Two problems in combinatorial number theory

Carl Pomerance, Dartmouth College

Debrecen, Hungary October, 2010

Our story begins with:

Abram S. Besicovitch

Besicovitch showed in 1934 that there are primitive sets of natural numbers with upper density arbitrarily close to 1/2.

Here "primitive" means that no member of the set divides another. For example, the set of prime numbers is a primitive set.

But the set of primes has density 0. By the upper density of a set S, we mean

$$\bar{d}(S) := \limsup_{x \to \infty} \frac{1}{x} S(x),$$

where $S(x) := |S \cap [1, x]|$.

The result of Besicovitch is somewhat of a surprise, since a first guess might be that the set of primes forms a typical example.

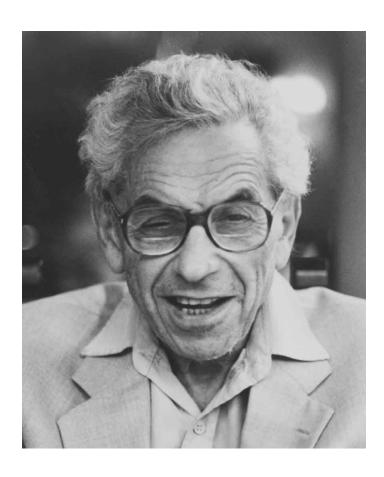
The two key ideas in the proof of the Besicovitch result:

• For any number x, the integers in (x, 2x] form a primitive set.

• As $x \to \infty$, the density of the integers with a divisor in (x, 2x] tends to 0.

So, by choosing a rapidly growing sequence $x_1 < x_2 < \dots$, where x_1 is already very large, and taking \mathcal{S}_k as the set of numbers in $(x_k, 2x_k]$ not divisible by any number in \mathcal{S}_i for i < k, and then letting $\mathcal{S} = \cup \mathcal{S}_k$, we have our dense primitive set.

But what about the lower density of a primitive set?



Erdős showed in 1935 that not only must the lower asymptotic density of a primitive set be 0, but

$$\sup_{\mathcal{S} \text{ primitive}} \sum_{n \in \mathcal{S} \setminus \{1\}} \frac{1}{n \log n} < \infty.$$

It is thought that the supremum is achieved for the set of primes, but this is still not known.

Recall that $S(x) = |S \cap [1, x]|$, the number of members of S in [1, x]. The case of the primes shows us that

$$S(x) \gg \frac{x}{\log x}$$

is possible for a primitive set. Can we do better? That is, can we find larger (concave down) functions here than $x/\log x$?

Erdős: "The following problem seems difficult. Let $b_1 < \ldots$ be an infinite sequence of integers. What is the necessary and sufficient condition that there should exist a primitive sequence $a_1 < \ldots$ satisfying $a_n < cb_n$ for every n? From [my old result] we obtain that we must have $\sum 1/(b_n \log b_n) < \infty$"

Ahlswede, Khachatrian, Sárközy (1999): For each $\epsilon > 0$ there is a primitive set S such that

$$S(x) \gg \frac{x}{\log_2 x \cdot (\log_3 x)^{1+\epsilon}}.$$

Here we write log_k for the k-fold iteration of log.

It is clear that this result is best possible, since if the counting function satisfied

$$S(x) \gg \frac{x}{\log_2 x \cdot \log_3 x},$$

then we would have $\sum_{n \in \mathcal{S}} 1/n \log n = \infty$.

One might view the Erdős problem mentioned above as whether the criterion $\sum 1/n \log n = O(1)$ is the only limitation on the growth of a primitive set. And the answer is essentially "yes for smoothly growing sequences":

Martin, P (2010): Suppose that L(x) is positive and increasing for $x \ge 2$, $L(2x) \sim L(x)$, and

$$\int_2^\infty \frac{dt}{t \log t \cdot L(t)} < \infty.$$

Then there is a primitive set S such that

$$S(x) \simeq \frac{x}{\log_2 x \cdot \log_3 x \cdot L(\log_2 x)}.$$

In particular for each $\ell \geq 3$ and $\epsilon > 0$, there is a primitive set $\mathcal S$ with

$$S(x) \approx \frac{x}{\log_2 x \cdot \ldots \cdot \log_{\ell-1} x \cdot (\log_{\ell} x)^{1+\epsilon}}.$$

Our primitive set is based on an increasing sequence of primes p_1,p_2,\ldots , where $p_j\ll j^2$ and $\sum 1/p_j<1/2$. It is the union of the sets

$$S_k = \{n : \Omega(n) = k, p_k \mid n, (n, p_1 \dots p_{k-1}) = 1\}.$$

It is immediate that each \mathcal{S}_k is primitive as is their union.

We show using the Sathe-Selberg theorem that

$$S_k(x) \simeq \frac{x}{\log x} \frac{(\log_2 x)^{k-2}}{(k-2)!} \frac{1}{p_k}.$$

We then show that $x/p_B \gg S(x) \gg x/p_{B'}$, where $B = \lfloor (1/2) \log_2 x \rfloor$ and $B' = \lfloor (3/2) \log_2 x \rfloor$.

To complete the proof, we show that we may take p_k as the |kL(k)|th prime.

And now for something completely different ...

Must dense sets of integers contain a solution to ab=c? Some examples of sets where this equation has no solutions:

- The set of negative integers.
- The set of integers with an odd number of prime factors.
- The set of $2^a(4b+3)$ where $a \ge 0$.
- The set of np^a where n is a quadratic nonresidue mod p, $a \ge 0$.

These examples all have density 1/2.

Recently Hajdu, Schinzel, & Skalba (2009) showed that there are sets of integers with upper density arbitrarily close to 1 that are *product free*, namely there is no solution to ab=c in the set.

Must it be true that any product-free subset of \mathbb{Z} (or \mathbb{N}) must have lower density at most 1/2?

Hajdu, Schinzel, Skalba (2009): If the lower asymptotic density of a set of integers exceeds 1/2, then there are members a, b, c, d with $abc = d^2$.

Recently Schinzel conjectured: If n is a positive integer, let F(n) be the size of the largest product-free subset of $\mathbb{Z}/n\mathbb{Z}$. Then F(n) < n/2.

Here are some examples:

n	F(n)	n	F(n)
1	0	11	5
2	0	12	4
3	1	13	6
4	1	14	6
5	2	15	6
6	2	16	7
7	3	17	8
8	3	18	8
9	4	19	9
10	4	20	8

Maybe

$$F(n) = \max \left\{ \left\lfloor \frac{q-1}{2} \right\rfloor \frac{n}{q} : q \mid n, q \text{ a prime power} \right\} ?$$

P, Schinzel (2010): The set of possible counterexamples to F(n) < n/2 lie in a set with asymptotic density smaller than 1.56×10^{-8} .

We show this by showing that if n has no divisor m^2 with $\omega(m) \geq 6$, then F(n) < n/2.

With any product-free subset S of $\mathbb{Z}/n\mathbb{Z}$, we organize the elements by their gcd with n, where for $d \mid n$, we let S_d be the set of those $s \in S$ with gcd(s, n) = d. Further, let

$$T_d = \{a \in \mathbb{Z}/n\mathbb{Z} : \gcd(a,n) = d\}.$$

Suppose $uv \mid n$ and $S_u \neq \emptyset$, with $s \in S_u$. Then multiplication by s maps T_v to T_{uv} and since S is product free, it follows that $sS_v \cap S_{uv} = \emptyset$.

It follows that $|sS_v| + |S_{uv}| \le |T_{uv}|$.

This observation is our principal tool.

In fact, it is possible using these thoughts to prove that the Schinzel conjecture F(n) < n/2 follows from the following conjecture:

For m a squarefree number and a positive integer k, consider real variables x_d where d runs over the divisors of m^k . We restrict these variables as follows:

$$x_d \in [0, 1], \quad uv \mid m^k \text{ implies } x_u + x_v + x_{uv} \le 2, \quad x_1 = 0.$$

Conjecture: Subject to these constraints, the maximum value of $\sum x_d/d$ is smaller than

$$\sum_{egin{array}{c} \mathsf{rad}(u)|m \ \Omega(u) \ \mathsf{odd} \ \end{array}} rac{1}{u},$$

where rad(u) is the largest squarefree divisor of u.

We have proved this linear-programming conjecture in the cases where m is either a prime or the product of two primes. Actually the tools we used to do this are similar to the tools we used to directly attack the product-free problem, so it is not clear that this linear-programming perspective is making progress.

We have not exhausted all of our tools in getting the 1.56×10^{-8} result, we have just exhausted ourselves.

Perhaps a fresh effort to improve our result will allow one to see a general pattern, and not only get a smaller density for the exceptional set, but prove there are no exceptions.

THANK YOU!

Happy birthday András, Kálmán, János, and Attila!