On the counting function of irregular primes

Florian Luca*
School of Mathematics, University of the Witwatersrand
P. O. Box Wits 2050, South Africa
fluca@matmor.unam.mx
Amalia Pizarro-Madariaga
Departamento de Matemáticas
Universidad de Valparaiso, Chile
amalia.pizarro@uv.cl
Carl Pomerance
Department of Mathematics
Dartmouth College
Hanover, NH 03755-3551, USA
carl.pomerance@dartmouth.edu

Abstract

It is well-known that there are infinitely many irregular primes. We prove a quantitative version of this statement, namely the number of such primes $p \leq x$ is at least $(1+o(1)) \log \log x / \log \log \log x$ as $x \rightarrow \infty$. We show that the same conclusion holds for the irregular primes corresponding to the Euler numbers. Under some conditional results from diophantine approximation, the above lower bounds can be improved to $\gg \log x /(\log \log x)^{2}$.

2010 Mathematics Subject Classification: Primary 11B68

1 Introduction

The Bernoulli numbers $\left\{B_{m}\right\}_{m \geq 0}$ are defined via their exponential generating function

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{m \geq 0} B_{m} \frac{t^{m}}{m!} . \tag{1}
\end{equation*}
$$

[^0]The first few values are
$B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{3}=0, B_{4}=-1 / 30, B_{5}=0, B_{6}=1 / 42$.
Evaluating relation (1) at $-t$ and subtracting the resulting formula from (1), one gets that $B_{m}=0$ for all odd $m \geq 3$. There are several explicit formulas for computing B_{m} as well as the recurrences among them such as

$$
\sum_{k=0}^{m-1}\binom{m}{k} B_{k}=0 \quad \text { for all } \quad m \geq 2
$$

which can be used to compute B_{m-1} in terms of B_{j} for $j \in\{0, \ldots, m-2\}$.
A prime $p>2$ is called regular if it divides the class number of the cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$, where $\zeta_{p}=e^{2 \pi i / p}$ is a nontrivial p th root of unity. In 1850, Kummer [9] showed that p is regular if and only if it does not divide the numerator of any of the numbers

$$
B_{2}, B_{4}, \ldots, B_{p-3}
$$

The first few regular primes are

$$
3,5,7,11,13,17,19,23,29,31,41, \ldots
$$

This is sequence A007703 in [18]. In 1964, Siegel [17] conjectured that the regular primes have relative density $1 / \sqrt{e}$ as a subset of all the primes. However, it is not even known that there are infinitely many regular primes. An odd prime which is not regular is called irregular. The first few irregular primes are

$$
\begin{equation*}
37,59,67,101,103,131,149, \ldots \tag{2}
\end{equation*}
$$

This is sequence A000928 in [18]. Unlike with the regular primes, it is known that there are infinitely many irregular primes. The first proof of this fact was given in 1915 by Jensen in [8], who in fact showed that there are infinitely many irregular primes congruent to 3 modulo 4 . Almost 40 years later, in 1954, Carlitz [3], gave a simple proof of the weaker result that there are infinitely many irregular primes. Jensen's result was extended to the existence of irregular primes in other congruence classes by Montgomery [15] and Metsänkylä [14].

Let

$$
\mathcal{I}_{B}=\{p: p \text { irregular }\}
$$

and let $\mathcal{I}_{B}(x)=\mathcal{I}_{B} \cap[1, x]$. Our main result is the following.

Theorem 1. The inequality

$$
\# \mathcal{I}_{B}(x) \geq(1+o(1)) \frac{\log \log x}{\log \log \log x}
$$

holds as $x \rightarrow \infty$.
Let $\left\{E_{m}\right\}_{m \geq 0}$ be the sequence of Euler numbers whose exponential generating function is given by

$$
\sec t=\sum_{m \geq 0} E_{m} \frac{t^{m}}{m!}
$$

This is sequence A122045 in [18]. There are some similarities with the Bernoulli numbers. For example, $E_{m}=0$ for all odd m including $m=1$. However, unlike the Bernoulli numbers, the Euler numbers are integers. Long before Wiles' proof of Fermat Last Theorem, Vandiver [20] proved that if

$$
x^{p}+y^{p}=z^{p}
$$

holds for some positive integers x, y, z and an odd prime p such that $p \nmid x y z$, then $E_{p-3} \equiv 0(\bmod p)$. Gut $[6]$, proved that if

$$
x^{2 p}+y^{2 p}=z^{2 p}
$$

is satisfied for some positive integers x, y, z and an odd prime $p \geq 11$ with $p \nmid x y z$, then

$$
E_{p-3} \equiv E_{p-5} \equiv E_{p-7} \equiv E_{p-9} \equiv E_{p-11} \quad(\bmod p)
$$

Inspired by the above results, Carlitz [3], called an odd prime p to be irregular with respect to the Euler numbers if it divides one of the numbers

$$
E_{2}, E_{4}, \ldots, E_{p-3}
$$

He proved that the number of such primes is infinite. Accordingly, we put

$$
\mathcal{I}_{E}=\{p: p \text { irregular for the Euler numbers }\}
$$

and let $\mathcal{I}_{E}(x)=\mathcal{I} \cap[1, x]$. The following result is the analog of Theorem 1 for the counting function of the irregular primes with respect to the Euler numbers.

Theorem 2. The inequality

$$
\# \mathcal{I}_{E}(x) \geq(1+o(1)) \frac{\log \log x}{\log \log \log x}
$$

holds as $x \rightarrow \infty$.
The rest of the paper is organized as follows. In Section 2, we present Carlitz's proof of the infinitude of the irregular primes. As we shall see, this proof does not allow the conclusion that the function $\# \mathcal{I}_{B}(x)$ grows faster than some finite iterate of the natural logarithm function. In Section 3, we show that if $u>0$ and v are fixed integers, then most primes p have the property that the linear form $u p+v$ does not have any large divisor of the form $q-1$ with $q \neq p$ a prime. Since this result is of independent interest and might have other applications, we state it here. Let $\pi(x)$ denote the number of primes in $[1, x]$.

Theorem 3. Let $u>0$ and v be integers. Let $2 \leq z \leq x$. There is a positive absolute constant c such that the number of primes $p \leq x$ such that up $+v$ has a divisor $q-1$ with $q>z, q \neq p$ and q prime is $O\left(\pi(x) /(\log z)^{c}\right)$. The implied constant might depend on u and v.

The proof of the above result uses sieve methods and follows some ideas from [5]. In Section 4, we recall Siegel's zero-lemma, and Baker's lower bound on a non-zero linear linear form in logarithms of algebraic numbers in a recent formulation due to Matveev. For us, only the rational case is of interest. We also recall a stronger conjectural form of this result due to Lang and Waldschmidt (see [11], [21]). Sections 5 and 6 are devoted to the proofs of Theorems 1 and 2. These proofs combine Theorem 3 with Matveev's bound. In Section 7, we show that the the lower-bounds can be strengthened to $\gg \log x /(\log \log x)^{2}$ if instead of Matveev's bound we use the Lang-Waldschmidt conjecture in our arguments.

We use $\omega(n), \Omega(n), \tau(n)$ for the number of distinct prime factors of n, the total number of prime factors of n (counting multiplicities), the number of divisors of n, respectively. We also let $P^{+}(n)$ and $P^{-}(n)$ denote the largest and smallest prime factor of n, respectively, with the conventions that $P^{+}(1)=1$ and $P^{-}(1)=+\infty$. We use p, q, r with or without subscripts to denote primes. We use the Landau symbols O, o and the Vinogradov symbols \gg and \ll with their usual meaning. We recall that $A=O(B), A \ll$ B and $B \gg A$ are all equivalent to the fact that $|A|<c B$ for some constant c, whereas $A=o(B)$ means that $A / B \rightarrow 0$. The constants implied by such symbols are absolute except for Section 3 where they depend on u and v.

2 Carlitz's proof revisited

Carlitz's proof is based on the following three congruences valid for all even positive integers m :

$$
\begin{array}{ccc}
B_{m} \equiv 0 & \left(\bmod p^{r}\right) & \left(p^{r} \mid m, \quad p-1 \nmid m\right) \\
p B_{m} \equiv-1 & (\bmod p) & (p-1 \mid m), \\
\frac{B_{m^{\prime}}}{m^{\prime}} \equiv \frac{B_{m}}{m} & (\bmod p) & \left(m^{\prime} \equiv m \not \equiv 0(\bmod p-1)\right) \tag{5}
\end{array}
$$

(see formulas (2.1), (2.2) and (2.3) on page 329 of [3]). The second congruence (4) follows from the the theorem of Staudt and von Clausen which asserts that

$$
B_{m} \equiv-\sum_{p-1 \mid m} \frac{1}{p} \quad(\bmod 1) \quad \text { for all even } m
$$

Lemma 1. An odd prime p is irregular if and only if p divides the numerator of some B_{m} / m, where $m>0$ is even.

Proof. If p is irregular, it divides the numerator of some B_{m} for some even m with $2 \leq m \leq p-3$, and so it divides the numerator of B_{m} / m. Conversely, if p divides the numerator of some B_{m} / m with $m>0$ even, then (4) implies that $p-1 \nmid m$, so that (5) implies that p divides the numerator of $B_{m^{\prime}} / m^{\prime}$, where $m^{\prime}=m \bmod (p-1)$. Note that m^{\prime} is even and that $m^{\prime} \neq 0$. This completes the proof.

Let $k \geq 1$ and p_{1}, \ldots, p_{k} be the first k irregular primes. We put

$$
M=\operatorname{lcm}\left[p_{1}-1, \ldots, p_{k}-1\right] .
$$

Write $\left|B_{M}\right| / M=C_{M} / D_{M}$, where C_{M} and D_{M} are coprime. It follows from Lemma 1 that every prime factor of C_{M} is irregular. Since $p_{i}-1 \mid M$ for all $i=1, \ldots, k$, it follows from (4), that p_{i} divides the denominator of B_{M} for all $i=1, \ldots, k$. Hence, $\operatorname{gcd}\left(C_{M}, M\right)=1$, so either $C_{M}=1$, or C_{M} is divisible by some irregular prime p_{k+1} not among p_{1}, \ldots, p_{k}, and in particular, $C_{M} \geq p_{k+1}$. We now exploit the relation

$$
\frac{C_{M}}{D_{M}}=\frac{\left|B_{M}\right|}{M}=\frac{2(M-1)!}{(2 \pi)^{M}} \zeta(M)
$$

due to Euler. Since $n!>(n / e)^{n}$ for all $n \geq 1$ and $\zeta(M)>1$, it follows that

$$
\begin{equation*}
\frac{C_{M}}{D_{M}} \geq \frac{2 e}{M-1}\left(\frac{M-1}{2 \pi e}\right)^{M}>\frac{2 e}{M-1} \cdot 2^{M}>M^{2} \tag{6}
\end{equation*}
$$

where the above inequalities hold because $M \geq p-1 \geq 36$. This shows that the case $C_{M}=1$ is not possible, therefore

$$
p_{k+1} \leq C_{M} \leq 2 D_{M} \frac{(M-1)!}{(2 \pi)^{M}} \zeta(M)
$$

Using the Staudt-von Clausen theorem, which implies that the denominator of B_{M} is $\prod_{p-1 \mid M} p$, and putting $\tau(n)$ for the number of divisors of n, we have

$$
D_{M} \leq M \prod_{p-1 \mid M} p \leq M(M+1)^{\tau(M)} \leq M(M+1)^{M},
$$

because $\tau(n) \leq n$ for all $n \geq 1$. Since $\zeta(M)<2$ and $(M-1)!<(M-1)^{M-1}$, we get
$p_{k+1} \leq C_{M}<\frac{4 M(M+1)}{(2 \pi)^{M}}(M+1)^{M-1}(M-1)^{M-1}<\left(M^{2}-1\right)^{M-1}<M^{2 M}$.
The above upper bound can be somewhat improved but not by much due to the presence of the factor $(M-1)!/(2 \pi)^{M-1}>((M-1) /(2 e \pi))^{M-1}$. Note also that $M \geq p_{k}-1$. Hence,

$$
p_{k+1}<M^{2 M}<\left(p_{1} \cdots p_{k}\right)^{2 p_{1} \cdots p_{k}}
$$

The above argument reveals that the Carlitz argument only produces a bound on p_{k+1} which is exponential in p_{k}, so as a consequence, it cannot produce a lower bound on $\mathcal{I}_{B}(x)$ which is of order a finite number of iterates of the natural logarithm.

3 Linear forms in primes with large shifted prime divisors

Here, we prove Theorem 3. We follow some of the ideas in the proof of [5, Theorem 2]. Our proof uses results on the distribution of y-smooth numbers $n \leq x$, that is numbers $n \leq x$ with $P^{+}(n) \leq y$, due to de Bruijn [1], the distribution of primes $q \leq x$ having $\Omega(q-1) / \log \log x$ away from 1 due to Erdős [4] and Timofeev [19], and Brun's sieve. For most of our sieving applications, Theorem 2.3 on page 70 in [7] will suffice. Throughout this section, the letters c_{1}, c_{2}, \ldots denote absolute positive constants and the symbols O, \ll and \gg depend on u and v.

We start with the case $v=0$. In this case, $u p$ is divisible by $q-1$, for some $q>z$. Taking $z>u$, we conclude that $q-1=u_{1} p$ for some divisor
u_{1} of u. For fixed $u_{1} \mid u$, the number of primes $p \leq x$ such that $u_{1} p+1$ is also prime is, by Brun's sieve, $O(\pi(x) / \log x)$. Summing this bound up over all divisors u_{1} of u, we get the desired conclusion of Theorem 3 with $c=1$.

From now on, we assume that $v \neq 0$.
Lemma 2. The number of primes $p \leq x$ with $u p+v$ divisible by some $q-1$ with $q>z$ prime, $q \neq p$, and $\Omega(q-1) \leq \frac{2}{3} \log \log q$ is $O\left(\pi(x) /(\log z)^{c_{1}}\right)$.
Proof. First assume $q \leq \sqrt{x}$. For each choice of q having $\Omega(q-1) \leq$ $\frac{2}{3} \log \log q$, we count integers $a \leq(u x+v) /(q-1)$ such that $a(q-1)=u p+v$ for some prime $p \leq x$. This puts $p \leq x$ into a certain arithmetic progression p^{*} modulo $(q-1) / \operatorname{gcd}(q-1, u)$. By Brun's method (in this case, the Brun-Titchmash theorem), this count is

$$
\begin{equation*}
O\left(\frac{x}{\varphi(q-1) \log (x / q)}\right)=O\left(\pi(x) \frac{\log \log q}{q}\right), \tag{7}
\end{equation*}
$$

where φ is Euler's function. We know from [4], or [19], that the counting function of the primes $q \leq t$ with $\Omega(q-1) \leq \frac{2}{3} \log \log q$ is $O\left(\pi(t) /(\log t)^{c_{2}}\right)$. Applying this result and partial summation, the above estimate (7) summed for $q>z$ gives the count $O\left(\pi(x) \log \log z /(\log z)^{c_{2}}\right)$. This is consistent with the conclusion of the lemma for any choice of $c_{1}<c_{2}$.

It remains to consider the case of $q>z \geq \sqrt{x}$. By de Bruijn's standard result [1], the number of integers $n \leq t$ for which $P^{+}(n) \leq t^{2 / \log \log t}$ is $O\left(t /(\log t)^{10}\right)$ (actually any fixed number may be used here instead of " 10 "). Thus, putting $y=x^{1 / \log \log x}$, we may assume that $q-1=b r$ for r prime and $r>y$. For a prime $p \neq q$ with $q-1=b r \mid u p+v$, let $a=(u p+v) / b r$. We now fix a, b with $\Omega(b) \leq \frac{2}{3} \log \log x$ and we count primes $r \leq(u x+v) / a b$ with $b r+1=q$ prime and $a b r$ of the form $u p+v$ with p prime, $p \neq q$. That is, for large x, the three integers $r, b r+1$ and $a b r-v$ are all free of prime factors from the interval $\left(u, y^{1 / 3}\right]$. We put

$$
E_{1}=a b v(v+a)
$$

Note that $E_{1} \neq 0$, for if $E_{1}=0$, then either $v=0$, which has been treated above, or $v=-a$. Should the last instance occur, we would then have $u p-a=u p+v=a b r=a(q-1)=a q-a$, therefore $u p=a q$. Taking $z>u$, we conclude that $q=p$, which is excluded. Thus, $E_{1} \neq 0$. By Theorem 2.3 on page 70 in [7], the count of such r is

$$
\begin{equation*}
O\left(\frac{x}{a b\left(\log \left(y^{1 / 3}\right)\right)^{3}}\left(\frac{E_{1}}{\varphi\left(E_{1}\right)}\right)^{2}\right)=O\left(\frac{x(\log \log x)^{5}}{a b(\log x)^{3}}\right) . \tag{8}
\end{equation*}
$$

It is known, see [10, Corollary 2.5] for example, that sum of $1 / b$ over all numbers with $P^{+}(b) \leq x$ and $\Omega(b) \leq \frac{2}{3} \log \log x$ is $O\left((\log x)^{1-c_{3}}\right)$. The sum on a contributes a factor $\log x$, so we have a final count of $O\left(\pi(x) /(\log x)^{c_{4}}\right)$ for any fixed $c_{4}<c_{3}$. This completes the proof of the lemma.

We let $\Omega_{y}(n)$ denote the number of prime factors $\ell \leq y$ of n counted with multiplicity.

Lemma 3. The number of primes $p \leq x$ with $u p+v$ of the form $a(q-1)$ with $q>z$ prime, $q \neq p$, and $\Omega_{q}(a) \leq \frac{2}{3} \log \log q$ is $O\left(\pi(x) /(\log z)^{c_{5}}\right)$.

Proof. It is convenient to consider three ranges for q.
Case 1. $q \leq e^{\sqrt{\log x}}$.
Write $a=a_{1} a_{2}$, where $P^{+}\left(a_{1}\right) \leq q$ and $P^{-}\left(a_{2}\right)>q$. Again, by [1] and an easy argument, we may assume that $a_{1} \leq \sqrt{x}$. For fixed a_{1}, q we count integers $a_{2} \leq(u x+v) /\left(a_{1}(q-1)\right)$ with $P^{-}\left(a_{2}\right)>q$ and $a_{1} a_{2}(q-1)$ of the form $u p+v$ with p prime. By Brun's method again, this count is

$$
O\left(\frac{x}{\varphi\left(a_{1}(q-1)\right) \log q \log x}\right)=O\left(\pi(x) \frac{\log \log q}{a_{1} q \log \left(a_{1} q\right)}\right) .
$$

By [10, Corollary 2.5], the sum on a_{1} with $\Omega\left(a_{1}\right) \leq \frac{2}{3} \log \log q$ then introduces a factor $(\log q)^{1-c_{3}}$. The sum over $q>z$ now introduces a factor $(\log \log z) /(\log z)^{c_{3}}$, so we have a final count that is $O\left(\pi(x) /(\log z)^{c_{4}}\right)$ as desired. (If $z>e^{\sqrt{\log x}}$, the count is 0 .)

Case 2. $e^{\sqrt{\log x}}<q \leq \sqrt{x}$.
As in the proof of Lemma 2 we may assume that $P^{+}(a)>y=x^{1 / \log \log x}$. Write a as $a^{\prime} r$ where r is prime, $r>y$, and $\Omega_{q}\left(a^{\prime}\right) \leq \frac{2}{3} \log \log q$. For q, a^{\prime} fixed, we then have $r \leq(u x+v) / a^{\prime}(q-1)$ is prime and $a^{\prime} r(q-1)$ is of the form $u p+v$ with p prime. Thus, r and $a^{\prime}(q-1) r-v$ are both free of primes in $\left(u, y^{1 / 3}\right]$. Taking

$$
E_{2}=a^{\prime}(q-1) v,
$$

we have $E_{2} \neq 0$ and the count on the number of such r is

$$
O\left(\frac{x}{a^{\prime}(q-1)\left(\log \left(y^{1 / 3}\right)\right)^{2}}\left(\frac{E_{2}}{\varphi\left(E_{2}\right)}\right)\right)=O\left(\frac{x(\log \log x)^{3}}{a^{\prime}(q-1)(\log x)^{2}}\right) .
$$

As above, the sum over a^{\prime} introduces a factor $(\log x) /(\log q)^{c_{3}}$, and then the sum over $q>\max \left\{z, e^{\sqrt{\log x}}\right\}$ of the resulting expression gets us to $O\left(\pi(x) /(\log z)^{c_{4}}\right)$.

Case 3. $q>\sqrt{x}$.
As in the proof of Lemma 2, we write $q-1=b r$ where r is prime and $r>y$. For a given integer a with $\Omega(a) \leq \frac{2}{3} \log \log x$ and a given value of b, we count primes $r \leq(u x+v) / a b$ with $b r+1=q$ prime and $a b r$ of the form $u p+v$ with p prime, $p \neq q$. By Brun's method, this count is given by (8), so the argument that follows in the proof of Lemma 2, with the roles of a and b reversed, finishes the argument here.

With the following lemma, the proof of Theorem 3 will be complete.
Lemma 4. The number of primes $p \leq x$ for which there is some number $w>z$ with $\Omega_{w}(u p+v)>\frac{4}{3} \log \log w$ is $O\left(\pi(x) /(\log z)^{c_{6}}\right)$.

Proof. This time we consider two cases.
Case 1. $w \leq e^{\sqrt{\log x}}$.
Write $u p+v=a_{1} a_{2}$, where $P^{+}\left(a_{1}\right) \leq w$ and $P^{-}\left(a_{2}\right)>w$. Again by [1], we may assume that $a_{1} \leq \sqrt{x}$. For a_{1} fixed with $\Omega\left(a_{1}\right)>\frac{4}{3} \log \log w$, the number of choices for $a_{2} \leq(u x+v) / a_{1}$ with $P^{-}\left(a_{2}\right)>y$ and $a_{1} a_{2}$ of the form $u p+v$ with p prime is, via Brun's method, at most

$$
O\left(\frac{x}{\varphi\left(a_{1}\right) \log w \log x}\right)=O\left(\frac{x \log \log w}{a_{1} \log w \log x}\right) .
$$

Summing the above inequality on a_{1} and using [10, Corollary 2.5], we have a count of

$$
O\left(\pi(x) \frac{\log \log w}{(\log w)^{c_{7}}}\right)
$$

Case 2. $w>e^{\sqrt{\log x}}$.
Write $u p+v=a_{1} a_{2} r$, where $r=P^{+}(u p+v), P^{+}\left(a_{1}\right) \leq w, P^{-}\left(a_{2}\right)>w$. As before, we may assume that $r>y$, where we recall that $y=x^{1 / \log \log x}$. We fix a_{1}, a_{2} and count primes $r \leq(u x+v) / a_{1} a_{2}$ with $a_{1} a_{2} r$ of the form $u p+v$ with p prime. By Brun's method, it is

$$
O\left(\frac{x(\log \log x)^{2}}{\varphi\left(a_{1} a_{2}\right)(\log x)^{2}}\right)=O\left(\frac{x(\log \log x)^{3}}{a_{1} a_{2}(\log x)^{2}}\right) .
$$

We then sum over values of a_{2} with $P^{-}\left(a_{2}\right)>w$, which by Brun's method introduces a factor $(\log x) / \log w$, and then sum over a_{1} with $P^{+}\left(a_{1}\right) \leq w$ and $\Omega\left(a_{1}\right)>\frac{4}{3} \log \log w-1$, getting a factor $(\log w)^{1-c_{8}}$.

Thus, the final count for a given value of w is $O\left(\pi(x) /(\log w)^{c_{6}}\right)$, where $c_{6}<\min \left\{c_{7}, c_{8}\right\}$. To complete the proof let w run over numbers $z^{2^{j}}$ where $j=0,1,2, \ldots$ and sum the resulting estimates to obtain $O\left(\pi(x) /(\log z)^{c_{6}}\right)$.

4 Some results from transcendence theory

We start with Siegel's zero-lemma (see Chapter 1 in [16]).
Lemma 5. Assume we are given a system of M linear equations in $N>M$ unknowns

$$
\sum_{j=1}^{N} a_{i j} x_{j}=0, \quad i=1, \ldots, M
$$

whose coefficients are integers not all zero and are bounded by A in absolute value. The system has an integer non-zero solution $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ such that

$$
\max \left\{\left|x_{i}\right|: 1 \leq i \leq N\right\} \leq(N A)^{M /(N-M)} .
$$

For a nonzero rational number α written in reduced form as $\alpha=a / b$ with integers $a, b \geq 1$ and $\operatorname{gcd}(a, b)=1$, its height is $h(\alpha)=\max \{\log |a|, \log b\}$. The following result is a particular case of a theorem of Matveev [13].
Theorem 4. Let $\alpha_{1}, \ldots, \alpha_{t}$ be positive rational numbers which are not 1 and let b_{1}, \ldots, b_{t} be integers. Suppose that

$$
B \geq \max \left\{\left|b_{1}\right|, \ldots,\left|b_{t}\right|\right\}
$$

and put

$$
\Lambda:=\sum_{i=1}^{t} b_{i} \log \alpha_{i} .
$$

Then, assuming that $\Lambda \neq 0$, we have

$$
2|\Lambda|>\exp \left(-\frac{7}{5} t^{9 / 2} 30^{t+3}(1+\log B) h\left(\alpha_{1}\right) \cdots h\left(\alpha_{t}\right)\right) .
$$

The following conjecture of Lang [11] and Waldschmidt [21] strengthens the conclusion of Theorem 4.

Conjecture 1. For every $\varepsilon>0$, there exists $C(\varepsilon)>0$ such that in the hypothesis and notations of Theorem 4, we have

$$
\begin{equation*}
|\Lambda| \geq \frac{C(\varepsilon)^{t} B}{\left(\left|b_{1}\right| \cdots\left|b_{t}\right| h\left(\alpha_{1}\right) \cdots h\left(\alpha_{t}\right)\right)^{1+\varepsilon}} . \tag{9}
\end{equation*}
$$

5 The proof of Theorem 1

We follow the proof of Theorem 3 in [12] but introduce some new elements. Recall that

$$
\begin{equation*}
B_{2 n}=(-1)^{n+1} \frac{2(2 n)!}{(2 \pi)^{2 n}} \zeta(2 n) \tag{10}
\end{equation*}
$$

Then

$$
\frac{\left|B_{2 n}\right|}{2 n}=\frac{2(2 n-1)!}{(2 \pi)^{2 n}}\left(1+O\left(\frac{1}{2^{2 n}}\right)\right) .
$$

Write as in Section 2,

$$
\frac{\left|B_{2 n}\right|}{2 n}=\frac{C_{2 n}}{D_{2 n}} \quad \text { where } \quad \operatorname{gcd}\left(C_{2 n}, D_{2 n}\right)=1
$$

Then by Lemma 1 , every prime factor of $C_{2 n}$ is an irregular prime. Furthermore,

$$
\begin{equation*}
D_{2 n}=\prod_{p-1 \mid 2 n} p^{1+\operatorname{ord}_{p}(2 n)} \tag{11}
\end{equation*}
$$

where for a positive integer m and a prime p we $\operatorname{write}^{\operatorname{ord}_{p}(m)}$ for the exponent with which p appears in the prime factorization of m. Indeed, the above formula (11) follows easily from (3), (4). Let N be large and put

$$
\begin{equation*}
K(N):=\omega\left(\prod_{n \leq N} C_{2 n}\right) \tag{12}
\end{equation*}
$$

Observe that $K(N)$ is a nondecreasing function of N. Our goal is to find a lower bound for $K(N)$ in terms of N. Indeed, assume that we have such an estimate. Then, by (11) and $\tau(n)=n^{o(1)}$ as $n \rightarrow \infty$, we have that

$$
D_{2 n} \leq(2 n) \prod_{d \mid 2 n}(d+1)<(2 n+1)^{1+\tau(2 n)} \leq n^{n^{\circ(1)}}
$$

as $n \rightarrow \infty$. Hence, by (10) and $\zeta(2 n)<2$, we get that

$$
\begin{equation*}
C_{2 n} \leq 2 \frac{2 D_{2 n}}{(2 \pi)^{2 n}}(2 n-1)!<N^{2 N} \tag{13}
\end{equation*}
$$

for all $n \leq N$ once $N>N_{0}$ is sufficiently large. We now take a large x and put $N(x)$ for the largest positive integer N such that $N^{2 N} \leq x$. We obtain that if $p \mid C_{2 n}$ for some $n \leq N(x)$, then certainly $p \in \mathcal{I}_{B}(x)$. Since certainly

$$
\begin{equation*}
N(x) \geq 0.5 \frac{\log x}{\log \log x} \tag{14}
\end{equation*}
$$

we get that

$$
\begin{equation*}
\# \mathcal{I}_{B}(x) \geq K(N(x)) . \tag{15}
\end{equation*}
$$

So, any lower bound on $K(N)$ in terms of N, will lead, via inequalities (14) and (15), to a lower bound for $\# \mathcal{I}_{B}(x)$

To proceed, we write

$$
\begin{equation*}
C_{2 n}=2 D_{2 n}(2 n-1)!(2 \pi)^{-2 n}\left(1+O\left(\frac{1}{2^{2 n}}\right)\right) . \tag{16}
\end{equation*}
$$

Taking logarithms, we get

$$
\log C_{2 n}=\log \left(2 D_{2 n}\right)+\log (2 n-1)!-2 n \log (2 \pi)+O\left(\frac{1}{2^{2 n}}\right)
$$

We evaluate the above formula in the numbers $n, n+1, n+2$ for some $n \leq N-2$, and take the second difference of the resulting relations, getting

$$
\begin{equation*}
\log \left(\frac{C_{2 n} C_{2(n+2)}}{C_{2(n+1)}^{2}}\right)-\log \left(\frac{D_{2 n} D_{2(n+2)}(2 n+2)(2 n+3)}{D_{2(n+1)}^{2}(2 n)(2 n+1)}\right)=O\left(\frac{1}{2^{2 n}}\right) . \tag{17}
\end{equation*}
$$

We put

$$
F_{n}=\frac{D_{2 n} D_{2(n+2)}(2 n+2)(2 n+3)}{D_{2(n+1)}^{2}(2 n)(2 n+1)},
$$

and we evaluate relation (17) at some special $n \leq N-2$. We now describe our values for n. Take $\mathcal{J}=(.99 N / 6, N / 6)$. By the Prime Number Theorem, the number of primes in \mathcal{J} exceeds $1.5 \times 10^{-3} \pi(N)$ when N is large. Let $p \in \mathcal{J}$ and consider the forms $2(6 p-8), 2(6 p-7), 2(6 p-6)$. Applying Theorem 3 with $(u, v)=(12,-16),(12,-14),(12,-12)$, we deduce that the subset of primes $p \in \mathcal{J}$ such that one of the above three linear forms has a divisor of the form $q-1$ for some $q \neq p, q>z$ has cardinality $<\alpha_{1} \pi(N) /(\log z)^{c}$ for some absolute positive constant α_{1}. Choosing

$$
\begin{equation*}
z=\alpha_{2}:=\exp \left(\left(2000 \alpha_{1}\right)^{1 / c}\right), \tag{18}
\end{equation*}
$$

we conclude that there are $>10^{-3} \pi(N)$ primes $p \in \mathcal{J}$ such that none of the above linear forms in p has a divisor of the form $q-1$ for $q \neq p$ and $q>\alpha_{2}$. We may assume that $K:=K(N)$ satisfies the inequality

$$
\begin{equation*}
2 K+1<10^{-3} \pi(N), \tag{19}
\end{equation*}
$$

since otherwise the theorem clearly holds. It follows that we can choose $K+1$ such primes in \mathcal{J}, call them p_{1}, \ldots, p_{K+1}, such that additionally none
of them divides $\prod_{1 \leq n \leq N} C_{2 n}$. We now take $n_{i}=6 p_{i}-8$ for $i=1, \ldots, K+1$. Fix i and let us first take a closer look at the number $F_{n_{i}}$, which is given by:

$$
F_{n_{i}}=\frac{D_{2\left(6 p_{i}-8\right)} D_{12\left(p_{i}-1\right)}}{D_{2\left(6 p_{i}-7\right)}} \times \frac{\left(6 p_{i}-7\right)\left(12 p_{i}-13\right)}{6\left(3 p_{i}-4\right)\left(4 p_{i}-5\right)} .
$$

It is clear that for large $N, p_{i} \| D_{12\left(p_{i}-1\right)}$, and p_{i} divides neither $D_{2\left(6 p_{i}-8\right)}$ nor $D_{2\left(6 p_{i}-7\right)}$. Furthermore, p_{i} does not divide the number

$$
\left(3 p_{i}-4\right)\left(4 p_{i}-5\right)\left(6 p_{i}-7\right)\left(12 p_{i}-13\right)
$$

for large N either. Hence, p_{i} divides the numerator of $F_{n_{i}}$ written in reduced form. Let us show that if $i \neq j$ both in $\{1, \ldots, K+1\}$, then p_{j} divides neither the numerator nor the denominator of $F_{n_{i}}$. Indeed, assume this is not so. Then p_{j} either divides one of $D_{2\left(6 p_{i}-8\right)}, D_{2\left(6 p_{i}-7\right)}, D_{12\left(p_{i}-1\right)}$, or one of $3 p_{i}-4,4 p_{i}-5,6 p_{i}-7,12 p_{i}-13$. Say, p_{j} divides one of the numbers from the first group. Then for large $N, p_{j}>.99 N / 6>\alpha_{2}$, and $p_{j} \neq p_{i}$ has the property that $p_{j}-1$ divides one of $2\left(6 p_{i}-8\right), 2\left(6 p_{i}-7\right), 12\left(p_{i}-1\right)$, which contradicts the way we choose the prime p_{i}. Now suppose that p_{j} divides some number from the second group. Then

$$
\begin{equation*}
a p_{i}-(a+1)=b p_{j} \quad \text { for some } \quad a \in\{3,4,6,12\} . \tag{20}
\end{equation*}
$$

Since $p_{j}>0.99 p_{i}$, we get that

$$
a p_{i}>b p_{j}>(0.99) b p_{i} \quad \text { therefore } \quad(0.99)^{-1} a>b,
$$

which implies that $b<a+1$ for all $a \in\{3,4,6,12\}$. Thus, $b \leq a \leq 12$. Since also

$$
a\left(0.99 p_{j}\right)<a p_{i}=b p_{j}+(a+1) \leq b p_{j}+13,
$$

we get that for large N and $b \leq 12$ we must have $a<b+1$. Thus, $a=b$, and now equation (20) shows that $a \mid a+1$, which is false for all $a \in\{3,4,6,12\}$. So indeed, neither the numerator nor the denominator of $F_{n_{i}}$ is divisible by p_{j} for any $j \neq i$ in $\{1, \ldots, K+1\}$.

We now estimate the size of $h\left(F_{n_{i}}\right)$. Since neither one of the numbers $2\left(6 p_{i}-8\right), 2\left(6 p_{i}-7\right), 12\left(p_{i}-1\right)$ has any divisor of the form $q-1$ for $q \neq p_{i}$, $q>\alpha_{2}$ and q prime, it follows, by (11), that

$$
\max \left\{D_{2 n_{i}}, D_{2\left(n_{i}+1\right)}, D_{2\left(n_{i}+2\right)}\right\}=O(N)
$$

Hence,

$$
\begin{equation*}
h\left(F_{i}\right) \leq \max \left\{\log \left(D_{2 n_{i}} D_{2\left(n_{i}+2\right)}\left(2 n_{i}+3\right)^{2}\right), \log \left(D_{n_{i}+1}^{2}\left(2 n_{i}+1\right)^{2}\right)\right\}<5 \log N \tag{21}
\end{equation*}
$$

once N is large enough.
Now let us assume that $\mathcal{Q}=\left\{q_{1}, \ldots, q_{K}\right\}$ is the set of all the prime factors of $\prod_{1 \leq n \leq N} C_{2 n}$. Write

$$
\frac{C_{2 n_{i}} C_{2\left(n_{i}+2\right)}}{C_{2\left(n_{i}+1\right)}^{2}}=\prod_{j=1}^{K} q_{j}^{a_{i, j}} \quad(i=1, \ldots, K+1)
$$

Then the relation (17) for n_{i} is

$$
\begin{equation*}
\left|\sum_{j=1}^{K} a_{i, j} \log q_{j}-\log F_{n_{i}}\right|=O\left(\frac{1}{2^{1.98 N}}\right) . \tag{22}
\end{equation*}
$$

By (13) and $n \leq N-2$, it follows that

$$
C_{2 n}, C_{2(n+1)}, C_{2(n+2)}<N^{2 N}
$$

for all sufficiently large N, so that

$$
\begin{equation*}
A=\max _{\substack{1 \leq i \leq K+1 \\ 1 \leq j \leq K}}\left|a_{i, j}\right|<\frac{\log \left(N^{4 N}\right)}{\log 2}<6 N \log N \tag{23}
\end{equation*}
$$

for $N>N_{0}$. Let $\left(\Delta_{1}, \ldots, \Delta_{K+1}\right)$ be a nonzero vector of integers in the null-space of the $K \times(K+1)$ matrix

$$
\mathcal{A}=\left(\begin{array}{cccc}
a_{1,1} & a_{2,1} & \cdots & a_{K+1,1} \\
a_{1,2} & a_{2,2} & \cdots & a_{K+1,2} \\
\vdots & \vdots & \cdots & \vdots \\
a_{1, K} & a_{2, K} & \cdots & a_{K+1, K}
\end{array}\right)
$$

Siegel's lemma 5 (with $M=K, N=K+1$), tells us that such a vector exists with

$$
\begin{equation*}
\max \left\{\left|\Delta_{i}\right|: i=1, \ldots, K+1\right\} \leq((K+1) A)^{K}<\left(\frac{6}{1000} N^{2}\right)^{K} \tag{24}
\end{equation*}
$$

for $N>N_{0}$ (see (19) and (23)). Then taking the linear combination of relations (22) with coefficients Δ_{i} for $i=1, \ldots, 2 K$, we get

$$
\begin{equation*}
\left|\sum_{i=1}^{K+1} \Delta_{i} \log F_{n_{i}}\right|=O\left(\frac{(K+1) \max \left\{\mid \Delta_{i}\right\} \mid}{2^{1.98 N}}\right)=O\left(\frac{1}{2^{N}}\right) . \tag{25}
\end{equation*}
$$

The linear form on the left-hand side of (25) above is nonzero (because each $F_{n_{i}}$ has its numerator divisible by p_{i} and neither the numerator nor the denominator of $F_{n_{i}}$ is divisible by p_{j} for any $j \neq i$ in $\left.\{1, \ldots, K+1\}\right)$. We apply Theorem 4 to get that the expression in the left-hand side of (25) can be bounded below by

$$
\frac{1}{2} \exp \left(-\frac{7}{5}(K+1)^{9 / 2} 30^{K+4}(1+\log B) h\left(F_{n_{1}}\right) \cdots h\left(F_{n_{K+1}}\right)\right)
$$

where if we take $B:=N^{2 K}$, then

$$
B \geq \max \left\{\left|\Delta_{i}\right|: i=1, \ldots, K+1\right\},
$$

(see (24)). Since for large $N, h\left(F_{n_{i}}\right)<5 \log N$ for all $i=1, \ldots, K+1$ (see (21)), inequality (25) gives

$$
N \log 2-\alpha_{3}<\frac{7}{5}(K+1)^{9 / 2} 30^{K+4}(1+2 K \log N)(5 \log N)^{K+1},
$$

with some suitable constant α_{3}, which implies

$$
\begin{equation*}
K(N) \geq(1+o(1)) \frac{\log N}{\log \log N} \quad(N \rightarrow \infty) \tag{26}
\end{equation*}
$$

Theorem 1 follows from estimates (26), (15) and (14).

6 The proof of Theorem 2

This proof is very similar to the proof of Theorem 1. Instead of estimate (10), we use the estimate

$$
\begin{equation*}
\left|E_{2 n}\right|=\frac{4^{2 n+1}(2 n)!}{\pi^{2 n+1}}\left(1+O\left(\frac{1}{3^{2 n}}\right)\right) \tag{27}
\end{equation*}
$$

(see the last display on page 331 of [3]). Write

$$
\left|E_{2 n}\right|=U_{2 n} V_{2 n}, \quad \text { where } \quad V_{2 n}=\prod_{p-1 \mid 2 n} p^{\operatorname{ord}_{p}\left(E_{2 n}\right)} .
$$

Note that an argument of Carlitz from [3] shows that every prime factor of $U_{2 n}$ is an irregular prime for the Euler numbers and that $V_{2 n}$ is divisible by every prime $p \equiv 1(\bmod 4)$ with $p-1 \mid 2 n$. We put

$$
K(N)=\#\left\{p: p \mid \prod_{n \leq N} U_{2 n}, p>\alpha_{2}\right\},
$$

where α_{2} is the constant shown at (18) from the proof of Theorem 1. That is, our $K(N)$ has almost the same definition as in the proof of Theorem 1, except that we only count the distinct prime factors of $\prod_{n \leq N} U_{2 n}$ which exceed c_{2}. Observe that as in the case of the Bernoulli numbers, we have

$$
U_{2 n}<N^{2 N}
$$

for all $n \leq N$ and $N>N_{0}$.
Now the argument proceeds in the same way as in the proof of Theorem 1. Assume that inequality (19) is satisfied for $K=K(N)$. We evaluate relation (27) in $n, n+1, n+2$, where $n=6 p_{i}-8$ and $i=1, \ldots, K+1$ is one of the primes from the proof of Theorem 1. Except, we now choose the primes p_{i} from the interval $(.98 N / 6, N / 6)$ and we insist that the primes $p_{i} \equiv 1(\bmod 4)$. We obtain an analog of relation (17) which is

$$
\begin{equation*}
\log \left(\frac{U_{n} U_{n+2}}{U_{n+1}^{2}}\right)+\log \left(\frac{V_{2 n} V_{2(n+2)}(2 n+3)(2 n+4)}{V_{2(n+1)}^{2}(2 n+1)(2 n+2)}\right)=O\left(\frac{1}{3^{1.96 N}}\right) \tag{28}
\end{equation*}
$$

From the way we have chosen our primes p_{i} for $i=1, \ldots, K+1$, all prime divisors of the rational number

$$
\frac{V_{2 n_{i}} V_{2\left(n_{i}+2\right)}}{V_{2\left(n_{i}+1\right)}^{2}}
$$

except for p_{i} are bounded by the constant α_{2}, and therefore the rational number

$$
\begin{aligned}
F_{n_{i}} & =\frac{V_{2 n_{i}} V_{2\left(n_{i}+2\right)}\left(2 n_{i}+3\right)\left(2 n_{i}+4\right)}{V_{2\left(n_{i}+1\right)}^{2}\left(2 n_{i}+1\right)\left(2 n_{i}+2\right)} \\
& =\frac{2 V_{2\left(6 p_{i}-8\right)} V_{12\left(p_{i}-1\right)}\left(6 p_{i}-13\right)\left(p_{i}-1\right)}{V_{2\left(6 p_{i}-7\right)}^{2}\left(4 p_{i}-5\right)\left(6 p_{i}-7\right)}
\end{aligned}
$$

has the prime p_{i} appearing in its numerator. Further, p_{i} does not appear in the factorization of anyone of the other rational numbers $F_{n_{j}}$ corresponding for some $j \neq i$ in $\{1, \ldots, K\}$. Indeed, the only additional fact that we need to check is that $p_{j} \nmid p_{i}-1$, which follows for large N because both p_{i} and p_{j} are in \mathcal{J}. So, we write again

$$
\frac{\mid E_{2\left(p_{i}-2\right)} E_{2 p_{i} \mid}}{E_{2\left(p_{i}-1\right)}^{2}}=\prod_{r \leq \alpha_{2}} r^{a_{i, r}} \prod_{j=1}^{K} q_{j}^{a_{i}, j}
$$

From here on, the argument continues in exactly the same way and gives the lower bound (26) on $K+\pi\left(\alpha_{2}\right)$ in terms of N, which leads to the desired conclusion.

7 Getting better bounds conditionally

With the notation from the proof of Theorem 1, we put

$$
K(N)=\omega\left(\prod_{n \leq N} C_{2 n}\right)
$$

Here we make the following observation.
Theorem 5. Assume that there exists $\varepsilon_{0}>0$ such that Conjecture 1 holds with $\varepsilon:=\varepsilon_{0}$. Then

$$
\begin{equation*}
K(N) \gg \pi(N) . \tag{29}
\end{equation*}
$$

Proof. We follow the proof of Theorem 1 except that instead of (19) we assume that the stronger inequality

$$
\begin{equation*}
3 K<10^{-3} \pi(N) \tag{30}
\end{equation*}
$$

holds for $N>N_{0}$. Note that if this inequality fails, then we are done anyway. So, instead of only $K+1$ primes p_{1}, \ldots, p_{K+1}, we can now work with $2 K$ primes $p_{1}, \ldots, p_{2 K}$. The argument is identical up to choosing the non-zero vector $\left(\Delta_{1}, \ldots, \Delta_{2 K}\right)$, which by Siegel's lemma 5 (with twice as many variables as equations) tells us that we can chose such a vector with

$$
\begin{equation*}
\max \left\{\left|\Delta_{i}\right|: 1 \leq i \leq 2 K\right\} \leq 2 K A<N^{2}, \tag{31}
\end{equation*}
$$

see (24). The analog of (25) is now

$$
\begin{equation*}
\left|\sum_{i=1}^{2 K} \Delta_{i} \log F_{n_{i}}\right|=O\left(\frac{K \max \left\{\left|\Delta_{i}\right|: 1 \leq i \leq 2 K\right\}}{2^{1.98 N}}\right)=O\left(\frac{1}{2^{N}}\right) \tag{32}
\end{equation*}
$$

and the left-hand side above is not zero. We now apply the conjectural inequality (9) on the left-hand side above with the obvious choices $t=2 K$, $b_{i}=\Delta_{i}, \alpha_{i}=F_{n_{i}}$ for $i=1, \ldots, 2 K$, and $\varepsilon=\varepsilon_{0}$, getting via (21) and (31), that

$$
\begin{equation*}
\left|\sum_{i=1}^{2 K} \Delta_{i} \log F_{n_{i}}\right|>\exp \left(2 K \log \left(C\left(\varepsilon_{0}\right)\right)-\left(1+\varepsilon_{0}\right) 2 K\left(\log \left(N^{2}\right)+\log (5 \log N)\right)\right) . \tag{33}
\end{equation*}
$$

Comparing (32) with (33), we get that

$$
K(N)=K \geq\left(\alpha_{4}+o(1)\right) \frac{N}{\log N}
$$

where we can take $\alpha_{4}=(\log 2) /\left(4\left(1+\varepsilon_{0}\right)\right)$, which is what we wanted.

Via (14) and (29), we get that the lower bound

$$
\begin{equation*}
\# \mathcal{I}_{B}(x) \gg \frac{\log x}{(\log \log x)^{2}} \tag{34}
\end{equation*}
$$

holds assuming that Conjecture 1 holds for some ε_{0}.
A similar result as Theorem 5 (with an almost identical proof) holds if $K(N)$ is

$$
K(N)=\omega\left(\prod_{n \leq N} U_{2 n}\right)
$$

with the notation from the proof of Theorem 2. This in turn implies that a conditional lower bound as (34) applies to the counting function of irregular primes with respect to the Euler numbers. However, this method seems to be far away from proving that the irregular primes occupy a positive proportion of all the primes.

Acknowledgements. We thank the referee for comments which improved the quality of the paper. F. L. and A. P. thank Professor Eduardo Friedman for useful advice. F. L. worked on this project while he visited the Mathematics Department of the Universidad de Valparaiso, Chile in June and July of 2013 and during a visit to Dartmouth College in Spring of 2014. He thanks the members of these departments for their hospitality. A. P. was supported in part by project Fondecyt $\mathrm{N}^{0} 11100260$.

References

[1] N. G. de Bruijn, "On the number of integers $\leq x$ and free of prime factors > y", Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50-60.
[2] Y. Bugeaud, M. Mignotte and S. Siksek, "Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers", Ann. of Math. 163 (2006), 969-1018.
[3] L. Carlitz, "Note on irregular primes", Proc. Amer. Math. Soc. 82 (1954), 329-331.
[4] P. Erdős, "On the normal number of prime factors of $p-1$ and some related problems concerning Euler's φ-function", Quarterly J. Math. (Oxford Ser.) 6 (1935), 205-213.
[5] P. Erdős and S. S. Wagstaff Jr., "The fractional parts of Bernoulli numbers", Illinois J. Math. 24 (1980), 104-112.
[6] M. Gut, "Eulersche Zahlen und grosser Fermat'scher Satz", Comment. Math. Helv. 24 (1950), 73-99.
[7] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974. Reprinted by Dover Publications, 2011.
[8] K. L. Jensen, (1915). "Om talteoretiske Egenskaber ved de Bernoulliske Tal", Nyt Tidsskr. Mat. B (1915) 26, 73-83.
[9] E. E. Kummer, "Allgemeiner Beweis des Fermatschen Satzes, dass die Gleichung $x^{\lambda}+y^{\lambda}=z^{\lambda}$ durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten λ, welche ungerade Primzahlen sind und in den Zählern der ersten $(\lambda-3) / 2$ Bernoullischen Zahlen als Factoren nicht vorkommen", J. reine angew. Math. 40 (1850), 131-138.
[10] P. Kurlberg, J. C. Lagarias, and C. Pomerance, "Product-free sets with high density", Acta Arith. 155 (2012), 163-173.
[11] S. Lang, Eliptic curves: Diophantine analysis, Springer-Verlag, BerlinNew York, 1978.
[12] F. Luca and A. Pizarro, "Some remarks on the Riemann zeta function and Bernoulli numbers", Bull. Australian Math. Soc. 86 (2012), 216223.
[13] E. M. Matveev, "An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II", Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180; English transl. in Izv. Math. 64 (2000), 1217-1269.
[14] T. Metsänkylä, "Note on the distribution of irregular primes", Ann. Acad. Sci. Fenn. Ser. A I, 492, (1971), 7pp.
[15] H. L. Montgomery, "Distribution of irregular primes", Illinois J. Math. 9 (1965), 553-558.
[16] W. M. Schmidt, Diophantine approximations and Diophantine equations, Lecture Notes in Mathematics, Springer Verlag, 2000.
[17] C. L. Siegel, "Zu zwei Bemerkungen Kummers", Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II 1964 (1964), 51-62.
[18] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, https://oeis.org
[19] N. M. Timofeev, "The Hardy-Ramanujan and Halasz inequalities for shifted primes", Mathematical Notes 57 (1995), 522-535.
[20] H. S. Vandiver, "Note on Euler number criteria for the first case of Fermat's last theorem", Amer. J. Math. 62 (1940) 79-82.
[21] M. Waldschmidt, "Open Diophantine problems", Mosc. Math. J. 4 (2004), 245-305, 312.

[^0]: *Also affiliated with the Mathematical Institute, UNAM Juriquilla 76230 Santiago de Querétaro, México

