e .

NUMBER THEORETIC
and ALGEBRAIC METHODS
in COMPUTER SCIENCE

MOSCOW 1993

Editors

Alf van der Poorten

Department of Mathematics, School of MPCE
Macquarie University, Sydney, Australia

Igor Shparlinski

Department of Computing, School of MPCE
Macquarie University, Sydney, Australia

Horst G Zimmer

Fachbereich 9 Mathematik
Universitdt des Saarlandes, Saarbricken, Germany

Conference Committee 1992—-1993

Horst G Zimmer, Chairman (Germany)
Gerard Cohen {France)

Stephen D Cohen (Scotland)
Joachim von zur Gathen (Canada)
Dima Grigorev (Russia)

Michael Kaminski (Hong Kong)
Gary L Mullen (USA)

Harald Niederreiter (Austria)
Andrew Odlyzko (USA)

Michael Pohst (Germany)

Carl Pomerance (USA)

Alf van der Poorten (Australia)
Claus P Schnorr (Germany)

Igor Shparlinski (Russia)

Sergey Vladuts (Russia)

PREFACE

NTAMCS '93 was an unusual Conference. When the meeting was first conceived, a
driving motive was to bring foreign mathematicians and computer scientists to the
USSR, thereby to assist in beginning to normalise scientific relationships between
the USSR and the so-called Western world. By the time the meeting took place the
USSR was no more. The originator of the notion of the meeting, Igor Shparlinski,
had succeeded in finding a position at Macquarie University, Sydney, Australia.
Thus most of his organisational effort was done remotely, by e-mail. Ultimately,
passport problems meant he could not attend the Conference. The present remarks
give us an opportunity to give special thanks to Nadja and Alexander Polupanov
and to Vjacheslav Rykov who, amongst others, acted for Igor in Moscow and made
the meeting possible.

Equally, of course, we are grateful to the mathematicians and computer scientists
who agreed to serve on the Organising Committee for the meeting. All the more,
we must thank all those who attended and whose participation made the meeting
the success it became.

A primary motive of the Conference whose proceedings are represented herein was
that it should bring together researchers from areas of computer science and of
mathematics that traditionally have been apart, but which nevertheless use similar
number theoretic and algebraic methods. An incomplete list of such areas includes
cryptography, coding theory, computational algebra and number theory, and nu-
merical analysis. One can readily add to that list of mathematical fields.

Of course we remembered that researchers attack similar problems, sometimes the
very same problems, from different points of view. We use different techniques.
We use different jargon; one might well say we employ different languages. We
emphasise different aspects. Often we do not know each other’s results.

We felt certain that a joint meeting would help to acquaint all of us with new and
fresh ideas and would stimulate progress in the areas of common interest to us. The
contents of this book confirm that, generally, our aims were achieved.

If one wishes, one can separate the papers herein into various categories.

One such category consists of papers which contain new results or give a survey
of previously known number theoretic or algebraic results which provide the in-
frastructure for applications of their field to computer science. An example is the
papers of Gary Mullen and Steve Cohen who deal, from different points of view,
with the theory of Dickson polynomials over finite fields. These polynomials are
especially important for applications to cryptography.

Another category is of papers which contain new ingenious applications of known
results. Examples include the papers of ‘Red’ Alford and Carl Pomerance and of

Johannes Buchmann and Sachar Paulus. These papers deal with two of the most
celebrated and important problems of modern computational number theory —
integer factorisation and the discrete logarithm problem, respectively.

Yet another category, represented for example by the paper of Vladimir Anashin
and that of Isobel McFarlane and Stuart Hoggar, demonstrates the fundamental
mathematical nature of principles and methods of computer science.

Various editorial exigencies have not made it possible to include in this volume all
the material recommended to us by the referees. We apologise to the authors and
even more to you, the readers, for those omissions. The language of NTAMCS ‘93
was English, today’s scientific lingua franca. That was not easy for all our partici-
pants* and contributors. We have endeavoured to aid the comprehensibility of the
contributions herein with some judicious editing without, however, attempting to
change the flavour and rhythm of the original manuscripts.

The other two editors wish to thank the one of us who performed the reTEXing and
other final editorial work on this volume. That work was assisted by Dr Ross Moore
of the Department of Mathematics, School of MPCE at Macquarie University. Ross
is a co-author of the Xy-pic macro package used herein to create or change the size
of various diagrams and tables. Xypic is a package for typesetting graphs and
diagrams using any one of the various flavours of TEX.

We believe that the present collection of papers displays, on the one hand, the
variety of different deep mathematical methods and tools which are potentially or
actually applicable to computational problems. On the other hand, it illustrates
current trends in modern computer science.

Alfred J van der Poorten

Department of Mathematics

School of Mathematics, Physics, Computing and Electronics
Macquarie University NSW 2109 Australia
alf@mpce.mq.edu.au

Igor Shparlinski

Department of Computing

School of Mathematics, Physics, Computing and Electronics
Macguarie University NSW 2109 Australia
igor@mpce.mq.edu.au

Horst Gunter Zimmer

Fachbereich 8 Mathemauatik
Universitat des Saarlandes
Postfach 15 11 50

D-66041 Saarbriicken, Germany
zimmer@arabella.math.uni-sb.de

* Particularly the Scots.

CONTENTS

Viadimir S. Anashin
Uniformly distributed sequences over p-adic integers

T. G. Berry
On the nonexistence of certain geometric MDS codes .

Stephen D. Cohen
Dickson permutations

F. Cucker, J. L. Montafia and L. M. Pardo
Models for parallel computation with real numbers

E V. Flynn
Solving Diophantine problems on curves via descent on the Jacobian

Christine 5. Abel-Hollinger and Horst G. Zimmer
Torsion groups of elliptic curves with integral j-invariant
over multiquadratic fields

V. M. Galkin and O. R. Kozyrev
On an algebraic problem of Ramanujan

I McFarlane and 5. G. Hoggar
Combinatorics for faster fractal pictures

Boris F. Melnikov
Some equivalence problems for free monoids
and for subclasses of the CF-grammars class

Gary L. Mullen

Dickson polynomials over finite fields: a survey of recent results

Johannes Buchmann and Sachar Paulus

Algorithms for finite abelian groups

W. R. Alford and Carl Pomerance
Implementing the self initializing quadratic sieve

A. J. van der Poorten

Explicit quadratic reciprocity L WAL, S L S L e

Ken-Ichi Sato
Computational contributions on Franel’s sum relevant
to Farey sequences

Peter J. Grabner, Robert F. Tichy and Reinhard Winkler
On the stability of the quotients of successive terms
of linear recurring sequences

Jean-Pierre Tillich

The magnifying coefficient of directed graphs

1-18

19-28

. 29-51

. 53-63

.. 65-68

69-87

... 8994

95-124

. 125-137

139-149

151-161

163-174

175-180

. 181-184

. 185-192

. 193-205

IMPLEMENTING THE SELF INITIALIZING
QUADRATIC SIEVE ON A DISTRIBUTED NETWORK

W. R. ALFORD AND CARL PoMERANCE

Department of Mathematics, The University of Georgia, Athens, Georgia 30602, USA
E-mail: red@math.uga.edu and carl@math.uga.edu

1. INTRODUCTION

While the number field sieve now stands ready to give some competition (see [4]), the
quadratic sieve factoring algorithm is still the method of choice for factoring large
“hard” numbers. The record with the quadratic sieve is a 120 digit ‘RSA modulus’
(see [3]). Tt is expected that a similar attack on the famous RSA challenge number
of 129 digits will be successful in 1994, though this time many people around the
world are helping out.

This paper will discuss a variation of the quadratic sieve algorithm, which we call
self initialization, that is well suited either for a single processor implementation or
distributing the algorithm on a network of computers. We believe this variation can
perhaps take as much as 1 /2 off the running time, though actual speed-up factors
will depend on the architecture employed. We describe an implementation of the
self initializing quadratic sieve on an array of about 125 personal computers. With
such an array we were able to factor a 95 digit number using about three weeks
CPU time per unit and a 100 digit number using about six weeks CPU time per
unit.

2. THE BASIC QUADRATIC SIEVE FACTORING ALCORITHM

Building on previous work of Kraitchik, Lehmer and Powers, Brillhart and Morrison,
and Schroeppel, the quadratic sieve algorithm was introduced by the second author
in [6]. Let f(z) = (z+[/7])2—n where n is the number to be factored. The basic
idea is that as x runs over the integers in (—nf,n%), f(z) may occasionally have the
property that it is composed of only the primes up to some relatively small point,
say F. Further, these rare and special locations where f(x) is so factorable may
be found efficiently using a sieve procedure not unlike the sieve of Erastosthenes.
If there are ¢ primes up to F involved in # + 2 special values f(z;),..., flzie2),

Typeset by ApS-TEX

164 ‘Red’ Alford and Carl Pomerance

then by using a mod 2 matrix and Gaussian elimination, a subset f(zg,),..., f(zk,)
may be found with product a square:
(2.1) flze) - Flzx,) = ul.

If we let v = (zk, + [vn]) - (zk, + [V/7]), we evidently have
v? = flzg,) - fzx,) = u? mod n.

If n is composite, there should be at least a 50-50 chance that the greatest common
divisor (v — u,n), found by Euclid’s algorithm, is a non-trivial factor of n. If it is
trivial, a longer list of special values f(z;) may be found and another solution of
(2.1) produced so as to get a new chance at factoring n.

The function f(z) has several important properties for the above scheme to work.
First, for each integer = we have some integer 4 (it is = + [\/n]), such that

A? = f(z) mod n, A?# f(x).

Second, since f(z) is a polynomial with integer coefficients, we have f(z + k) =
f(z) mod k for any k, so that the multiples of any fixed number k appear in a
regular pattern in the sequence of consecutive values of f(x). This is the property
that allows a sieve procedure to search for the special values of f(z). Third, if
|Z| < n¢, then |f(z)| = O(n'/2+¢), for small e. That is , the values of f(z) are not
much longer than half the length of n. Since they are relatively small, the property
of being wholly factorable with the primes up to F should not be as rare as it would
be for larger numbers.

3. THE MULTIPLE POLYNOMIAL VERSION

Note that with f(z) as above, f(z) = (2z + O(1))y/n for |z < n¢ and ¢ small.
Thus as z moves away from 0, the values f(z) grow approximately linearly. In their
implementation [2], Davis and Holdridge noticed that as |z| grew, the success rate
of finding completely factored values f(z) declined significantly. They reasoned
that this was due to the growing size of f(z) and that if they could find some
way to switch to a new polynomial and start over again, they would again be in a
situation with relatively frequent “hits”. Ultimately Davis did find such a means of
switching polynomials, calling it the “special ¢’s variation.” They found about an
order of magnitude improvement in speed with this idea. Around the same time, P.
Montgomery independently suggested another method of changing polynomials that
was somewhat better than the Davis scheme. Both of these methods are described
in [7].

Suppose we are willing to sieve each polynomial over the interval [—m, m) of argu-
ments, where m is a parameter to be chosen. In P. Montgomery’s method, we first
find integers a, b, ¢ which satisfy

(3.1) v —ac=mn, b <a, a~V2n/m

Implementing the self initializing quadratic sieve 165

and then let

(3.2) fap(z) = az® — 20z +c.
Then from (3.1)

(3.3) afap(z) = (az — b)% — n.

The choice of a = v/2n/m in (3.1) is so that

fap(m) = fao(—m) = | fop(0)| = %\fﬁ

How are the numbers a, b, ¢ in (3.1) to be found? P. Montgomery suggested choosing
a as a prime for which (n/a) = 1 and then solving 4> = nmod a for b. In [7] it
was suggested choosing a as the square of a prime ¢ with (u/q) = 1. We can
still solve 2 = n mod a, but now fewer special values of the polynomials fab are
needed to produce the congruent squares mod n as described in §2. In fact if we
choose prime values of a, if { primes are involved in the factorizations of the special
values f,»(z) and if s values of a are involved, then from (3.3}, we would need
s+t + 2 special values to produce congruent squares. However, if a is always a
square, we need only ¢+ 2 special values. This is the multiple polynomial version
of the quadratic sieve generally used today.

4. INITIALIZATION STRATEGIES

To sieve a polynomial g(z) with the primes p up to F, one has to know which
residues of x mod p have g(z) divisible by p. That is, we have to solve the poly-
nomial congruence

g(z) = 0 mod p.

This is called the initialization problem. If we are only sieving with one polynomial
as in §2, then the initialization problem need only be solved once and so is not
important to the performance of the algorithm. However in the multiple polynomial
versions described in §3, the faster we can change polynomials, the better will be
the performance of the algorithm. It is thus important to solve the initialization
problem as efficiently as possible.

Suppose p is an odd prime with p f . Then from (3.3), fss(z) = 0 mod p has
solutions if and only if (n/p) = 1. Suppose this condition is satisfied and ¢, is
such that tf, = n mod p. Then to solve the initialization problem for f,; we must
compute the numbers

(4.1) (bt ty)a™! mod p

166 ‘Red’ Alford and Carl Pomerance

for each such prime p. The set of primes 2 < p < F for which (n/p) = 1 is
called the factor base. If the factor base is large, the task of computing all of the
numbers (4.1) can be non-negligible, especially computing the inverses a~! mod p.
Note however, that the numbers ¢, stay fixed for one choice of f, 5 to the next, so
this need not be an important part of the computation.

In 1985, P. Montgomery suggested to the second author an idea that greatly miti-
gated the problem of computing the inverses a~! mod p. Instead of choosing a = ¢2

for some prime q, say one chooses a = ¢7q; where g;,g; are chosen from a pre-

computed set ¢1,...,¢, of primes with (n/g) = 1 and ¢ =~ (v/2n/m)'/* for each
I=1,...,r. If in addition we pre-compute the files g, 2 mod p for each I and each
factor base prime p then ¢! mod p may be computed by a single multiplication
mod p:

o l= <;,v"~._2qj_2 mod p.

Further, with a = qqu there are two intrinsically different solutions bq,bq to 4 =
n mod p (that is, by # £ by mod p), so there are two polynomials f,4,, fas, with
the same value of a. Thus with r inversions for each factor base prime p to compute
the ¢, 2 mod p files, we are ready to quickly initialize 2(;) = r(r ~ 1) polynomials.
This idea was described in [9] with the further twist that the primes ¢; be taken k&
at a time rather than two at a time. That is, if each ¢ ~ (v2n/m)Y (%) we can
choose a = ¢ -+ g2 . For each value of a there would be 28~1 intrinsically different
values of b and so with r primes ¢y,...,¢,, one could form 251 (D polynomials.
It was suggested in [9] that £ = 3 might be a good value. This is the version of the
quadratic sieve recently implemented by te Riele on the NEC SX-2.

Others were aware of this idea but purposely shunned it in their implementations.
The reason for this is that it does not easily lend itself to distribution over a net-
work. Of course each node might have available a file server to store the large files
q; 2 mod p (perhaps 50,000 or more 3-byte integers for each [), but in practice most
computers in the network were not so endowed. Thus for the scheme to work, a
central computer would have to be continually sending these files out to various
nodes in the network. This daunting problem completely sank the idea.

5. THE SELF INITIALIZING QUADRATIC SIEVE

We saw in the previous section that if o has k distinct prime factors, then there are
251 intrinsically different choices for b associated to this value of a. Say we choose
k = 10. There are then 512 different polynomials f,; with the same value for a.
Thus the computation of a~! mod p for each factor base prime p need be done
only once for each of the 512 polynomials. However, if we choose a as the square
of the product of 10 roughly equal primes g, then each g is about (v/2n/m)/2°.
If n =109 m a2 107, then each g is about 400 or 500. There may be only about
10 primes ¢ in this range with (n/g) = 1 and so this procedure can be done only
once.

Implementing the self initializing quadratic sieve 167

This problem can be solved by taking a as the product of 10 distinct primes, rather
than the square of such a product. Then with the same n, m as above, the primes ¢
can be chosen near 200000, so there are more to choose from. For example, between
206 000 and 206 750 there should be about 30 primes ¢ with (n/g) = 1. The largest
product of 10 of these 30 primes would only be about 3% larger than the smallest
product. We thus could generate 2° (fg) > 1.5 x 10 acceptable polynomials.

Since the primes in a are in the factor base range, there is no additional work to
eliminate them in the matrix stage of the algorithm. However, care must be taken
to avoid duplications from one polynomial to another. An easy way to do this is
to discard any report f,s(x) divisible by a prime among the 30 used to construct
leading coefficients a. In the above example, fewer than 1% of the reports would
need to be discarded. With a little more effort, this discard pile can be culled for
repeats, and then used.

How are the 512 values of b for each choice of a related to each other? Suppose
a = g192---q1o0 where g1,q2...,q0 are distinct primes with {(n/q;) = 1. Then if
b2 = n mod a, we may solve for b via the Chinese Remainder Theorem. If ¢; is one
of the prime factors of a, let t(a,q) denote the least non-negative integer in the
residue class g, (a/q;)~" mod g, where ¢2, =n mod ¢;. Then the various solutions
of 42 = n mod @ are given by the formula

10

b= Z +(a/q)t(a, q) mod a.
=1

There are 2!° choices of signs in this expression. However we do not wish to use
both b and —b, so we fix one of these signs, leaving 2% choices. Let

By = (a/q)tla,q) forl=1,...,10.
Thus the 512 choices of b are
(5.1) Bio+Bg+---+ B

The numbers given by (5.1) may be traversed with a Gray code. Thus if we let
b1 = B1p+ Bg 4+ -+ B; we have

(52) biy1 =b; + 2(_1)“/2:/-' B,

where 2"”21'. for 1 =1,2,...,511. Note that we skip the reduction mod a in (5.1)
and (5.2), so we may no longer have |b;] < a as required by (3.1). However, each B,
satisfies 0 < B; < a, so we have instead |b;] < 10a. This does not pose a problem.

This choice of the sequence of b’s has the following pleasant consequence for ini-
tialization. Suppose z1, 2z are the two solutions of fg3,(z) = 0 mod p where p is a

168 ‘Red’ Alford and Carl Pomerance

factor base prime not in the set of ¢’s used to form the initial coefficients a. Then
if 2, z} are the corresponding solutions to fo 4, (z) = 0 mod p, we have from (4.1)
and (5.2) that
(5.3) 25 =z; +2(-1)"*1B,a7 mod p for j = 1,2.
Thus the initial values zj,z; for polynomial fss,,, may be computed from the
initial values 21,22 for polynomial fs 5, via (5.3). In addition, the numbers z, 2;
need not be saved for this to work, since when we are finished sieving f, 5, we still
have numbers 2, 22 respectively congruent mod p to 21,22. Thus we may use
£1,2 in (5.3) in place of 2;,2;. Thus the terminal numbers for fos; can be used
to compute the initial numbers for fup, ., -
To summarize, the work needed to initialize f,,,, is to compute zi,z; for each
factor base prime p using (5.3) with 21, z; the terminal numbers mod p of fo 5, . It
is advantageous to save the 9 multiprecision integers By, ..., Bo (they are less than
v/n) and the numbers 2a~! mod p for each factor base prime p. Thus to compute
2}, 74 we rust
(1) reduce B, mod p
(ii) multiply 2a~!B, mod p
(iii) for j = 1,2, do the modular additions z; + 2a~'B, mod p, for the appro-
priate choice of sign.

In comparison, if 2}, 2, were found via (4.1), essentially the same tasks would be
performed, but in addition we would have to compute a~! mod p.

If there is more memory available, the above scheme for self initialization may be
significantly improved. For example, suppose we can save the numbers 2a~! B; .mod
p for each factor base prime p. Since ¥ = 1 whenever i is odd, we may use this
pre-computed value for imitialization in half of the 512 polynomials. That is, half
of the time, we do not have to do (i) and (i) above, but can go directly to (444).
If there is also room for 22~ !B, mod p for each factor base prime p, we can skip
(4) and (43) for half of the remaining cases, and so on. In fact, if there is enough
memory for 2a~1B; mod p for each p and each [= 1,...,9, we need never do (i)
and (74) after an initial computation. (In this case we would not need to store the
numbers 2a~! mod p.) Moreover, if we also remember the initial values for z;, 2,
rather than use the terminal values, step (i77) becomes the totally trivial problem
of two addition or subtraction problems mod p with inputs already reduced mod p.

We thus see there is a classic time-space trade-off on the initialization problem,
with the more space available to remember previous calculations, the less time is
necessary for initialization. However, even with the minimal space required for just
storing 2a~* mod p for each factor base prime p, we still gain significantly using
self-initialization.

Finally we remark how self initialization may be implemented on a distributed
network. Suppose, for example, there are about 450 (or fewer) nodes. We have the

Implementing the self initializing quadratic sieve 169

problem of each node choosing various subsets of size 10 from the 30 primes used
to form initial coefficients, but without duplication between nodes. To do this, we
fix some 11 of these primes as “markers” and to each node we assign a different
5-tuple of these markers. This allows for (151) = 462 nodes. Then each node chooses
5 primes from the remaining 19 in every possible way — with each such choice a
10-tuple is formed by using the 5 fixed marker primes for that node. Thus each node
can chose (159) = 11628 10-tuples and so can form nearly 6 million polynomials.
Even if polynomials are changed as frequently as once per minute, each node still

has more than an 11 year supply, and no node will duplicate the work of another.

6. THE RATIO OF SIEVING TIME TO INITIALIZATION TIME

If each node in a network is running the quadratic sieve as a sequential processor, it
makes sense to ask what fraction of the time is spent initializing and what fraction
of the time is spent sieving. Neglecting pre-processing and the final steps of the
algorithm, these two fractions add to 1. If we spend a long time sieving each
polynomial, then we will spend only a small fraction of the time initializing. But
it is good to change polynomials frequently, since the more time that is spent on a
polynomial, the lower the yield per unit time in factored values. On the other hand,
the yield per unit time is zero while we are initializing, so this should not comprise
too great a fraction of the running time.

There is thus a question of finding the optimal ratio r of sieving time to initialization
time for a given number n to be factored and a given size factor base. Of course, 7
may be approximated empirically by trying various choices, but it may alsc be of
interest to attempt a theoretical analysis.

Suppose we are trying to factor n using a factor base consisting of the primes up to
F'. The length, 2m, of the interval we sieve for each polynomial, is directly propor-
tional to our choice of r, say m = ¢;v (where ¢; depends on the implementation).
The largest polynomial values on this interval are about m+/n/2, so say the typical
values are about im+/n = zciry/n. Let

log(3cirv/n)

U = (T‘):————-—.

log F

Then the expected number N of values of one of our polynomials on [~m,m] which
factor completely over the factor base satisfies

(6.1) N = 2mp(u) = 2¢1rplu(r))
where p is the Dickman—de Bruijn function. This function is continuous, 1 on [0, 1],

and satisfies up'(u) = —p(u — 1) for u > 1. The connection between this function
and the distribution of integers which factor completely over a set of small primes

170 ‘Red’ Alford and Carl Pomerance

is well known though it is still not proved for polynomial values. Here, the estimate
(6.1} is only conjectured.

Assuming (6.1), the yield rate of completely factored polynomial values per unit
time is given by
y(r) = 2arelulr)
l+7

Thus to find the optimal choice for r we equate Y'(r) to 0, getting
(p(u) + 7o' (u)e'(r))(1 +) = rp(w),
so that using p'(r) = 1/(rlog F'),

P (u) ro 1

p(u)longl-I—r_ I1+r

Thus, using the differential equation for p,

_ up(u)log F'

pu-1)

(6.2)

Strictly speaking, (6.2} is not the solution for r since u depends on r. But note
that up(u)/p(u — 1) = 1/logu, so the dependence of the right side on r is slight.
To see how one might use (6.2) to compute r, suppose n ~ 10, F =~ 1,300,000
(corresponding to a factor base of about 50,000 primes). We assume 2m./n ~ 1057,
(If we later repeat the computation with 1057 replaced with 10%0 or 1054, we get
about the same answer.) Then

log(10°7)

U a3 x 108y 3%

which when put in (6.2) gives r ~ 2.95.

This argument neglects the effect of the large prime variation (see [6]). Since this
variation becomes more effective the larger the value of u, (6.2) might then be
slightly understating the optimal value of r. Again, this should not produce a big
difference in the answer. Further, a smooth function is flat near an extreme point.
Thus in the above example, choosing r anywhere in the interval [2.5, 3.5} should
give about the same performance.

7. EXPERIENCE WITH THE METHOD

In 1989 we factored four numbers from the Cunningham project [1]: a 92 digit
composite factor of 2128 + 1, composite factors of 2232 41 and 728 + 1 each of 95
digits, and a 100 digit composite factor of 1211° + 1.

Implementing the self initializing quadratic sieve 171

The computations were done primarily on 125 PC’s found in public laboratories
of the Departments of Mathematics and of Computer Science at the University of
Georgia. These computers were used when not occupied by students, namely nights,
holidays and weekends. (We wish to thank these departments for the use of their
computers on this project.)

These 125 PC’s are not advanced computers. The CPU of each is an Intel 8088 op-
erating at 8 Mhz, and with RAM of either 256k, 512k or 640k. The computers each
have a 360k floppy drive and are not networked. That is, the only communication
these computers have is via floppy disks.

The PC’s were divided into two groups: the sievers and the factorers. The sievers
initialize the sieve from data supplied by floppy disk, do the sieving, and report
sieve locations (to the floppy disk) that correspond to numbers that potentially
factor over the factor base. Due to using both the large prime and small moduli
variations (see [7]), the majority of these reports are false. The factorers later factor
the reports (via trial division), keeping only the true reports and reserving these for
the final matrix stage of the algorithm.

The PC’s with at least 512k RAM were used as the sievers, while the PC’s with
less RAM were used as factorers. The larger a number is that one tries to factor,
the less frequent in general are the reports from sieving. Thus with the 100 digit
number we factored, the ten PC’s with 256k RAM reserved for factoring were more
than enough to keep up with the sievers; in fact, the reports were so infrequent
that we took the opportunity to push the small moduli variation to 100 without
overloading the factorers with too many false reports. With the 92 digit number
that we factored, we had to take some sievers and convert them to factorers despite
the fact that we had the small moduli cutoff set at 32.

With less than one Meg of total memory (640k or 512k of RAM and 360k floppy)
for the sievers, a description of some aspects of the program may be in order. The
foppy disks had to be bootable; however, after the boot sequence, the three files
(BIOS, DOS and COMMAMD.COM) that make a disk bootable were erased from
the floppy. After the sieving program was initiated, all of the programs including the
sieving program were erased leaving the full 360k on the disk for data. The sieving
program treated the memory space on the disk as a virtual extension of RAM with
the least used data residing on the floppy. The factor base was “dynamic” and was,
of course, smaller for the 512k machines. As reports to the floppy accumulated, the
factor base was truncated on the large prime end to accommodate the increased
space needed for reports. Once sieving commenced, each and every byte in RAM
and on the disk was used for the entire run. As always in combination of congruences
factoring algorithms space is at a premium and these remarks are given to aid others
and to explain how we were able to factor such large numbers with such modest
machines.

For our 100 digit factorization, our initial factor base consisted of the primes to
1170599, or about 45300 primes. As mentioned above, this was truncated somewhat

172 ‘Red’ Alford and Cerl Pomerance

for the smaller sievers and was also truncated during runs as the disk filled with
data. We used 20 special primes around 18300, taking 10 at a time to form the
polynomials (512 polynomials for each choice of 10 primes). Our sieve interval
length (namely, the number of values sieved for each polynomial) was 272 - 216
which is close to 18 million. Each siever spent about 70% of the time sieving and
about 30% of the time initializing. Qur large prime cut-off was 228 (that is, we only
kept those reports that factored completely over the factor base, except possibly for
one larger prime that was below the cut-off). For some of our earlier factorizations
we had used a cut-off of 2°2. Diminishing the cut-off cost us a little in the running
time, but saved a large amount of storage space.

Coordinating all of these PC’s was one 80286 AT with 640k of RAM, a 40 Mb
hard disk drive and a 5%” high density floppy disk drive. This machine was used
to do all of the precalculations needed such as calculating a multiplier and finding
the factor base. It also did the final factorization, passed out polynomials to the
sievers, collected reports from the sievers, made the sieving disks bootable again,
passed out reports to the factorers, received true reports from the factorers and
save these true reports to floppies. Since much more data than 40M was collected
(many of the large primes in the large prime variation did not have a match so they
were not used in the final factoring), it had to be stored on removable media. The
data needed for the final factoring amounted to about 17M so the hard disk drive
was sufficiently large to accommodate 1t.

There was, in addition, one Sun 3/60 used for the matrix step of the algorithm.

Communication between the AT and the Sun was early on via ;}" tape and later

via a high speed network. The primary reason for the use of the Sun was that
the linear algebra step for matrix reduction was already written for the Sun in
connection with the project described in [8}. (We would like to thank J. W. Smith
for the use of that program.)

8. CONCLUSION

In the multiple polynomial version of the quadratic sieve, the less time spent sieving
a particular polynomial, the higher the yield of factored residues reported. The
principal overhead involved with switching polynomials is the sieve initialization
computation. In a sequential implementation, while the computer initializes, the
yield of factored residues is of course zero. Thus one wants to have initialization
time be at most a small fraction of the total time spent factoring. Any strategy
that can speed initialization is best used by not altering the fraction of time spent
initializing, but rather used to shorten the time spent sieving per polynomial, and
thus to increase the yield.

In this paper we have described a method, ‘self initialization’, that essentially per-
forms the initialization computation for many polynomials at once. Thus the amor-
tized time per polynomial can be greatly reduced. This idea can be equally well

Implementing the self initiglizing quadratic sieve 173

used for a single processor implementation or for a distributed implementation. We
have described our experience with a ‘network’ of about 125 PC’s.

The principal problem with self initialization is an increased demand on memory.
However, it is not an ‘all or nothing’ strategy, and with limited memory resources,
one can use some of the ideas presented and still make a gain over traditional
initialization strategies.

Since our experience is with PC’s, it might be expected that other issues enter
when one uses a workstation, a mainframe, or a supercomputer. We have heard
from Herman te Riele that he and a student are trying out some of these ideas on
such computers; we await the report of their experience. The self initialization idea
seems ideally suited for a hypercube architecture, since the array of polynomials
used in the process naturally arranges itself in a high dimensional hypercube. It
would be interesting to see if this is in fact a profitable idea. In this regard, see [5].

ACKNOWLEDGEMENTS

The second author is partially supported by an NSF grant.

REFERENCES

[1] J.Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman and S. S. Wagstaff,
Jr., Factorizations of 8" £1, b=2, 8, 5, 6, 7, 10, 11, 12 up to high powers,
second edition, Contemp. Math. 22 Amer. Math. Soc. Providence 1988.

[2] J. A. Davis and D. B. Holdridge, ‘Factorization using the quadratic sieve

algorithm’, Sandia Report Sand 83-1346, Sandia National Laboratories, Al-
buquerque, NM 1983.

(3] T.Denny, B. Dodson, A. K. Lenstra and M. S. Manasse, ‘On the factoriza-
tion of RSA-120’, Extended Abstract, Crypto 93.

[4] A. K. Lenstra and H. W. Lenstra, Jr., eds., The development of the number
field sieve, Lecture Notes in Mathematics 1554 Springer-Verlag Berlin 1993.

174

[5]

[6]

‘Red’ Alford and Carl Pomerance

R. Peralta, ‘A quadratic sieve on the n-dimensional hypercube’, in Ad-
vances in Cryptology — Crypto 92, E. Brickell, ed., Lecture Notes in Com-
puter Science 740, Springer Verlag, Berlin, 1993, 324-332.

C. Pomerance, ‘Analysis and comparison of some integer factoring algo-
rithms’, in Computational methods in number theory H. W. Lenstra, Jr.
and R. Tijdeman, eds., Mathematical Centre Tracts 154/155, Mathema-
tisch Centrum, Amsterdam, 1982, 83-139.

C. Pomerance, ‘The quadratic sieve factoring algorithm’ in Advances in
Cryptology — Proceedings of EUROCRYPT 84, T. Beth, et al., eds., Lecture
Notes in Computer Science 209 Springer-Verlag, Berlin 1985, 169-182.

C. Pomerance and J. W. Smith, ¢ Reduction of huge, sparse mafrices over
finite fields via created catastrophes’, Experimental Math., 1 (1992), 89-94.

C. Pomerance, J. W. Smith and R. Tuler, ‘A pipeline architecture for fac-
toring large integers with the quadratic sieve algorithm’, STAM J. Comput.,
17 (1988), 387-403.

