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In 1770, Euler wrote:

“Mathematicians have tried in vain to discover some order in

the sequence of prime numbers, but we have every reason to

believe that there are some mysteries which the human mind

will never penetrate.”

from A. Granville, “Harald Cramér and the distribution of prime numbers”
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In 1770, Euler wrote:

“Mathematicians have tried in vain to discover some order in

the sequence of prime numbers, but we have every reason to

believe that there are some mysteries which the human mind

will never penetrate.”

Nevertheless, Euler proved in 1737 that the sum of the

reciprocals of the primes to x diverges to infinity like log logx.

So, 33 years before his pessimistic statement, he had a glimmer

that the mysterious primes might obey some statistical law.
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Less than 30 years after Euler opined on the mysteries of the

primes, Gauss, as a teenager, arrived at the conjecture that

the number of primes up to x is approximately∫ x
2

dt

log t
.

He wrote in 1849 in a letter to Encke:

“As a boy I considered the problem of how many primes there

are up to a given point. From my computations, I determined

that the density of primes near x is about 1/ logx.”

op. cit.
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Here are some notes in Gauss’s hand found in the Göttingen

library.

Yuri Tschinkel, courtesy of Brian Conrey
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How does the Gauss conjecture stand up to modern

computing?

Recently, D. B. Staple computed that

π(1026) = 1,699,246,750,872,437,141,327,603 .

And Gauss would predict∫ 1026

2

dt

log t
= 1,699,246,750,872,592,073,361,408. . . . .

The error is smaller than the square-root of the actual count!
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This conjecture of Gauss may be viewed as saying it is
appropriate to study the primes statistically.

It led to the Riemann Hypothesis (1859) (which is equivalent
to the assertion that the logarithmic integral is within

√
x logx

of the true count). And to the prime number theorem
(Hadamard & de la Vallee Poussin in 1896, Erdős &
Selberg 1949) (which merely asserts that the ratio of the
count to the integral tends to 1 as x→∞).

More relevant to this talk, this statistical view of primes
morphed into a probabilistic view. In 1923, Hardy and
Littlewood conjectured that the density of twin primes near x
is given asymptotically by c/(logx)2. That is, p and p+ 2 are
“independent events” where the constant c ≈ 1.32 is a fudge
factor to take into account the degree to which they’re not
independent.
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For example, the actual count of twin primes to 1016 is

10,304,195,697,298,

computed by P. Sebah. The twin prime constant (fudge factor)

is

c := 2
∏
p>2

(
1−

1

(p− 1)2

)
= 1.32032363169373915 . . . .

And

c
∫ 1016

2

dt

(log t)2
= 10,304,192,554,496. . . . .

The error is again only about the square-root of the count!

Despite this fantastic numerical agreement, we don’t even

know for sure that there are infinitely many twin primes.
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Actually, in 1871, Sylvester came up with a similar heuristic
for the number of representations of an even number as a sum
of two primes (and so gave a heuristic for Goldbach’s
conjecture). Hardy and Littlewood returned to this in 1923,
but revised Sylvester’s constant. The Hardy–Littlewood
constant seems to be the “right” one (following both the
reasoning for the constant and numerical experiments).

In 1937, Cramér gave an explicitly probabilistic heuristic (citing
the Borel–Cantelli lemma), that the length of the maximal gap
between consecutive primes in [1, x] is ∼ (logx)2. (In 1995,
Granville revised Cramér’s heuristic to take into account
certain conspiracies that can deterministically occur among
numbers divisible by a small prime, to get that the maximal
prime gap is heuristically ∼ c(logx)2, where c is perhaps
2e−γ ≈ 1.1229.)
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Also, the statistical/probabilistic view moved on beyond the

primes themselves.

In 1917, Hardy and Ramanujan proved that the “normal”

number of prime factors of an integer near x is log logx. (This

means that for each fixed ε > 0, the asymptotic density of the

integers n with between (1− ε) log logn and (1 + ε) log logn

prime factors is 1.) Though clearly a statistical result, the

proof was not.

In 1934, Turán gave a new and simple proof of the

Hardy–Ramanujan theorem, that was based on the

second-moment method in probability, but he didn’t realize

that that is what he had done!
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“When writing Hardy first in 1934 on my proof of the

Hardy–Ramanujan theorem, I did not know what Chebyshev’s

inequality was and a fortiori on the central limit theorem.

Erdős, to my best knowledge, was at that time not aware too.

It was Mark Kac who wrote to me a few years later that he

discovered when reading my proof in J. LMS that this is

basically probability and so was his interest turned to this

subject.”

Letter of Paul Turán to Peter Elliott in 1976, quoted in Elliott’s

“Probabilistic number theory, vol. II”
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The distribution of “abundant” numbers (a topic going back to
antiquity) was worked out in the 1920s and 1930s by
Schoenberg, Davenport and others, culminating in the
Erdős–Wintner theorem in 1939.

Also that year, we had the celebrated Erdős–Kac theorem on
the Gaussian distribution of the number of prime factors of a
number.

So was born “probabilistic number theory”, a vital part of
analytic number theory.

But what of the “probabilistic method”, where one proves the
existence of various strange things by showing that with a
suitable probability distribution, there is a positive chance that
they exist?
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In 1931, Sidon wondered how dense a set of positive integers
can be if no number has more than 1 intrinsic representation as
a sum of two members of the set. (That is, a+ b = n is
considered as the same representation of n as b+ a.) And what
is the slowest growing function f(n) for a set where every
number has at least one representation as a sum of two
members, but not more than f(n) representations?

These problems became the subject of much research over the
next 30 years, and some of the best theorems were proved via
the probabilistic method:

Erdős (1954): One can take f(n) as c logn for some c.

Erdős (1956): There’s a set where every number n has
between c1 logn and c2 logn representations as a sum of two
elements.
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Still unsolved: Is there a set and a constant c > 0 such that

every number n has ∼ c logn representations as a sum of two

members of the set, as n→∞?

In Sidon’s original problem, he wondered about having at most

one intrinsic representation. Erdős and Rényi, using the

probabilistic method in 1960, showed that there is a fairly

dense set where every number has a bounded number of

representations as a sum of two members.

In a very recent paper, Ford, Konyagin, Maynard, P, & Tao

used a variant of the probabilistic method to show there are

anomalously long strings of composites in a polynomial

sequence.
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Let us shift gears to computational thoughts. If p is an odd
prime, the function x2 mod p is 2 : 1 for nonzero residues x, so
there are exactly 1

2(p− 1) nonzero squares mod p and exactly
1
2(p− 1) non-squares mod p. Consider the algorithmic problem
of finding one of these non-squares.

For example, for p = 3, 2 is a non-square. In fact, 2 works as a
non-square for “half” of the primes, namely those that are 3 or
5 mod 8. For the prime 7, 3 is a non-square, and 3 works for
the primes that are 5 or 7 mod 12. And so on.

This seems painlessly easy! But in fact, we do not have a
deterministic polynomial time algorithm that produces a
non-square for a given input prime p. (Assuming a generalized
form of the Riemann Hypothesis allows us to prove that a
certain simple algorithm runs in polynomial time.)
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But in practice, no one is concerned with this, because we have

a wonderful random algorithm that produces a non-square

mod p. Namely, choose a random residue r mod p and check to

see if it is a square or a non-square mod p (there is a simple

polynomial-time check). The probability of success is 1
2, and so

the expected number of trials for success is 2.

This simple example is in fact closely tied to the fundamental

problems of factoring polynomials over a finite field, and to

primality testing.
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For primality testing, we’ve long known of simple random

algorithms that will quickly recognize composite numbers,

leading us to strong conjectures that those not revealed as

composite are prime.

Thirty-five years ago, Adleman, P, & Rumely found a

deterministic primality test that is “nearly” polynomial time.

And fifteen years ago, a true polynomial time primality test was

found by Agrawal, Kayal, & Saxena.

These deterministic tests are not so computer practical; in

practice we still rely on randomness and heuristics, even if we’re

searching for a proof of primality.
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We also use probabilistic reasoning to construct deterministic

algorithms.

An example is the quadratic sieve factoring algorithm that I

found in the early 1980s. The method is almost completely

heuristic, assuming numbers produced by a particular quadratic

polynomial behave like random numbers of similar size.

(Shhh... No one should tell the large composites about this,

they don’t know we haven’t rigorously proved that the

quadratic sieve works, they get factored anyway!)

18



In fact, this state of affairs is largely true for all practical

factoring algorithms, from the Pollard rho method, to the

elliptic curve method, and the number field sieve. The elliptic

curve method explicitly exploits randomness, but is still a

heuristic method. The other algorithms, like the quadratic

sieve, are deterministic, but with heuristic, probabilistic

analyses.
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So far we have considered the distribution of the primes,
probabilistic number theory, the probabilistic method in number
theory, and the role of randomness in number theoretic
algorithms.

The probabilistic view also can help guide us in diophantine
equations. For example, long before Andrew Wiles gave his
celebrated proof of Fermat’s Last Theorem (with help from
Richard Taylor), we had a theorem of Erdős and Ulam.

They proved that if A is a random set of natural numbers
where a ∈ A with probability ≈ a−3/4, then the number of
triples a, b, c ∈ A with a+ b = c is almost surely bounded. Well
the specific set of all powers higher than the third power forms
a set A, and the probability a random a ∈ A is about a−3/4. So
this suggests that Fermat’s Last Theorem is true with
“probability 1”.
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There are a couple of caveats here. First, included in our

specific set A are the powers of 2 starting at 24. And

2k + 2k = 2k+1, so there are infinitely many triples in the set

a+ b = c. These examples can be barred by assuming that

a, b, c are coprime.

A second caveat, is that the same argument shows that with

probability 1, a random set A, where the probability of a ∈ A is

≈ a−2/3, has infinitely many triples a, b, c with a+ b+ c. So

Fermat’s Last Theorem with exponent 3, is almost surely false!

But it’s true, so it shows that the probabilistic view does not

tell the whole story.
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By the way, Darmon and Granville proved (using Faltings’

theorem) that for any triple u, v, w with reciprocal sum ≤ 1,

there are at most finitely many coprime solutions to

au + bv = cw.

Though Fermat’s Last Theorem has been proved, and we have

the Darmon–Granville theorem just above, what’s still unknown

is the ABC Conjecture. Mochizuki claims a proof, but it has

not yet been accepted by the experts.

What is the ABC Conjecture, and why is it a conjecture?
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For a positive integer n, let rad(n) denote the largest

squarefree divisor of n; that is,

rad(n) =
∏
p|n

p.

The ABC Conjecture: For each ε > 0 there are at most

finitely many coprime triples a, b, c with a+ b = c and

c < rad(abc)1−ε.

It was posed by Masser and Oesterlé after Mason gave an

elementary proof of the polynomial analogue.
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We begin with a Lemma: For each fixed δ > 0 and x
sufficiently large, the number of integers n ≤ x with rad(n) ≤ y
is ≤ yxδ.

Let i, j, k run over positive integers with i+ j + k ≤ (1− ε) logx.
For each i, j, k consider a, b ≤ x and 1

2x < c ≤ x with

rad(a) ≤ ei, rad(b) ≤ ej, rad(c) ≤ ek.
Then rad(abc) ≤ ei+j+k ≤ x1−ε < 2c1−ε. By the lemma, the
number of choices for a is ≤ eixδ, and similarly for b and c. So,
the number of triples a, b, c is ≤ ei+j+kx3δ ≤ x1−ε+3δ = x1−1

2ε,

assuming that δ = 1
6ε. So the total # of triples: ≤ x1−1

2ε log3 x.

Given a, b, the chance that a random c ∈ (1
2x, x] happens to be

a+ b is proportional to 1/x, so letting a, b, c run, the chance we

have an a, b, c triple is at most about x−
1
2ε log3 x. Now let x run

over powers of 2, and we get a convergent series.
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The ABC Conjecture is hard to falsify, since it says there are at

most finitely many counterexamples. Unlike with the Riemann

Hypothesis or Fermat’s Last Theorem, where even one

counterexample can or could have destroyed the conjecture,

this is not so for the ABC Conjecture.

In fact there are websites devoted to giving interesting

“counterexamples”.

Take

2 + 310 · 109 = 235.

We have 235 = 6,436,343 and 2 · 3 · 109 · 23 = 15,042. See

http://www.math.unicaen.fr/∼nitaj/abc.html , a site

maintained by A. Nitaj.
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Another area where randomness has played a fundamental role:
the Cohen–Lenstra heuristics.

Named after Henri Cohen and Hendrik Lenstra, these are a
series of conjectures about the distribution of algebraic number
fields (of given degree over the rationals), whose class groups
have special properties. Basically their viewpoint is that groups
should be weighted inversely by the size of their automorphism
groups, but otherwise, assume randomness. They then produce
concrete conjectures that can be tested statistically, and for
the most part, they are looking quite good.

For example, statistically it is noticed that about 43% of class
groups of imaginary quadratic field have 3-torsion, while the
heuristic predicts 43.987%. And there seem to be about 76%
of real quadratic fields with prime discriminant with class
number 1, while the prediction is 75.446%.
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Let me conclude with an idiosyncratic problem, one that Erdős

once proclaimed as perhaps his favorite.

A finite set of integer residue classes is said to form a covering,

if the union of the residue classes contains every integer.

A simple example: 0 mod 1.

Another simple example: 0 mod 2, 1 mod 2.

Another: 0 mod 3, 1 mod 3, 2 mod 3.
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To make this concept nontrivial, let’s rule out the modulus 1,

and let’s also rule out repeated moduli.

A rule-abiding example:

0 mod 2, 0 mod 3, 1 mod 4, 1 mod 6, 11 mod 12

One can see this works by viewing each as 1 or more classes

mod 12. Then 0 mod 2 hits the 6 even classes, 0 mod 3 hits 3

and 9, 1 mod 4 hits 1 and 5, 1 mod 6 hits 7, and 11 mod 12

hits 11.
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Erdős conjectured in 1950 that there are coverings with

distinct moduli where the least modulus is arbitrarily large.

The current record is held by Nielsen (2009) who found a

covering with least modulus 40. The moduli only involve the

primes to 107, but it has more than 1050 of them!

This is nice, but where’s the probability?
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Let’s consider a simple fact. If the moduli used are distinct

primes, then they cannot cover, no matter what is chosen as

representatives for the residue classes. Why?

Say the moduli are p1, p2, . . . , pk, where these are distinct

primes. Being in some residue class modulo one of these primes

is an independent event from being in a class for another of

them. In fact, the asymptotic density of the integers not

covered will be exactly

k∏
i=1

(
1−

1

pi

)
,

which can be arbitrarily close to 0, but cannot be 0.
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The exact same argument holds if the moduli m1,m2, . . . ,mk

are merely pairwise coprime.

So the Erdős covering problem is very much one of extremal

cases of dependent probabilities!

Some years ago I wondered what the maximal density one can

cover using all of the integers in (x,2x] as moduli. Would it be

about ∑
m∈(x,2x]

1

m
∼ log 2 or

∏
m∈(x,2x]

(
1−

1

m

)
∼

1

2

or somewhere in between?
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In the late 90s I discussed this problem with Gang Yu, a former

student of mine at Georgia. He went off to U. South Carolina

and began discussing the problem with Michael Filaseta.

Over some years a paper slowly developed of Filaseta, Ford,

Konyagin, P, & Yu (2007). We proved among many other

things that the moduli between x and 2x behave asymptotically

as if they’re independent, that is, one cannot remove more

than 1
2 + o(1) of the integers with them.

Our proof used a lemma that the referee pointed out to us

resembles the Lovász local lemma, a central tool in the

probabilistic method of combinatorics.
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A few years ago at the Erdős centennial conference in

Budapest, Hough announced his disproof of the Erdős

covering conjecture! There is a minimal number B < 1016 such

that any covering with distinct moduli must use a modulus at

most B. We don’t know what B is, but at least we know that

B ∈ [40,1016).

Hough’s proof used our version of the local lemma in a strong

way. Using similar, but more involved methods, he and Nielsen

just announced a proof that in any covering with distinct

moduli, the moduli cannot all be coprime to 6. It’s not known

if there’s a covering with all moduli odd. Erdős thought such a

covering should exist, but Selfridge thought not.
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There are many more links of number theory to probability, and

I haven’t even mentioned random number generators. Well,

perhaps another time.

Thank You
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