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As we all know, functions in mathematics

are ubiquitous and indispensable.

But what was the very first function

mathematicians studied?

I would submit as a candidate, the

function s(n) of Pythagoras.
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The sum-of-proper-divisors function

Let s(n) be the sum of the proper divisors of n:

For example:

s(10) = 1 + 2 + 5 = 8,

s(11) = 1,

s(12) = 1 + 2 + 3 + 4 + 6 = 16.

In modern notation: s(n) = σ(n)− n, where σ(n) is the sum of

all of n’s natural divisors.
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Pythagoras noticed that s(6) = 1 + 2 + 3 = 6

If s(n) = n, we say n is perfect.

And amazingly, he noticed that

s(220) = 284, s(284) = 220.

By iterating s, Pythagoras was looking at the first dynamical

system!

If s(n) = m, s(m) = n, and m 6= n, we say n,m are an amicable

pair and that they are amicable numbers.

So 220 and 284 are amicable numbers, forming a 2-cycle in the

s-dynamical system.
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Some problems

• Are there infinitely many perfect numbers?, amicable pairs?

What can we say about their distribution?

• What can we say about the s-dynamical system?

• What numbers are of the form s(n)?

• Can a set of positive density be mapped by s to a set of

density 0?
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Euclid came up with a formula for perfect numbers 2300 years

ago:

If 2p − 1 is prime, then 2p−1(2p − 1) is perfect.

Euler proved that all even perfect numbers are given by

Euclid’s formula.

We suspect that 2p − 1 is prime infinitely often; so far we have

discovered 50 of them, the largest being 277,232,917 − 1. (This

last one was found a few weeks ago by a FedEx employee in

Tennessee.)

What about odd perfect numbers? None are known and it’s

expected there are none.

5



Hornfeck & Wirsing (1957) The number of perfect numbers

≤ x is O(xε).

For amicable numbers We now know about 12,000,000

amicable pairs and suspect there are infinitely many.

Let A(x) denote the number of integers in [1, x] that belong to

an amicable pair. We have no good lower bounds for A(x) as

x→∞, but what about an upper bound?

Erdős (1955) was the first to show A(x) = o(x), that is, the

amicable numbers have asymptotic density 0.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would

give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.

P (1981): A(x) ≤ x/ exp((logx)1/3), x large.
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Erdős (1955): A(x) = o(x) as x→∞. Said his method would
give A(x) = O(x/ log log logx).

Rieger (1973): A(x) ≤ x/(log log log logx)1/2, x large.

Erdős & Rieger (1975): A(x) = O(x/ log log logx).

P (1977): A(x) ≤ x/ exp((log log logx)1/2), x large.

P (1981): A(x) ≤ x/ exp((logx)1/3), x large.

P (2014): A(x) ≤ x/ exp((logx)1/2), x large.

Note that the last two results imply by a simple calculus
argument that the reciprocal sum of the amicable numbers is
finite.
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So, what is this sum of reciprocals? Using a complete roster of

all amicables to 1014 we can show the reciprocal sum A satisfies

A > 0.0119841556 . . . .
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So, what is this sum of reciprocals? Using a complete roster of

all amicables to 1014 we can show the reciprocal sum A satisfies

A > 0.0119841556 . . . .

Bayless & Klyve (2011): A < 656,000,000.
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So, what is this sum of reciprocals? Using a complete roster of

all amicables to 1014 we can show the reciprocal sum A satisfies

A > 0.0119841556 . . . .

Bayless & Klyve (2011): A < 656,000,000.

Nguyen (2014): A < 4084.
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So, what is this sum of reciprocals? Using a complete roster of

all amicables to 1014 we can show the reciprocal sum A satisfies

A > 0.0119841556 . . . .

Bayless & Klyve (2011): A < 656,000,000.

Nguyen (2014): A < 4084.
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So, what is this sum of reciprocals? Using a complete roster of

all amicables to 1014 we can show the reciprocal sum A satisfies

A > 0.0119841556 . . . .

Bayless & Klyve (2011): A < 656,000,000.

Nguyen (2014): A < 4084.

Nguyen, P (2017): A < 222.

Another new result: Lichtman (2018): The reciprocal sum of

those n with s(n) ≥ n and s(d) < d for all d | n, d < n is < 14.

(Erdős (1934) had proved it is finite.)
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Let’s take a look at the s-dynamical system. A sequence under

s-iteration is known as an aliquot sequence:

10→ 8→ 7→ 1

12→ 16→ 15→ 9→ 4→ 3→ 1

14→ 10 . . .

18→ 21→ 11→ 1

20→ 22→ 14 . . .

24→ 36→ 55→ 17→ 1

25→ 6→ 6

26→ 16 . . .

28→ 28

30→ 42→ 54→ 66→ 78→ 90→ 144→ 259→ 45→ 33→ 15 . . .
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The Catalan–Dickson conjecture: Every aliquot sequence is

bounded.

The Guy–Selfridge counter conjecture: Most aliquot

sequences starting from an even number are unbounded.

No unbounded aliquot sequence is known, the least starter in

doubt is 276, having been pursued for over two thousand

iterations. Computations have bogged down where the

numbers involved have about 210 digits.
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If p, q are different primes and n = p+ q + 1, then n = s(pq) is a

value of s. A slightly stronger form of Goldbach’s conjecture

implies that every even number starting with 8 is the sum of

two different odd primes p, q, so this conjecture implies that

starting from any odd number n ≥ 9 there is an infinite

sequence · · · > n2 > n1 > n0 = n, where s(ni) = ni−1.

In 1990, Erdős, Granville, P, Spiro showed that this

argument works for “almost all” odd numbers n. In particular

there are arbitrarily long decreasing aliquot sequences.
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Lenstra (1975):

There are arbitrarily long increasing aliquot sequences

n < s(n) < s(s(n)) < · · · < sk(n).

Erdős (1976): In fact, for each fixed k, if n < s(n), then almost

surely the sequence continues to increase for k − 1 more steps.

(A corollary: The amicable numbers have asymptotic density 0,

since if n is the smaller member of a pair, we have

s(s(n)) = n < s(n).)
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Recently Bosma did a statistical study of aliquot sequences
with starting numbers below 106. About one-third of the even
starters are still open and running beyond 1099. Evidence for
Guy–Selfridge? But: he and Kane (2012) found the
geometric mean of the ratios s(2n)/2n asymptotically, finding it
slightly below 1. Evidence for Catalan–Dickson?

They showed that

2

x

∑
n≤x
n even

log
s(n)

n
∼ λ < −0.03.

P (2017): This holds with a power-saving error estimate and

λ = −0.03325 94807 800 . . . .
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P (2016):
• The asymptotic geometric mean of the ratios s(s(n))/s(n) for
n even is also eλ.
• Assuming a conjecture of Erdős, Granville, P, & Spiro, for
each fixed k, there is a set Ak of asymptotic density 1 such
that the asymptotic geometric mean of sk(2n)/sk−1(2n) on Ak
is also eλ.
The conjecture mentioned:
If A has positive density, then s(A) cannot have density 0.

Pollack, P, Thompson (2017): This conjecture holds in the
case that E is very sparse, with counting function O(x1/2+ε).

Very recent: Chum, Guy, Jacobson, Mosunov have
numerical experiments suggesting that sk(n)/sk−1(n) perhaps
behaves on average like s(n)/n, for k ≤ 10.
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One can also ask about cycles in the s-dynamical system

beyond the fixed points (perfect numbers) and 2-cycles

(amicable pairs). There are about 12 million cycles known,

with all but a few being 2-cycles, and most of the rest being

1-cycles and 4-cycles. There are no known 3-cycles, and the

longest known cycle has length 28.

Say a number is sociable if it is in some cycle. Do the sociable

numbers have density 0? The Erdős result on increasing

aliquot sequences shows this if one restricts to cycles of

bounded length. Kobayashi, Pollack, & P (2009) showed

that apart possibly from odd sociable numbers n with n < s(n),

they have density 0. Further, we computed that the density of

odd n with n < s(n), whether or not sociable, is about 0.002.
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In 1973, Erdős considered the range of s(n): Which integers m

are in the form s(n)? He showed that

• Almost all odd numbers are of the form s(n). (As

mentioned, in 1990 Erdős, et al. showed that almost all odd

numbers are values of every iterate of s.)

• There is a positive proportion of even numbers not in the

range.

In 2014, Luca and P showed that a positive proportion of even

numbers are in the range, and the same goes for any residue

class.
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Pollack and P (2016) gave a heuristic argument for the

density of the range of s. The heuristic is based on the

theorem that for a given positive integer a, we have, apart from

a set of density 0, that a | n if and only a | s(n). Further, the

ratio s(n)/n is usually closely determined by the small prime

factors of n. Assuming randomness otherwise, we came up

with the expression

lim
y→∞

1

log y

∑
a≤y
2 | a

1

a ea/s(a)

for the density of integers not in the range of s. This limit is

not so easy to compute, but the value of the expression at

y = 1012 is about 0.1728, while the frequency of numbers not

in the range to 1012 is about 0.1711. (Anton Mosunov 2017)
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Thank You!
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