THE AVERAGE ORDER OF ELEMENTS IN THE MULTIPLICATIVE GROUP OF A
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ABSTRACT. We consider the average multiplicative order of a nonzerment in a finite field and
compute the mean of this statistic for all finite fields of aggidegree over their prime fields.

1. INTRODUCTION

For a cyclic group of order, let «(n) denote the average order of an element. For éach,
there are exactly(d) elements of orded in the group (where is Euler’s function), so

a(n) = % S di(d).

din
It is known (von zur Gathen, et al. [2]) that

% Z a(n) = SC(?))Z' + O ((log z)?3(loglog x)4/3) :

T2

n<z
We are interested here in obtaining an analogous resultevhems over the orders of the multi-
plicative groups of finite fields. Let denote a prime number. We know that up to isomorphism,
for each positive integel, there is a unique finite field gf* elements. The multiplicative group
for this field is cyclic of size)* — 1. We are concerned with the average order of an element in this
cyclic group ag varies. We show the following results.

Theorem 1. For each positive integek there is a positive constart’, such that the following
holds. For each numbeA > 0, each number: > 2, and each positive integer with k£ <
(log x)/(2loglog z), we have
1 1 1
Za(]z 1):Kk+OA< . )
m(z) = ph - log” x

This theorem in the cage= 1 appears in Luca [3]. Using Theorem 1 and a partial summation
argument we are able to show the following consequence.

Corollary 2. For all numbersA > 0, x > 2, and for any positive integer < (logx)/(2loglog ),
we have B () i
1 & 1(x T
— —1) = Kp— +O04(—— |,
() ; U= li(z) . <10gA x)

whereK;, is the constant from Theorem 1 ahi¢k) := [ dt/logt.
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Sinceli (z¥*1) /li(z) ~ 2% /(k + 1) asx — oo, Corollary 2 implies that

1 K
— E a(* —1) ~ —E 2% asz — oo.
m(x) E+1
p<w
We identify the constant, as follows. LetNy(n) denote the number of solutions to the
congruence® =1 (mod n).

Proposition 3. For each primep and positive integek: let

[e.e]

Sk(p) = Z Nk(pj)

37—1
p]

ThenSi(p) < 1 and
Ky =11 = Su(p))

p
is a real number with) < K, < 1.

2. PRELIMINARY RESULTS

In this section we prove Proposition 3 and we also prove a lamoncerning the function

Proof of Proposition 3We clearly haveV,(n) < ¢(n) for everyn, sinceN,(n) counts the number
of elements in the grouf¥/nZ)* with order dividingk and there areo(n) elements in all in this

group. Thus, we have
- 1\ o= p ( 1) D 1

Se(p) < =(1-=)> 5 =(1-= = .
k(p)—j:1 ( p) — p¥ p) P -1 p+1

This proves the first assertion, but it is not sufficient far #econd assertion. Fpran odd prime,
the group(Z/p’ Z)* is cyclic so that the number of elements in this group of odtieding & is

Ny (p') = ged(k, (p")). 1)
The same holds fa5’ = 2 or 4, or if p = 2 andk is odd. Suppose now that= 2, j > 3, andk is
even. SincdZ/2’7)* is the direct product of a cyclic group of order 2 and a cyctioup of order
2772 we have

o(p)
p3i-1

Ne(27) = 2 - ged(k, 272) = ged(2k, p(27)). )
Thus, we always havd’,(p’) < 2k, and so

[e.e]

2k 2kp
Sk(p) < Zp3j—1 N

j=1
In particular, we haveS,(p) = Ox(1/p?), which with our first assertion implies that the product
for K, converges to a positive real number that is less than 1. Dmgptetes the proof. O

Lemma4. For every positive integer and each real number > 1 we have

Z Ni(n) < 2(1 + log x)".

n
n<x
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Proof. Letw(n) denote the number of distinct primes that dividend letr,.(n) denote the number
of ordered factorizations of into k positive integral factors. Sinde’™ is the number of ordered
factorizations ofx into k pairwise coprime factors, we haw€™ < 7.(n) for all n. Further, from
(1), (2) and the fact thav,(n) is multiplicative in the variable, we haveN, (n) < 2k“™, so that
Ni(n) < 27 (n). Thus, it suffices to show that

> ) (1 + log z)*. 3)
n<x n
We prove (3) by induction oh. It holds fork = 1 sincer;(n) = 1 for all n, so that

Z <1+/ ——1+log1’

n<x n<q:

Assume now that > 1 and that (3) holds fok. Sincery1(n) = Zd‘ Tk(n),

ZTkz-i-l Z Z Tk Z L

n<z n<:c dln d<z m<x/d
Tk (d)
<D g
d<zx

by the induction hypothesis. This completes the proof. U

) < (1 +log )k,

Corollary 5. For k a positive integer ang a positive real witht < 1 + log y, we have

n? Yy

n>y

Proof. By partial summation, Lemma 4, and integration by parts, axeeh

/ Iy N’“ dt<2/ 7<1+20gt) dt

n>y y<n<t

2
== ((1+1logy)* + k(1 +logy) "+ k(k —1)(1 +1logy)* >+ + k!

<

) (1+ logy)*
Y
usingk < 1+ logy. This completes the proof. O

<2(k+1

Y

3. THE MAIN THEOREM
Proof of Theorem 1The function

)Lt

nlm

is multiplicative and so by Mobius inversion, we may write

m) _ > y(n)

nlm
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where~y is a multiplicative function. It is easy to compute that
N 1
for every primep and positive integey. If rad(n) denotes the largest squarefree divison.pive

thus have (rad(n))
raaln
Yn) = (1) E=T (5)
for each positive integer. Note that (4), (5) are also in [3].
Forn a positive ineger, label th}.(n) roots to the congruencé = 1 (mod n) assy 1, Sx.2, - - - »
Sk,N.(n)- VW€ have

S UL S = X

p<z P<T n|pk—1 n<zk—1 p<x
n|pF—1
Nk(n
Z m(z;n, Ski),
n<zk—1 i=1

wherer(z; ¢, a) denotes the number of primgs< x with p = a (mod q).
If ¢ is not too large in comparison to and if a is coprime tog, we expectr(x; g, a) to be
approximatel%w(x). With this thought in mind, let’, ,(z) be defined by the equation

1
7(x;q,a) = mﬂ'(l’) + Eyq(x).

Further, lety = 2'/2/1og®™ z, whereA is as in the statement of Theorem 1. From the above, we
thus have

a(p’ - 1) R
ZW = D> ) Y wlain, i)
p<z n<zk—1 i=1
o (n Nk Ni(n) Niu(n)
Z )+ Zv B, (T) + Z v(n) (x5, Sp;)
n<y n<y i=1 y<n<zk—1 1=1

=T, + 15+ T3, say
We further refine the main terfh, as
03 LT )3~ A
n>y
The first sum here has an Euler product as

= nNkn > Nk / OONk /
EW&J):HG+;W@W¢O:HG‘Zﬁﬁ»:“’

p Jj=1

where we used (4). For the second sum in the expressidh fave have by (5) and Corollary 5,

Zv Nk ZN;;(Zn) §2(k+1)(1+logy)k.

n>y Yy

n>y
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Here we have usel < (logz)/(2loglogz) andy = z'/2/log”™ z, so thatk < 1 + logy for
all sufficiently larger depending on the choice &f. Further, with these choices féry we have
(14 logy)* < 2'/2 for x sufficiently Iarge, so that

Z ~v(n Nk 2(k +1)(1 +logy)* - ()
e Y - logAx

< m(x)

for all sufficiently large values of depending om. Thus, T} = K,n(x) + O(w(z)/log? x).
Thus, it remains to show that both, and T3 are O (n(x)/log® x). Using the elementary
estimater(z; ¢,a) < 1+ x/q, we have

i< Y e (1+ D)<y B0, s Akl

y<n<zk—1 y<n<zk—1 y<n<zk—1

by (5). We have seen that the second sum here is negligibdethenfirst sum is bounded by
2(1 + klog x)* using Lemma 4. This last expression is smaller than

log® x B x B m(x)
loglogz ) exp(logxlogloglogz/(2loglogx)) A log” x
for any fixed choice ofd.
To estimat€el;,, note that

T < y(n)|Ni(n ) max,

1 1

max —
= e(n) %%whl p(n)
since|y(n)| < ¢(n)/n* < 1/n and Ni(n) < ¢(n) < n. Thus, by the Bombieri—Vinogradov

theorem, see [1, Ch. 28], we ha\®| = O4(n(x)/log” x), by our choice ofy. These estimates
conclude our proof of Theorem 1. O

W(x;n,a) ( ) W(l’;n,&)— 71'(1') )

4. PROOF OFCOROLLARY 2 AND MORE ON THE CONSTANTSK,
In this section we prove Corollary 2 and we numerically coteufew of the constants,.
Proof of Corollary 2 By partial summation, we have

> apf-1)= Zw(pk— 1)

—1
p<wm p<zx p

@ -y alp" —1) /k;t“z (= 1)

p<x p _1 p<t p -1

Thus, by Theorem 1, the prime number theorem, and integrafigarts, we have

S a(ph — 1) = (@ ~ DKyr(a) - / ey ()dtm( <x>xk)

log x

p<w

= (aF — 1) Kli(2) — /j KR (1) dE + O (W(”“"Zxk)

log” x
k
/ Kk—dtJrO( m(@)z )
logt log” x
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This last integral i€, li (#F+1) — K,1i (2¥+1), so the corollary now follows via one additional call
to the prime number theorem. O
We now examine the constaris, for & < 4. SinceN;(p’) = 1 for all p?, we have

K =] (1—2%) =11 (1—p3p_1) = 0.5750599689 ...

p j=1 p

(This constant is also worked out in [3].) Fak we note thatV,(p’) = 2 for all prime powerg’
except thatV,(2) = 1 and Ny (27) = 4 for j > 3. Thus,

ZN2(2j) 1 2 1 37

%1 4173256 112

j>1
and so

Ky

75 < 1 2p

= __ — = (0.4269891575 . . ..
112 P — 1)
p>2

For K3, we haveN;(p’) = 3forp =1 (mod 3) and forp = 3 andj > 2. Otherwise N3(p’) = 1.
Thus,

~ 205 3p P B
K3_234p 11 )(1 p3—1) I1 )(1 pg_l)—0.6393087751....

p =2 (mod 3

For K4, we haveN,(p’) = 4 for p = 1 (mod 4), Ny(p’) = 2 for p = 3 (mod 4), Ny(2) = 1,
Ny (2%) = 2, Ny(2%) = 4, andN,(27) = 8 for j > 4. Thus,

299 4p 2p
K= 11 <1_p3_1) 11 (1—p3_1) = 0.3775394971 .. ..
P p = 3 (mod 4)

=1 (mod 4)

These calculations were done with the aid of Mathematicah Wiittle effort other constants’,
may be computed, but ¥ has many divisors, then the calculation gets a bit more tesdio

We close with the observation that there is an infinite segeiefinumberg on which K, — 0.
In particular, ifk = k,, is the least common multiple of all numbers upitothenN,(p) =p — 1
for every primep < m + 1, so that

G- 5) < 05

Sinced (p — 1)/p* = +o0, it follows that asn — oo, K}, — 0. Using the theorem of Mertens,
we in fact havdim inf K loglog k < +o0.
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