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ABSTRACT. We consider the average multiplicative order of a nonzero element in a finite field and
compute the mean of this statistic for all finite fields of a given degree over their prime fields.

1. INTRODUCTION

For a cyclic group of ordern, let α(n) denote the average order of an element. For eachd | n,
there are exactlyϕ(d) elements of orderd in the group (whereϕ is Euler’s function), so

α(n) =
1

n

∑

d|n

dϕ(d).

It is known (von zur Gathen, et al. [2]) that

1

x

∑

n≤x

α(n) =
3ζ(3)

π2
x+O

(

(log x)2/3(log log x)4/3
)

.

We are interested here in obtaining an analogous result wheren runs over the orders of the multi-
plicative groups of finite fields. Letp denote a prime number. We know that up to isomorphism,
for each positive integerk, there is a unique finite field ofpk elements. The multiplicative group
for this field is cyclic of sizepk − 1. We are concerned with the average order of an element in this
cyclic group asp varies. We show the following results.

Theorem 1. For each positive integerk there is a positive constantKk such that the following
holds. For each numberA > 0, each numberx ≥ 2, and each positive integerk with k ≤
(log x)/(2 log log x), we have

1

π(x)

∑

p≤x

α(pk − 1)

pk − 1
= Kk +OA

(

1

logA x

)

.

This theorem in the casek = 1 appears in Luca [3]. Using Theorem 1 and a partial summation
argument we are able to show the following consequence.

Corollary 2. For all numbersA > 0, x ≥ 2, and for any positive integerk ≤ (log x)/(2 log log x),
we have

1

π(x)

∑

p≤x

α(pk − 1) = Kk
li(xk+1)

li(x)
+OA

(

xk

logA x

)

,

whereKk is the constant from Theorem 1 andli(x) :=
∫ x

2
dt/ log t.
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Sinceli(xk+1)/li(x) ∼ xk/(k + 1) asx → ∞, Corollary 2 implies that

1

π(x)

∑

p≤x

α(pk − 1) ∼
Kk

k + 1
xk, asx → ∞.

We identify the constantsKk as follows. LetNk(n) denote the number of solutions to the
congruencesk ≡ 1 (mod n).

Proposition 3. For each primep and positive integerk let

Sk(p) =
∞
∑

j=1

Nk(p
j)

p3j−1
.

ThenSk(p) < 1 and

Kk :=
∏

p

(1− Sk(p))

is a real number with0 < Kk < 1.

2. PRELIMINARY RESULTS

In this section we prove Proposition 3 and we also prove a lemma concerning the function
Nk(n).

Proof of Proposition 3. We clearly haveNk(n) ≤ ϕ(n) for everyn, sinceNk(n) counts the number
of elements in the group(Z/nZ)∗ with order dividingk and there areϕ(n) elements in all in this
group. Thus, we have

Sk(p) ≤

∞
∑

j=1

ϕ(pj)

p3j−1
=

(

1−
1

p

) ∞
∑

j=1

p

p2j
=

(

1−
1

p

)

p

p2 − 1
=

1

p+ 1
.

This proves the first assertion, but it is not sufficient for the second assertion. Forp an odd prime,
the group(Z/pjZ)∗ is cyclic so that the number of elements in this group of orderdividing k is

Nk(p
j) = gcd(k, ϕ(pj)). (1)

The same holds forpj = 2 or 4, or if p = 2 andk is odd. Suppose now thatp = 2, j ≥ 3, andk is
even. Since(Z/2jZ)∗ is the direct product of a cyclic group of order 2 and a cyclic group of order
2j−2, we have

Nk(2
j) = 2 · gcd(k, 2j−2) = gcd(2k, ϕ(2j)). (2)

Thus, we always haveNk(p
j) ≤ 2k, and so

Sk(p) ≤

∞
∑

j=1

2k

p3j−1
=

2kp

p3 − 1
.

In particular, we haveSk(p) = Ok(1/p
2), which with our first assertion implies that the product

for Kk converges to a positive real number that is less than 1. This completes the proof. �

Lemma 4. For every positive integerk and each real numberx ≥ 1 we have
∑

n≤x

Nk(n)

n
≤ 2(1 + log x)k.



THE AVERAGE ORDER OF ELEMENTS IN THE MULTIPLICATIVE GROUP OFA FINITE FIELD 3

Proof. Letω(n) denote the number of distinct primes that dividen and letτk(n) denote the number
of ordered factorizations ofn into k positive integral factors. Sincekω(n) is the number of ordered
factorizations ofn into k pairwise coprime factors, we havekω(n) ≤ τk(n) for all n. Further, from
(1), (2) and the fact thatNk(n) is multiplicative in the variablen, we haveNk(n) ≤ 2kω(n), so that
Nk(n) ≤ 2τk(n). Thus, it suffices to show that

∑

n≤x

τk(n)

n
≤ (1 + log x)k. (3)

We prove (3) by induction onk. It holds fork = 1 sinceτ1(n) = 1 for all n, so that
∑

n≤x

N1(n)

n
=
∑

n≤x

1

n
≤ 1 +

∫ x

1

dt

t
= 1 + log x.

Assume now thatk ≥ 1 and that (3) holds fork. Sinceτk+1(n) =
∑

d|n τk(n),

∑

n≤x

τk+1(n)

n
=
∑

n≤x

1

n

∑

d|n

τk(d) =
∑

d≤x

τk(d)

d

∑

m≤x/d

1

m

≤
∑

d≤x

τk(d)

d
(1 + log x) ≤ (1 + log x)k+1,

by the induction hypothesis. This completes the proof. �

Corollary 5. For k a positive integer andy a positive real withk ≤ 1 + log y, we have
∑

n>y

Nk(n)

n2
≤ 2(k + 1)

(1 + log y)k

y
.

Proof. By partial summation, Lemma 4, and integration by parts, we have
∑

n>y

Nk(n)

n2
=

∫ ∞

y

1

t2

∑

y<n≤t

Nk(n)

n
dt ≤ 2

∫ ∞

y

(1 + log t)k

t2
dt

=
2

y

(

(1 + log y)k + k(1 + log y)k−1 + k(k − 1)(1 + log y)k−2 + · · ·+ k!
)

≤ 2(k + 1)
(1 + log y)k

y
,

usingk ≤ 1 + log y. This completes the proof. �

3. THE MAIN THEOREM

Proof of Theorem 1. The function

α(m)

m
=

1

m2

∑

n|m

nϕ(n)

is multiplicative and so by Möbius inversion, we may write

α(m)

m
=
∑

n|m

γ(n),
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whereγ is a multiplicative function. It is easy to compute that

γ(pj) = −
p− 1

p2j
(4)

for every primep and positive integerj. If rad(n) denotes the largest squarefree divisor ofn, we
thus have

γ(n) = (−1)ω(n)
ϕ(rad(n))

n2
(5)

for each positive integern. Note that (4), (5) are also in [3].
Forn a positive ineger, label theNk(n) roots to the congruencesk ≡ 1 (mod n) assk,1, sk,2, . . . ,

sk,Nk(n). We have

∑

p≤x

α(pk − 1)

pk − 1
=
∑

p≤x

∑

n|pk−1

γ(n) =
∑

n≤xk−1

γ(n)
∑

p≤x
n|pk−1

1

=
∑

n≤xk−1

γ(n)

Nk(n)
∑

i=1

π(x;n, sk,i),

whereπ(x; q, a) denotes the number of primesp ≤ x with p ≡ a (mod q).
If q is not too large in comparison tox and if a is coprime toq, we expectπ(x; q, a) to be

approximately 1
ϕ(q)

π(x). With this thought in mind, letEq,a(x) be defined by the equation

π(x; q, a) =
1

ϕ(q)
π(x) + Eq,a(x).

Further, lety = x1/2/ logA+4 x, whereA is as in the statement of Theorem 1. From the above, we
thus have

∑

p≤x

α(pk − 1)

pk − 1
=

∑

n≤xk−1

γ(n)

Nk(n)
∑

i=1

π(x;n, sk,i)

=
∑

n≤y

γ(n)Nk(n)

ϕ(n)
π(x) +

∑

n≤y

γ(n)

Nk(n)
∑

i=1

En,ski
(x) +

∑

y<n≤xk−1

γ(n)

Nk(n)
∑

i=1

π(x;n, sk,i)

= T1 + T2 + T3, say.

We further refine the main termT1 as

T1 = π(x)

∞
∑

n=1

γ(n)Nk(n)

ϕ(n)
− π(x)

∑

n>y

γ(n)Nk(n)

ϕ(n)
.

The first sum here has an Euler product as
∞
∑

n=1

γ(n)Nk(n)

ϕ(n)
=
∏

p

(

1 +

∞
∑

j=1

γ(pj)Nk(p
j)

ϕ(pj)

)

=
∏

p

(

1−

∞
∑

j=1

Nk(p
j)

p3j−1

)

= Kk,

where we used (4). For the second sum in the expression forT1, we have by (5) and Corollary 5,
∣

∣

∣

∣

∣

∑

n>y

γ(n)Nk(n)

ϕ(n)

∣

∣

∣

∣

∣

≤
∑

n>y

Nk(n)

n2
≤ 2(k + 1)

(1 + log y)k

y
.
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Here we have usedk ≤ (log x)/(2 log log x) andy = x1/2/ logA+4 x, so thatk ≤ 1 + log y for
all sufficiently largex depending on the choice ofA. Further, with these choices fork, y we have
(1 + log y)k < x1/2 for x sufficiently large, so that

π(x)

∣

∣

∣

∣

∣

∑

n>y

γ(n)Nk(n)

ϕ(n)

∣

∣

∣

∣

∣

≤ π(x)
2(k + 1)(1 + log y)k

y
≤

π(x)

logA x

for all sufficiently large values ofx depending onA. Thus,T1 = Kkπ(x) +OA(π(x)/ log
A x).

Thus, it remains to show that bothT2 andT3 areOA(π(x)/ log
A x). Using the elementary

estimateπ(x; q, a) ≤ 1 + x/q, we have

|T3| ≤
∑

y<n≤xk−1

|γ(n)|Nk(n)
(

1 +
x

n

)

≤
∑

y<n≤xk−1

Nk(n)

n
+ x

∑

y<n≤xk−1

Nk(n)

n2
,

by (5). We have seen that the second sum here is negligible, and the first sum is bounded by
2(1 + k log x)k using Lemma 4. This last expression is smaller than

(

log2 x

log log x

)k

=
x

exp(log x log log log x/(2 log log x))
= OA

(

π(x)

logA x

)

for any fixed choice ofA.
To estimateT2, note that

|T2| ≤
∑

n≤y

|γ(n)|Nk(n) max
(a,n)=1

∣

∣

∣

∣

π(x;n, a)−
1

ϕ(n)
π(x)

∣

∣

∣

∣

≤
∑

n≤y

max
(a,n)=1

∣

∣

∣

∣

π(x;n, a)−
1

ϕ(n)
π(x)

∣

∣

∣

∣

,

since|γ(n)| ≤ ϕ(n)/n2 ≤ 1/n andNk(n) ≤ ϕ(n) ≤ n. Thus, by the Bombieri–Vinogradov
theorem, see [1, Ch. 28], we have|T2| = OA(π(x)/ log

A x), by our choice ofy. These estimates
conclude our proof of Theorem 1. �

4. PROOF OFCOROLLARY 2 AND MORE ON THE CONSTANTSKk

In this section we prove Corollary 2 and we numerically compute a few of the constantsKk.

Proof of Corollary 2. By partial summation, we have
∑

p≤x

α(pk − 1) =
∑

p≤x

α(pk − 1)

pk − 1
(pk − 1)

= (xk − 1)
∑

p≤x

α(pk − 1)

pk − 1
−

∫ x

2

ktk−1
∑

p≤t

α(pk − 1)

pk − 1
dt.

Thus, by Theorem 1, the prime number theorem, and integration by parts, we have
∑

p≤x

α(pk − 1) = (xk − 1)Kkπ(x)−

∫ x

2

ktk−1Kkπ(t) dt+O

(

π(x)xk

logA x

)

= (xk − 1)Kkli(x)−

∫ x

2

ktk−1Kkli(t) dt +O

(

π(x)xk

logA x

)

=

∫ x

2

Kk
tk

log t
dt +O

(

π(x)xk

logA x

)

.
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This last integral isKkli(x
k+1)−Kkli(2

k+1), so the corollary now follows via one additional call
to the prime number theorem. �

We now examine the constantsKk for k ≤ 4. SinceN1(p
j) = 1 for all pj, we have

K1 =
∏

p

(

1−
∑

j≥1

p

p3j

)

=
∏

p

(

1−
p

p3 − 1

)

= 0.5759599689 . . . .

(This constant is also worked out in [3].) ForK2 we note thatN2(p
j) = 2 for all prime powerspj

except thatN2(2) = 1 andN2(2
j) = 4 for j ≥ 3. Thus,

∑

j≥1

N2(2
j)

23j−1
=

1

4
+

2

32
+

1

56
=

37

112
,

and so

K2 =
75

112

∏

p>2

(

1−
2p

p3 − 1

)

= 0.4269891575 . . . .

ForK3, we haveN3(p
j) = 3 for p ≡ 1 (mod 3) and forp = 3 andj ≥ 2. Otherwise,N3(p

j) = 1.
Thus,

K3 =
205

234

∏

p ≡ 1 (mod 3)

(

1−
3p

p3 − 1

)

∏

p ≡ 2 (mod 3)

(

1−
p

p3 − 1

)

= 0.6393087751 . . . .

For K4, we haveN4(p
j) = 4 for p ≡ 1 (mod 4), N4(p

j) = 2 for p ≡ 3 (mod 4), N4(2) = 1,
N4(2

2) = 2, N4(2
3) = 4, andN4(2

j) = 8 for j ≥ 4. Thus,

K4 =
299

448

∏

p ≡ 1 (mod 4)

(

1−
4p

p3 − 1

)

∏

p ≡ 3 (mod 4)

(

1−
2p

p3 − 1

)

= 0.3775394971 . . . .

These calculations were done with the aid of Mathematica. With a little effort other constantsKk

may be computed, but ifk has many divisors, then the calculation gets a bit more tedious.
We close with the observation that there is an infinite sequence of numbersk on whichKk → 0.

In particular, ifk = km is the least common multiple of all numbers up tom, thenNk(p) = p− 1
for every primep ≤ m+ 1, so that

Kk <
∏

p

(

1−
Nk(p)

p2

)

<
∏

p≤m+1

(

1−
p− 1

p2

)

.

Since
∑

(p− 1)/p2 = +∞, it follows that asm → ∞, Kkm → 0. Using the theorem of Mertens,
we in fact havelim infKk log log k < +∞.
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