the best known upper bound on $\# \mathcal{G}(x)$ is

$$
\begin{equation*}
\# \mathcal{G}(x)=O\left(x^{1 / 2} \log x\right) \tag{1.3}
\end{equation*}
$$

and is due to V. Tipu [7]. Here, we obtain an improvement of (1.3), which in particular shows that $\# \mathcal{G}(x)$ is of a smaller order of magnitude than $x^{1 / 2}$.

Theorem 1.1. The following estimate holds:

$$
\# \mathcal{G}(x)=O\left(\frac{x^{1 / 2}}{(\log x)^{2}}\right)
$$

We follow the approach from [7], which in turn is an adaptation of some arguments due to Erdős [2] and Pomerance, Selfridge and Wagstaff [4] which have been used to find an upper bound for the number of Carmichael numbers up to x. However, we also complement it with some new arguments which lead us to a better upper bound. We note that it is easy to show that the counting function of the weak Giuga numbers $n \leq x$ is $O\left(x^{2 / 3}\right)$.

2 Proof

2.1 Notation

For a natural number n let $\tau(n)$, respectively $\omega(n)$, be the number of divisors of n, the number of prime divisors of n. We use p and q for prime numbers and the Landau and Vinogradov symbols O, o, \ll and \gg with their usual meanings.

2.2 Preparation

We assume that x is large. To prove the theorem it is sufficient to show $\# \mathcal{G}(x)-$ $\# \mathcal{G}(x / 2) \ll x^{1 / 2} /(\log x)^{2}$, since we can then apply the same estimate with x replaced by $x / 2, x / 4, \ldots$, and add these estimates. Let

$$
n=\prod_{j=1}^{k} p_{j} \in \mathcal{G}(x) \backslash \mathcal{G}(x / 2)
$$

where $p_{1}>p_{2}>\cdots>p_{k}$ are prime numbers ordered decreasingly. For a squarefree positive integer m we write $\lambda(m)=\operatorname{lcm}[p-1: p \mid m]$. This function is referred to as the Carmichael function of m (or the universal exponent modulo m). If n is a Giuga number we have $p-1 \mid n-1$ for each prime $p \mid n$, so that $\operatorname{gcd}(n, \lambda(n))=1$. Thus, for any integer d, those possible Giuga numbers n with $d \mid n$ are in (at most) a single residue class modulo $d^{2} \lambda(d)$, and in the case that $d=p$ is prime, we also have $n>p^{2}(p-1)$, since the residue class is $p \bmod p^{2}(p-1)$ and $n>p$.

2.3 Large values of $\boldsymbol{p}_{\mathbf{1}}$

We first consider the case when $p_{1}>x^{1 / 4}$. For a fixed value of p_{1}, the number of Giuga numbers $n \leq x$ divisible by p_{1} is $\leq x / p_{1}^{2}\left(p_{1}-1\right)$. Summing this for $p_{1}>x^{1 / 4} \log x$ gives the estimate $O\left(x^{1 / 2} /(\log x)^{3}\right)$, so we may assume $x^{1 / 4}<p_{1} \leq x^{1 / 4} \log x$. Suppose $d \mid n$ with $d \neq p_{1}$. Then n is in a residue class modulo $p_{1}^{2} d^{2} \lambda\left(p_{1} d\right)$, and in particular is in a residue class modulo $p_{1}^{2} d^{2}\left(p_{1}-1\right)$. If d is in the interval

$$
I=\left[\log x, x^{1 / 4} /(\log x)^{2}\right]
$$

then the number of Giuga numbers $n \leq x$ with $p_{1} d \mid n$ is at most

$$
\begin{aligned}
\sum_{\substack{x^{1 / 4}<p_{1} \leq x^{1 / 4} \log x \\
d \in I}}\left(1+\frac{x}{p_{1}^{2} d^{2}\left(p_{1}-1\right)}\right) & \leq \pi\left(x^{1 / 4} \log x\right) \frac{x^{1 / 4}}{(\log x)^{2}}+\sum_{\substack{p_{1}>x^{1 / 4} \\
d>\log x}} \frac{x}{p_{1}^{2} d^{2}\left(p_{1}-1\right)} \\
& \ll \frac{x^{1 / 2}}{(\log x)^{2}} .
\end{aligned}
$$

Thus, we may assume that n has no divisors in I. As a consequence, the largest divisor d of n composed of primes less than $\log x$ has $d<\log x$, since if not, d has a divisor $d^{\prime} \in I$. Since $x / 2<n \leq x$, we thus have

$$
n=p_{1} p_{2} p_{3} p_{4} d, \quad x^{1 / 4} \log x \geq p_{1}>p_{2}>p_{3}>p_{4}>\frac{x^{1 / 4}}{(\log x)^{2}}, \quad 1 \leq d<\log x
$$

Then $x^{1 / 2} /(\log x)^{4}<p_{3} p_{4}<x^{1 / 2}$, and since n is in a residue class modulo $p_{3}^{2} p_{4}^{2}\left(p_{3}-1\right)$, the number $p_{3} p_{4}$ determines at most one Giuga number $n \leq x$ divisible by $p_{3} p_{4}$. Since $p_{4}<x / p_{3}^{3}$, the number of choices for p_{4} given p_{3} is $O\left(x /\left(p_{3}^{3} \log x\right)\right)$, which when summed over $p_{3}>x^{1 / 4}$ gives the estimate $O\left(x^{1 / 2} /(\log x)^{2}\right)$. But if $p_{3} \leq x^{1 / 4}$, then the number of choices for $p_{3} p_{4}$ is at most $\pi\left(x^{1 / 4}\right)^{2} \ll x^{1 / 2} /(\log x)^{2}$.

2.4 Small values of \boldsymbol{p}_{1}

We now assume that $p_{1} \leq x^{1 / 4}$. Let $d_{j}(n)=p_{1} p_{2} \cdots p_{j}$ for $j \leq k=\omega(n)$, and choose $m=m(n)$ as the least number ≥ 2 with

$$
\begin{equation*}
d_{m}(n) \geq x^{m /(2 m+2)} /(\log x)^{2} \tag{2.1}
\end{equation*}
$$

Such an index m exists, since we are assuming that $n>x / 2$. By the minimality of m, we have

$$
\begin{equation*}
d_{m-1}(n)<x^{(m-1) / 2 m} /(\log x)^{2} \text { if } m \geq 3 \tag{2.2}
\end{equation*}
$$

Our idea is to fix a number d and count the number of Giuga numbers $n \leq x$ with $d_{m}(n)=d$. This count is at most $1+x /\left(d^{2} \lambda(d)\right)$, and so it remains to sum this expression
over allowable values of d. That is, denoting by $\mathcal{D}(x)$ the set of all such values of d, we now need to estimate the sum

$$
\begin{equation*}
\sum_{d \in \mathcal{D}(x)}\left(1+\frac{x}{d^{2} \lambda(d)}\right)=\# \mathcal{D}(x)+L(x) \tag{2.3}
\end{equation*}
$$

say. The estimate for $\# \mathcal{D}(x)$ is easy. If $m=2$, then the number of choices for $d=p_{1} p_{2}$ is at most $\pi\left(x^{1 / 4}\right)^{2} \ll x^{1 / 2} /(\log x)^{2}$. If $m \geq 3$, then by (2.2),

$$
\begin{equation*}
d_{m}(n)<d_{m-1}(n)^{m /(m-1)}<x^{1 / 2} /(\log x)^{2 m /(m-1)}<x^{1 / 2} /(\log x)^{2} \tag{2.4}
\end{equation*}
$$

Thus, we have the acceptable estimate

$$
\begin{equation*}
\# \mathcal{D}(x) \ll \frac{x^{1 / 2}}{(\log x)^{2}} \tag{2.5}
\end{equation*}
$$

To estimate $L(x)$, let $L_{m}(x)$ be the contribution corresponding to a choice for $m \geq 2$. Let $u=\operatorname{gcd}\left(p_{1}-1, p_{2}-1\right)$ so that

$$
\lambda(d) \geq \lambda\left(p_{1} p_{2}\right)=\left(p_{1}-1\right)\left(p_{2}-1\right) / u
$$

We have by (2.1) that $L_{m}(x)$ is at most

$$
x \sum_{u \geq 1} u \sum_{\substack{p_{1}>p_{2} \\ u\left|p_{1}-1, u\right| p_{2}-1}} \frac{1}{p_{1}^{2}\left(p_{1}-1\right) p_{2}^{2}\left(p_{2}-1\right)} \sum_{\substack{p_{3} \cdots p_{m} \geq \frac{x^{m /(2 m+2)}}{p_{1} p_{2}(\log x)^{2}}}} \frac{1}{\left(p_{3} \cdots p_{m}\right)^{2}},
$$

where the final sum does not appear when $m=2$. Using (2.1) we have

$$
p_{1} p_{2} \geq d_{m}(n)^{2 / m} \geq x^{1 /(m+1)} /(\log x)^{2}=y_{m}
$$

say. Thus,

$$
\begin{align*}
L_{m}(x) & \ll x \sum_{u \geq 1} u \sum_{\substack{p_{1}>p_{2} \\
p_{1} p_{2} \geq y_{m} \\
u p_{1}-1, u \mid p_{2}-1}} \frac{1}{p_{1}^{3} p_{2}^{3}} \frac{p_{1} p_{2}(\log x)^{2}}{x^{m /(2 m+2)}} \\
& \leq x^{(m+2) /(2 m+2)}(\log x)^{2} \sum_{u \geq 1} \frac{1}{u^{3}} \sum_{\substack{p_{1}>p_{2} \\
p_{1} p_{2} \geq y_{m} \\
p_{1}-1=u v, p_{2}-1=u w}} \frac{1}{v^{2} w^{2}} . \tag{2.6}
\end{align*}
$$

We have written $p_{1}-1=u v, p_{2}-1=u w$ and so writing $z=v w$, we have

$$
z=v w \geq p_{1} p_{2} /\left(2 u^{2}\right) \geq y_{m} /\left(2 u^{2}\right)
$$

If $u^{2} \leq y_{m}$, then the contribution to $L_{m}(x)$ in (2.6) is at most

$$
\begin{aligned}
& x^{(m+2) /(2 m+2)}(\log x)^{2} \sum_{u^{2} \leq y_{m}} \frac{1}{u^{3}} \sum_{z \geq y_{m} /\left(2 u^{2}\right)} \frac{\tau(z)}{z^{2}} \\
& \quad \ll x^{(m+2) /(2 m+2)}(\log x)^{2} \sum_{u^{2} \leq y_{m}} \frac{1}{u^{3}} \frac{u^{2} \log x}{y_{m}} \ll x^{1 / 2-1 /(2 m+2)}(\log x)^{6} .
\end{aligned}
$$

And if $u^{2}>y_{m}$, the contribution to $L_{m}(x)$ in (2.6) is at most

$$
\begin{aligned}
& x^{(m+2) /(2 m+2)}(\log x)^{2} \sum_{u^{2}>y_{m}} \frac{1}{u^{3}} \sum_{z \geq 1} \frac{\tau(z)}{z^{2}} \\
& \quad \ll x^{(m+2) /(2 m+2)}(\log x)^{2} \sum_{u^{2}>y_{m}} \frac{1}{u^{3}} \ll x^{1 / 2-1 /(2 m+2)}(\log x)^{4} .
\end{aligned}
$$

If $m \leq(\log x)^{1 / 2}$, these last two estimates give an acceptable bound for $L_{m}(x)$. In particular,

$$
\begin{equation*}
\sum_{m \leq(\log x)^{1 / 2}} L_{m}(x) \ll x^{1 / 2} \exp \left(-\frac{1}{3} \sqrt{\log x}\right) \tag{2.7}
\end{equation*}
$$

To conclude, we consider the case $m>(\log x)^{1 / 2}$. We have

$$
\sum_{\substack{d \leq x \\ \omega(d)=m}} \frac{1}{d} \leq \frac{1}{m!}\left(\sum_{p \leq x} \sum_{\nu=1}^{\infty} \frac{1}{p^{\nu}}\right)^{m} \leq \frac{1}{m!}(\log \log x+c)^{m} \leq\left(\frac{e \log \log x+e c}{m}\right)^{m}
$$

where c is an absolute constant. Thus, using (2.1) and (2.4),

$$
\begin{aligned}
\sum_{m>(\log x)^{1 / 2}} L_{m}(x) & \leq \sum_{m>(\log x)^{1 / 2}} \sum_{\substack{x \geq d \geq x^{m /(2 m+2)} /(\log x)^{2} \\
\omega(d)=m}} \frac{x}{d^{2}} \\
& \leq \sum_{m>(\log x)^{1 / 2}} x^{(m+2) /(2 m+2)}(\log x)^{2} \sum_{\substack{d \leq x \\
\omega(d)=m}} \frac{1}{d} \\
& \ll x^{1 / 2} \exp (-\sqrt{\log x})
\end{aligned}
$$

Putting this estimate together with (2.7), we obtain $L(x)=o\left(x^{1 / 2} /(\log x)^{2}\right)$ which after substitution in (2.3) and using (2.5) completes the proof.

Acknowledgements

The authors thank the referee for a careful reading of the manuscript and Jean-Marie De Koninck for useful discussions. This work started during a pleasant visit of I. S. to the Mathematical Institute of the UNAM in Morelia, México, so this author is grateful to the Institute for its hospitality.

References

[1] D. Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn, Giuga's conjecture on primality, Amer. Math. Monthly 103 (1996), 40-50.
[2] P. Erdős, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201-206.
[3] G. Giuga, Su una presumible proprietá caratteristica dei numeri primi, Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Mat. Nat. 14(83) (1950), 511-528.
[4] C. Pomerance, J. L. Selfridge and S. S. Wagstaff, Jr., The pseudoprimes to $25 \cdot 10^{9}$, Math. Comp. 35 (1980), 1003-1026.
[5] P. Ribenboim, The little book of bigger primes, 2nd ed., Springer, New York, 2004.
[6] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http:// research.att.com/~njas/sequences/.
[7] V. Tipu, A note on Giuga's conjecture, Canad. Math. Bull. 50 (2007), 158-160.

Florian Luca: Mathematical Institute, UNAM, Ap. Postal 61-3 (Xangari), CP 58089, Morelia, Michoacán, Mexico

E-mail address: fluca@matmor.unam.mx
Carl Pomerance: Department of Mathematics, Dartmouth College, Hanover, NH 03755-3551, USA

E-mail address: carlp@gauss.dartmouth.edu
Igor Shparlinski: Department of Computing, Macquarie University, Sydney, NSW 2109, Australia

E-mail address: igor@ics.mq.edu.au

[^0]: During the preparation of this paper, the three authors were supported by SEP-CONACyT 46755, NSF Grant DMS-0703850, and ARC Grant DP0556431, respectively.

