NEW IDEAS FOR FACTORING LARGE INTEGERS

Carl Pomer:mce,1 J.W. Smith1 and S. S. Wagstaff, Jr.1

This is an extended abstract which summarizes papers [3], [4], and [5]. They
describe improvements in the continued fraction factorization algorithm (CFRAC)

and a special processor designed to execute this algorithm swiftly. The ideas in these

papers will permit one to factor a 100 decimal digit integer in about a month on a pro-
cessor which would cost about $1,000,000. Thercfore, moduli for RSA cryptosystems
should be chosen somewhat larger than 100 digits to be secure.

1. Improvement of the CFRAC algorithm

Let N be a large composite number. The CFRAC algorithm genecates several
sequences of integers derived from the simple continued fraction expansion of ViV .
See Morrison and Brillhart [1] for a detailed description of the algorithm. We nced
consider only the two scquences {Qn} and {An mod N}. They satisfy lin < 2VN and
An2 = Q, mod N. The Q,, are unusually small quadratic residues modulo N. Since
they are so small, many Q_ can be factored casily into primes. In the first step of
CFRAC, the sequences are gencrated and some effort is made to factor the Q_’s by
trial division by small primes. The Qn’s which can be factored, together with the
corresponding A s, are saved on sccondary storage. In the second step of CFRAC,
the pairs (An, Qu) saved in the first step arc combined to construct a factorization of
N. The first step requires many computer cycles but little memory, while the second

step uses much memory for a short time. The two steps are run as separate jobs unless

1. Research supported in part by grants from the National Science Foundation.

&1

Copyright (c) 1998, Springer-Verlag

82 Carl Pomerance, J. W. Smith, and §. S. Wagstaff, Jr.

N is small. The second step is now standard and easy. We offer no improvement on
it. Sec Wunderlich and Parkinson [6] for receat work.

Consider the first step of CFRAC. The attempt to factor each Q, involves trial

division of Q by a set of small primes Py»--P,, called the "factor basc . The inner
loop of the algorlthm Is:

Q- Q,
i1
while (i = m) do
if (Q"MOD p, = 0) then
Q- Q’/pi
else
i~ i+1
if (Q" = 1) then output A, Qn.

This loop is the computational bottleneck of the algorithm.

Most O do not factor completely over the factor base. When 1 < Q' < p
the end of thc inner loop, Q" must be a prime larger than P, In this case Q has
been factored completely. Morrison and Brillhart noted [1] that such a Q can be
used in the second step provided it can be paired with another Q having the same
large prime Q". Store Q~ in the same record with A and Q The sccond step begins
by sorting the records in order of Q" Tt then dxscards those records whose Q~ is not
repeated. This technique of using Q” is called the “large prime variation”. It makes

little difference in the asymptotic running time, but it halves the time required for
numbers of practical size.

Another variation is the "early abort strategy” (EAS). (See Pomerance [2].)
Choose 1 < m, < m and 2W > B, > 1. Run the inner lcop up to i = m,. At this
point Q” is the largest divisor of Q all of whose prime factors exceed P, - IfQ >

Bl, abandon trial division of Q and obtain Q . One can use several early aborts by
defining parameters

1< m < m < .. < mand2W>Bl>Bz>...> 1.

Each time i reaches the next m; a decision is made: the inner loop is broken if Q° >
B Optimal asymptotic choices for the m, and B are given in [2] where it is shown
thar EAS produces a large reduction in asymptotlc running time. The time needed to
factor a typical 50 digit number on an IBM 370/158 is about 100 hours when EAS is

not used, 30 hours with one abort, 14 hours with two aborts, and 12 hours with three

Copyright (c) 1998, Springer-Verlag

R

< T

TR e e s

st

New Ideas for Factoring Large Integers 83

aborts. (These times assume that the large prime variation is used, t00.) Good practi-
cal choices for the EAS parametcrs were found by experimentation and are given in
[3]. With one abort choose m, =50and B, = VN /1000000 for m = 959 and 10% < N
. The asymptotic running time of CFRAC with EAS is about L(N)123, where
L(N) = cxp((ln N In In N)?). (The time is about L(N)"*! for CFRAC without EAS.)

The numbers An are computed by the congruence An = ann_l + Au_2 mod N.
Since reduction modulo N is expensive and the positive integers q, are usually small
G, = 1 42% of the time), the remaindering is performed only occasionally. We
recommend doing it only when A approaches N2, q, exceeds 106, or Qn has been fac-

torcd so that it and An mod N must be output.

2. Special hardware for factoring large numbers

The CFRAC algorithm is amcnable to parallcl computation. One can divide a
single Qn by many primes at once, or many Qn’s by one prime at once, or use a hybrid
of the methods. The best choice depends on the machine’s architecture. One must
choose new EAS parameters for cach architecture. One can generate the Qn's (and
other sequences) in parallel because there is a way to jump far ahead in the continued
fraction expansion. Wunderlich is programming CFRAC on several parallel machines
such as the DAP and the MPP.

We decided to design and build a special processor for factoring large integers by
CFRAC. With a grant from the University of Georgia Faculty Research Grants Pro-
gram in 1982, we hoped to design a machine which could factor a 70 digit number in a
few days. Our small budget allowed only a tiny memory. Therefore, we planned a
machine to perform just the first step of CFRAC. It would communicate with a host
minicomputer capable of doing the second step. The fabrication of this special proces-

sor has just becen completed at this writing (November, 1983). We expect it to factor
large numbers soon.

Although we had limited resources, we gave our machine several computational
accelerators. Most of the CFRAC arithmetic involves numbers as large as 2VN . The
128-bit opcrand size of the processor permits it to factor numbers as large as 76 digits
via CFRAC. This featurc gives the machine the name Extended Precision Operand
Computer or EPOC. It is cften playfully called the "Georgia Cracker”. The word size
could be extended even further without great difficulty. We chose 128 bits because of
the speed of the EPOC. It will take scveral months to factor a 76 digit number. A
larger word size would have wasted capacity. A smaller word size would have

Prevented us from factoring numbers as large as feasible in a reasonable time.

Copyright (c) 1998, Springer-Verlag

Carl Pomerance, J. W. Smith, and S. S. Wagstaff, Jr.

Another accelerator provides rudimentary parallel processing. The remaindering
operations of the inner loop are cxccuted in parallel by a scparate uait of the EPOC,
A sct of modulus elements (dubbed the "mod squad”) divides one Q, by several
differcnt primes at once. The elements are loaded with the primes and then the divi-
dend Q_is broadcast to all of them cne bit at a time. The mod squad reports a bit
vector whlch identifies those primes which divide Q exactly. During the parallel

remaindering the main processor finds Q'J 1 OF makes the EAS decisions.

As the main processor performs the EAS tests, it modifies the EAS parameters
occasionally to kecp itself and the remaindering units busy as much as possible. When
Q is factored, A , Q , and the large prime (if any) are transmitted to the host com-
puter for storage. Thls action kecps the EPOC memory requirements low. Communi-
cation between EPOC and the host is performed by the input/output terminal emula-
tor (IOTE). Because CFRAC for N > 10% is compute-bound the IOTE can be rela-
tively slow. It has a DMA interface to the EPOC, but appears to be a 9600 baud ter-

minal to the host.

The EPOC language is horizontal microcode. Each data bus is controlicd by the
programmer during each instruction cycle. The source program is prepared on the
host computer. It is assembled, linked, and loaded by systems programs executing on
the host. The assembler is a general two-pass cross-assembler driven by a language
definition program. Results from the EPOC are moved to the host by the IOTE and a
host unloader program. Several diagnostic programs are run occasionally to insure
correct functioning of the EPOC. The IOTE is connected to & conso[c which allows
the operator to moenitor the EPOC calculations. Relations such as A Qn (mod N)
are used by the CFRAC program to check for hardware failures. Most of the systems
programs are written in RATFOR for portability.

The EPOC is constructed in Schottky TTL technology using a bit-slice architec-
ture. This technology combines reasonable speed with simplicity of design. The mul-
tibus prototype cards werc wirewrapped by a machine using a wire list produced by
computer-aided design. The 128-bit ALU is mounted on four cards (32 bits per card).
The IOTE and a sequencer each occupy one card. The remainder units are packaged
separately. There arc about 10 of them.

The machine described so far will likely factor a 70 digit number in about two
months. We belicve that the following enhancements will permit us to build another
processor which will be able to factor a 100 digit number in a few years. We are¢
designing a VLSI chip to do the job of a remaindering unit, which occupies onc card
in the present EPOC. With this chip onc can have hundreds of remainder units in

onc EPOC. This amount of dividing power will force reconsideration of the EAS

Copyright (c) 1998, Springer-Verlag

TR

RSP B e

New Ideas for Factoring Large Integers 85

parameter choices. The factor base will have to be enlarged. Generation of the con-
tinued fraction expansion will become a significant part of the whole calculation. We
may build several main processors to share onc VLSI mod squad. The main
processor(s) will be fabricated in ecl technology and will have wider operands.
Because of the parallelism possible in the algorithm a few dozen cof these processors
could factor a 100 digit number in about a month at a cost of about $1,000,060 for the

machine.

REFERENCES

1. M. A. Morrison and J. Brillhart, A method of factoring and the factorization of
F7, Math. Comp. 29 (1975), 183-205.

2. C.Pomcrance, Analysis and comparison of some intcger factoring algorithms, in
Computational Methods in Number Theory, Part 1, H. W. Lenstra, Jr. and R. Tijde-
man, eds., Math. Centrum 154, Amsterdam (1982), 89-139.

3. C. Pomerance and S. S. Wagstaff, Jr., Implementation of the continued fraction

integer factoring algoritlim, Congressus Numerantium 37 (1983), 99-118.

4.). W. Smith and S. S. Wagstaff, Jr., An extended precision operand computer,
Proceedings of the 21st Southeast Region ACM Conference (1983), 209-216.

5. J. W. Smith and S. S. Wagstaff, Jr., How to crack an RSA cryptosystem, tc

appear in Congressus Numerantium.

6. M. C. Wunderlich and D. Parkinson, A memory-efficient algorithm for Gaussian
elimination over GF(2) implemented on highly parallel computers, in prepara-

tion.

Copyright (c) 1998, Springer-Verlag

Copyright (c) 1998, Springer-Verlag

