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You would think that all of the issues surrounding addition and

multiplication were sewed up in third grade!

Well in this talk we’ll learn about some things they didn’t tell

you . . .
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Here’s one thing they did tell you:

Find 483 × 784.

483

× 784

———

1932

3864

3381

————

378672
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If instead you had a problem with two 23-digit numbers, well

you always knew deep down that math teachers are cruel and

sadistic. Just kidding! (Aside: evil laugh . . . )

In principle if you really have to, you could work out 23-digits

times 23-digits on paper, provided the paper is big enough, but

it’s a lot of work.

So here’s the real question: How much work?
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Of course the amount of work depends not only on how long

the numbers are, but on what they are. For example,

multiplying 1022 by 1022, that’s 23-digits times 23-digits, but

you can do it in your head.

In general, you’ll take each digit of the lower number, and

multiply it painstakingly into the top number. It’s less work if

some digit in the lower number is repeated, and there are

definitely repeats, since there are only 10 possible digits. But

even if it’s no work at all, you still have to write it down, and

that’s 23 or 24 digits. At the minimum (assuming no zeroes),

you have to write down 232 = 529 digits for the

“parallelogram” part of the product. And then comes the final

addition, where all of those 529 digits need to be processed.
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So in general if you multiply two n-digit numbers, it would

seem that you’d be taking n2 steps, unless there were a lot of

zeroes. This ignores extra steps, like carrying and so on, but

that at worst changes n2 to maybe 2n2 or 3n2. We say that

the “complexity” of “school multiplication” for two n-digit

numbers is of order n2.

Here is what we don’t know:

What is the fastest way to multiply?

There’s a method known as the Fast Fourier Transform that

allows you to multiply in about n logn steps. But we don’t

know if this is the best possible.
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The function “logn” can be thought of as natural log, or

common log, or base-2 log, they are all within a constant

factor of each other. The takeaway is that logn grows to

infinity as n does, but eventually much more slowly than any

root of n. For example, using the natural log, we have

logn < n1/2 for n ≥ 1

logn < n1/4 for n ≥ 5504

logn < n1/10 for n ≥ 3.431× 1015

logn < n1/100 for n ≥ 1.286× 10281

So, “n logn” is really just barely bigger than “n”.
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Let’s play Jeopardy Multiplication!

Here are the rules: I give you the answer to the multiplication

problem, and you give me the problem phrased as a question.

And you can’t use “1”.

So, if I say “15”, you say “What is 3× 5?”

OK, let’s play.

21
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Good. That was easy. Let’s up the ante.

91
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Good. That was easy. Let’s up the ante.

91

What is 7× 13?
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Let’s do 8051.
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Let’s do 8051.

(Thinking, thinking . . . . Hmm,

8051 = 8100− 49 = 902 − 72 = (90− 7)(90 + 7) = 83× 97.

Got it!)

What is 83× 97?
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So, here’s what we don’t know:
How many steps does it take to come up with the answer,
if you are given an n-digit number which can be factored?
(A trick problem would be: 17. The only way to write it as
a× b is to use 1, and that was ruled out. So, prime numbers
cannot be factored, and the thing we don’t know is how long it
takes to factor the non-primes.)

The best answer we have so far is about 10n1/3
steps, and even

this is not a theorem, but our algorithm (the number field
sieve) seems to work in practice.

This is all crucially important for the security of Internet
commerce. Or I should say that Internet commerce relies on
the premise that we cannot factor much more quickly than
that.
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Here’s something else, also related to multiplication.

Let’s look at the multiplication table, but not necessarily up to

10× 10, but more generally the N ×N multiplication table.

It has N2 entries. It is a symmetric matrix, so most entries

appear at least twice. What we don’t know:

How many different numbers appear in the table?
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Let M(N) be the number of distinct entries in the N ×N

multiplication table.

× 1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

So, M(5) = 14.
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× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

M(10) = 42.
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It may be too difficult to expect a neat exact formula for M(N).

Instead, we could ask for its order of magnitude, or even

approximate order of magnitude.

For example, does M(N) go to infinity like a constant times

N2, or more slowly. That is, maybe there is a positive number c

with

M(N) > cN2

for all N . Or maybe for every positive number c,

M(N) < cN2

for infinitely many choices for N or even for all large N .
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Here are some values of M(N)/N2 (Brent & Kung 1981):

N M(N) M(N)/N2

1 1 1.0000
3 6 0.6667
7 25 0.5102

15 89 0.3956
31 339 0.3528
63 1237 0.3117

127 4646 0.2881
255 17577 0.2703
511 67591 0.2588

1023 258767 0.2473
2047 1004347 0.2397
4095 3902356 0.2327
8191 15202049 0.2266
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And some more values (Brent & Kung 1981, Brent 2012):

N M(N) M(N)/N2

214 − 1 59410556 0.2213
215 − 1 232483839 0.2165
216 − 1 911689011 0.2123
217 − 1 3581049039 0.2084
218 − 1 14081089287 0.2049
219 − 1 55439171530 0.2017
220 − 1 218457593222 0.1987
221 − 1 861617935050 0.1959
222 − 1 3400917861267 0.1933
223 − 1 13433148229638 0.1909
224 − 1 53092686926154 0.1886
225 − 1 209962593513291 0.1865
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And some statistically sampled values (Brent & P 2012):

N M(N)/N2 N M(N)/N2

230 0.1774 2100000 0.0348
240 0.1644 2200000 0.0312
250 0.1552 2500000 0.0269

2100 0.1311 21000000 0.0240
2200 0.1119 22000000 0.0216
2500 0.0919 25000000 0.0186

21000 0.0798 210000000 0.0171
22000 0.0697 220000000 0.0153
25000 0.0586 250000000 0.0133

210000 0.0517 2100000000 0.0122
220000 0.0457 2200000000 0.0115
250000 0.0390 2500000000 0.0095
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Paul Erdős studied this problem in two papers, one in 1955, the

other in 1960.

Paul Erdős, 1913–1996
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In 1955, Erdős proved (in Hebrew) that M(N)/N2 → 0 as

N →∞ and indicated that it was likely that M(N) is of the

shape N2/(logN)E.

In 1960, at the prodding of Linnik and Vinogradov, Erdős

identified (in Russian) the value of “E”. Let

E = 1−
1 + log log 2

log 2
= 0.08607 . . . .

Then M(N) = N2/(logN)E+o(1) as N →∞.

(Here, “o(1)” is a function that tends to 0 as N →∞.)
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However, the formula N2/(logN)E doesn’t look too good with
our numbers. For example, at N = 25·108

, 1/(logN)E ≈ .1841,
or close to 20 times higher than the experimental value .0095.
While at N = 230 it is only 4 times higher.

In work of Tenenbaum progress was made (in French) in nailing
down the “o(1)”.

In 2008, Ford showed (in English) that M(N) is of order of
magnitude

N2

(logN)E(log logN)3/2
.

No matter the language,
we still don’t know an asymptotic estimate for M(N),
despite this just being about multiplication tables!
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We have seen there is a lot we don’t about multiplication, but

what about addition?

Here’s a famous problem due to Erdős & Szemerédi that

involves both concepts, in fact, their interaction:

Among all sets A of N positive integers what is the

minimum value of

|A+A| + |A · A|?

Here A+A is the set of all numbers a + b where a, b ∈ A, and

|A+A| is the number of elements in this set. Similarly for

|A · A|.
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The notation might be unfamiliar, so lets look at some
numerical examples.

If A consists of the numbers 1,2,3, . . . , N , then the addition
table involves numbers from 2 to 2N , for a total of 2N − 1
numbers. That’s not many given that there are N2 entries in
the table!

But products mostly make up for this. We just saw that there
are “close” to N2 different products.

On the other hand, take A as the numbers 2,4,8, . . . ,2N . Now
the addition table contains more than 1

2N
2 different numbers,

but the multiplication table contains just 2N − 1 numbers.

So, if we force one table to be small, the other is large. Erdős
and Szemerédi say this is always the case.
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The game players with the sum/product problem:

Erdős, Szemerédi, Nathanson, Chen, Elekes, Bourgain, Chang,

Konyagin, Green, Tao, Solymosi, . . .

The best that they can do is show that one of the tables has at

least N4/3 different entries.

This list of mathematicians contains two Fields Medalists, a

Wolf Prize winner, an Abel Prize winner, four Salem Prize

Winners, and two Crafoord Prize winners. And still the problem

is not solved!
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So far, all of the problems we’ve looked at have been fairly

new, as far as Mathematics goes. Here’s a very old problem

that we still haven’t solved and involves both sums and

products, liberally interpreted.

A prime number, as we saw earlier, is a trick problem in

Jeopardy Multiplication. It is a number larger than 1 that

cannot be factored into two smaller (positive) whole numbers.

Dating to correspondence in 1742 between Goldbach and

Euler, it is conjectured that every even number starting at 4

can be represented as the sum of two primes.

271 years later: We still don’t know if Goldbach’s

conjecture is true.
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My message: We could use a little help with these problems!!
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