
GENERATING RANDOM FACTORED GAUSSIAN INTEGERS, EASILY

NOAH LEBOWITZ-LOCKARD AND CARL POMERANCE

Abstract. We present a (random) polynomial-time algorithm to generate a randomGauss-
ian integer with the uniform distribution among those with norm at most N , along with its
prime factorization. The method generalizes to finding a random ideal in the ring of integers
of a quadratic number field together with its prime ideal factorization. We also discuss the
analogous problem for higher degree number fields.

1. Introduction

Consider the following problem:

Given a positive integer N , generate in polynomial time a random integer in [1, N] with
uniform distribution, along with its prime factorization.

At first glance, this seems very simple. Simply choose a random integer in the range [1, N]
and factor it. However, there are no known polynomial time factorization algorithms. But,
the problem does not explicitly state that we need to factor anything. We need a random
factored number, but not necessarily a method to factor random numbers.

We have known for a while how to recognize prime numbers in polynomial time, first via
random tests that almost surely identify composites (such as the Miller–Rabin test), later by
a random test that is expected to prove primality (the Adleman–Huang test), and finally by
the deterministic test of Agrawal, Kayal, and Saxena [1]. In his 1984 thesis and later in [2],
Bach presented an algorithm that exploits the ease we have in recognizing prime numbers
to uniformly produce a random integer in [1, N] with its prime factorization and with the
expectation of performing O(logN) primality tests on integers at most N . (More precisely,
the algoirthm gives a number in (N/2, N], but it is not difficult to extend this to [1, N].)
In 2003, Kalai [5] presented a somewhat simpler but slower algorithm, taking O(log2N)
primality tests.

In this paper we show how Kalai’s algorithm can be adapted to the analogous problem of
producing a random Gaussian integer (a member of Z[i]) with norm at most N together with
its prime factorization, taking an expected O(log2N) primality tests of rational integers at
most N . Our adaptation generalizes to the problem of producing a uniformly-generated ideal
in the ring of integers of a quadratic number field together with its prime ideal factorization.
We also sketch an algorithm for higher degree number fields.

2. Kalai’s algorithm

Here is Kalai’s algorithm from [5].

Algorithm 1. Given a positive integer N , this algorithm produces a random positive integer
r ≤ N , along with its factorization, with uniform distribution.

This paper is based on the 2013 senior thesis of the first author written under the direction of the second
author at Dartmouth College. The second author was supported in part by NSF grant DMS-1001180.

1

2 NOAH LEBOWITZ-LOCKARD AND CARL POMERANCE

(1) Create a list of integers s1 ≥ s2 ≥ . . . ≥ sk = 1, where s1 is chosen uniformly at
random in [1, N] and if si has been chosen and si > 1, then si+1 is chosen uniformly
at random in [1, si]. Call this list S. After choosing 1, go to Step 2.

(2) Let r be the product of the prime elements of S.
(3) If r > N , return to Step 1. Otherwise, output r, along with its prime factorization,

with probability r/N . If you did not output r, return to Step 1.

For example, let N = 100. The algorithm might generate the list [98, 41, 38, 3, 3, 1]. When
we multiply the prime elements of the list, we obtain 369, so we would create a new list. We
might obtain [70, 5, 5, 2, 1], in which case we would output 50 with probability 0.5. Kalai [5]
proved his algorithm satisfies two important conditions.

(1) The algorithm generates each r ≤ N with probability 1/N .
(2) The algorithm expects to use O(log2N) primality tests.

We indicate why Kalai’s algorithm works as advertised. Let p be a prime in [1, N]. If a
choice si in Step 1 has si ≥ p, then the probability that si+1 = p, conditioned on si+1 ≤ p,
is 1/p. And the probability that si+1 < p, again conditioned on si+1 ≤ p, is 1− 1/p. Indeed,
the probability that si+1 is any particular number m ∈ [1, si] is 1/si, which thus is uniform in
[1, p] assuming that m ≤ p. Further, if si+1 = p, the probability that si+2 = p is 1/p, and the
probability that si+2 < p is 1− 1/p, and so on. Eventually we will indeed choose some first
si+1 ∈ [1, p], so we see that the probability of choosing exactly j copies of p is p−j(1− p−1).
Since the chances of visiting p are independent of what happened earlier and thus higher up
in a list, we see that the probability of creating an integer r in Step 2, provided r has all of
its prime factors in [1, N], is

∏

pj ‖ r
j≥1

1

pj

(

1− 1

p

)

∏

p ∤ r
p≤N

(

1− 1

p

)

=
1

r

∏

p≤N

(

1− 1

p

)

,

where we write pj ‖ r if pj | r and pj+1 ∤ r. If r ≤ N , the final filter in Step 3 produces the
probability of choosing r as

r

N
· 1
r

∏

p≤N

(

1− 1

p

)

=
1

N

∏

p≤N

(

1− 1

p

)

.

As one can see, this probability depends solely on N and not r, so the distribution is uniform.
Further, the product of 1 − 1/p over the primes p ≤ N is known to be proportional to
1/ logN , in fact asymptotically e−γ/ logN , where γ is the Euler–Mascheroni constant; this
is a theorem of Mertens from 1874. Note that the sum of 1/r for r ≤ N is asymptotically
logN and the infinite sum of 1/r extended over all integers r with all prime factors in [1, N]
is the reciprocal of the product of 1−1/p for primes p ≤ N , and so is asymptotically eγ logN .
Thus, the probability that Step 2 produces a number r ≤ N is asymptotically e−γ , which
is bounded from 0. So we expect to produce a number of lists in Step 1 proportional to
logN before finally outputting some integer r. Since a list in Step 1 has expected length
proportional to logN , we see that the total number of primality tests expected in a run of
Kalai’s algorithm is proportional to log2N .

GENERATING RANDOM FACTORED GAUSSIAN INTEGERS, EASILY 3

3. The Gaussian problem

The Gaussian integers comprise the ring Z[i], that is, all complex numbers a + bi where
a, b ∈ Z. It is well known that they have unique factorization into prime elements and there
are 4 units ±1,±i. If z = a + bi ∈ Z[i], the norm of z, denoted N(z), is the nonnegative
integer zz̄ = a2 + b2.

Our goal is to generate a random nonzero Gaussian integer with norm at most N together
with its prime factorization and do so in polynomial time. One possible route towards this
goal is to divide the problem into two pieces:

(1) Choose a random integer r in [1, N] with its prime factorization.
(2) Find a random Gaussian integer with norm r.

The advantage of this plan is that we know how to do Step 1 via Kalai’s algorithm.
Further, we shall show that it is not difficult to do Step 2. So, what is the problem?

Let us focus a moment on Step 2. First, many integers (in fact most integers) are not
norms of Gaussian integers. Here is the well-known criterion: For a positive integer r, let r3
be the largest divisor of r with prime factors that are 3 (mod 4). Then r = N(z) for some
Gaussian integer z if and only if r3 is a square.

One should notice that in Kalai’s algorithm one may often be returning to the first step,
because either r > N or because the final coin flip of accepting r with probability r/N
comes up as “do not accept.” The above scheme for Gaussian integers should then have an
additional filter of not accepting a number r if it is not a Gaussian norm. Since the number
of Gaussian norms in [1, N] is of magnitude N/ log1/2 N (see Landau [6]) we would not expect
to reject too many values of r before finding a norm.

But there is a far more serious problem with the above scheme. Not only are some
integers not norms, among those that are norms, some are norms of many Gaussian integers
and others are norms of only a few. If our final goal is to choose Gaussian integers with the
uniform distribution, we shall have to produce integers r with a skewed distribution that
represents the frequency with which r is a norm.

Above we defined r3 as the largest divisor of r coming from primes that are 3 (mod 4).
Similarly, we define r1 as the largest divisor of r coming from primes that are 1 (mod 4). Thus
every positive integer r has a unique factorization as 2ar1r3 for some nonnegative integer a.
Let τ(r) denote the divisor function at r (the number of divisors of r in [1, r]) and let D(r)
be the number of Gaussian integers with argument in [0, π/2) with norm r. Then, as is
well-known, we have

D(r) =

{

τ(r1), r3 is a square,

0, otherwise.

Thus, the above scheme would have a chance of working if we could modify Kalai’s al-
gorithm so as to produce random factored integers in [1, N] such that the probability of
producing r is proportional to D(r). We now show how this task can be accomplished.

Given N , let P ∗(r) denote the probability that the positive integer r is produced in Step
2 of Kalai’s algorithm. As indicated above, we have

P ∗(r) =
1

r
MN , where MN =

∏

p≤N

(

1− 1

p

)

,

4 NOAH LEBOWITZ-LOCKARD AND CARL POMERANCE

with p running over primes. Thus, accepting a value of r ≤ N with probability r/N gives
a final probability independent of r, depending only on N , so that the desired uniform
distribution is achieved. The factor MN is less important: as indicated above, MN ∼
(eγ logN)−1 as N → ∞, where γ is the Euler–Mascheroni constant.

So, perhaps we should merely change the “r/N” as the final filter probability in Kalai’s
algorithm to rD(r)/N , since P ∗(r)rD(r)/N is proportional to D(r), as we are seeking. The
problem with this thought is that quite possibly rD(r)/N > 1, and so it does not make sense
to view this fraction as a probability. Here is a possible fix. Let

DN = max{D(r) : 1 ≤ r ≤ N}.
Then for r ≤ N in Kalai’s algorithm, accept r with probability rD(r)/(NDN). (It is possible
that computing DN is difficult, so it might be replaced with a somewhat larger, but easily
computable value. However, we shall see that there is another, more serious problem with
DN .) This fraction is always at most 1, and multiplying it by P ∗(r) we obtain a probability
that is proportional to D(r), as desired.

The probability that this modification of Kalai’s algorithm outputs a given integer r in
[1, N] is D(r)MN/(NDN). Thus, the probability some number is returned in one iteration
is

∑

r≤N

D(r)MN

NDN

=
MN

NDN

∑

r≤N

D(r).

This last sum is exactly the number of nonzero Gaussian integers z in the first quadrant
with norm at most N , so is ∼ π

4
N as N → ∞. Thus, the above probability is proportional

to
1

DN logN
,

and so we would expect to be forced to return to Step 1 a number of times proportional to
DN logN . The factor logN is relatively benign, it is within the purview of a polynomial
time algorithm. However the factor DN is more problematic. As can be shown by the prime
number theorem for residue classes, if rN ∈ [1, N] is the largest squarefree initial product of
consecutive primes 5, 13, 17, . . . that are 1 (mod 4), then

D(rN) = N (log 2+o(1))/ log logN as N → ∞.

Though D(rN) is not always the champion for D(r) it is close to this, as essentially known
to Wigert [12] and to Ramanujan [8]. In fact, we have

DN = N (log 2+o(1))/ log logN as N → ∞.

Thus, this attempt to modify Kalai’s algorithm to the Gaussian realm fails to run in poly-
nomial time.

4. A possible strategy: choose odd numbers

We introduce some notation. For a prime p and a positive integer r, we let vp(r) denote
the exponent on p in the prime power decomposition of r; that is, pvp(r) | r and pvp(r)+1 ∤ r.
We let Ω(r) denote the total number of prime factors of r, counted with multiplicity, so that

Ω(r) =
∑

p

vp(r).

GENERATING RANDOM FACTORED GAUSSIAN INTEGERS, EASILY 5

For convenience, let Ω1(r) = Ω(r) − v2(r), the total number of odd primes that divide r
counted with multiplicity.

Lemma. For each positive integer r we have D(r) ≤ 2Ω1(r).

Proof. Since the divisor function is multiplicative, so is the function D. And clearly the
function 2Ω1(r) is multiplicative. Thus it suffices to show that 0 ≤ D(pa) ≤ 2Ω1(pa) for every
prime power pa. We have

D(pa) =











a+ 1, p ≡ 1 (mod 4),

1, p = 2 or p ≡ 3 (mod 4), a even,

0, p ≡ 3 (mod 4), a odd.

Since a + 1 ≤ 2a for every integer a, we have 0 ≤ D(pa) ≤ a + 1 ≤ 2a ≤ 2Ω1(pa), and the
lemma follows. �

In fact, there is a stronger inequality, namely D(r) ≤ 2Ω(r1), but we will not need this.
Our strategy is to modify Step 1 of Kalai’s algorithm so that only odd numbers are chosen

in the list, and further, the number 1 is chosen with half the probability of choosing any
other odd number. If an odd prime p is chosen with probability 2/p, we will build up the
factor 2Ω1(r) as we go. Since a number formed by multiplying the primes in such a list will
necessarily be odd, we introduce a new step to establish the power of 2 in r. Note that if
we are choosing odd numbers in an interval [1, N] with 1 having half the chance of being
chosen as other odd numbers, we can quantify this as follows. Let M be the largest odd
number in [1, N], so that 1 is chosen with probability 1/M and the larger odd numbers in
[1, N] are each chosen with the probability 2/M . Since there are (M − 1)/2 of these larger
odd numbers, the sum of the probabilities is indeed 1.

Algorithm 2. Given a positive integer N , this algorithm produces a random positive integer
r ≤ N , along with its factorization, where the probability of obtaining r is proportional to
D(r).

(1) Let M be the largest odd number that is less than or equal to N . Create a list
s1 ≥ s2 ≥ . . . ≥ sk = 1 of odd numbers, where s1 is 1 with probability 1/M and any
odd element of [3, N] with probability 2/M . If si has already been chosen and si > 1,
then let si+1 equal 1 with probability 1/si and any other odd integer in the interval
[3, si] with probability 2/si.

(2) Let r be the product of the prime si for each si in the list.
(3) Multiply r by 2 with probability 1/2. If you just multiplied by 2, repeat this step.
(4) If r > N or if D(r) = 0, do not output r and return to Step 1. Otherwise, output r

with probability rD(r)/(2Ω1(r)N).

Note that by Lemma 4, for r ≤ N we have rD(r)/(2Ω1(r)N) ≤ 1, so there is no problem
with Step 4.

What probability distribution does this give us? We first answer this question for a number
r produced in Step 2; let P ∗

o (r) be this probability for a given fixed value of N . Let s be an
odd number in [3, N]. Conditional on choosing a number in Step 1 that is at most s, the
probability of choosing s is 2/s. So the probability of choosing exactly j copies of s is

(

2

s

)j (

1− 2

s

)

.

6 NOAH LEBOWITZ-LOCKARD AND CARL POMERANCE

Thus, for an odd number r with all prime factors at most N , we have

P ∗
o (r) =

∏

2<p≤N

(

2

p

)vp(r)(

1− 2

p

)

=
2Ω(r)

r

∏

2<p≤N

(

1− 2

p

)

.

Denote this last product by LN . And note that since r is odd, we have Ω(r) = Ω1(r). Thus,
we have

P ∗
o (r) =

2Ω1(r)

r
LN .

We now consider the effect of Step 3. The probability of multiplying r by exactly j factors
of 2 is 1/2j+1. Thus, for an arbitrary integer r ≥ 1 supported on the primes in [1, N], the
probability P ∗

G(r) that r is the number produced in Step 3 is

P ∗
G(r) =

2Ω1(r)

2r
LN . (1)

Suppose then that r is in [1, N]. The probability PG(r) that the algorithm outputs r is

PG(r) =
2Ω1(r)

2r
LN · rD(r)

2Ω1(r)N
=

D(r)

2N
LN .

This is indeed proportional to D(r).
We now compute the expected number of steps for Algorithm 2 to output some number

in Step 4. As we have seen, the sum of D(r) for r in [1, N] is proportional to N , so the
probability that a list generated in Step 1 leads to a number being output in Step 4 is
proportional to LN . Thus, the expected number of lists that this algorithm will generate is
proportional to L−1

N . We have

logL−1
N = −

∑

2<p≤N

log

(

1− 2

p

)

= 2
∑

2<p≤N

1

p
+O(1) = 2 log logN +O(1)

by standard estimates (e.g., see [9, (2.6)]). Thus, L−1
N = O(log2N); that is, we expect to

generate O(log2N) lists in Step 1 before one is finally accepted, and hence we expect to
perform a total of O(log3N) primality tests (since a list from Step 1 has expected length
O(logN)). This is worse by a factor of logN than Kalai’s algorithm, but it is still polynomial
time.

Theorem 1. Given a positive integer N , Algorithm 2 produces integers r in [1, N] with
probability proportional to D(r) and with the complete prime factorization of r. The expected
time for Algorithm 2 to produce some number is O(log3N) primality tests with integers in
[1, N].

5. Producing a random Gaussian integer with a given norm

Now that we know how to produce norms of Gaussian integers with the correct distribution,
we turn our attention to the procedure one follows to produce a random Gaussian integer
with a given norm. We assume that we know the prime factorization of the norm r.

We first discuss how to find the Gaussian integers with norm a prime power. We do not
worry here about units. If N(z) = 2a, then z = (1+ i)a. If p is a prime with p ≡ 3 (mod 4),
then N(z) = p2a implies that z = pa (and of course there is no Gaussian integer z with
N(z) an odd power of p). The only difficulty comes when N(z) = pa with p a prime that

GENERATING RANDOM FACTORED GAUSSIAN INTEGERS, EASILY 7

is 1 (mod 4). In this case there are D(pa) = a + 1 different Gaussian integers with norm
pa. The case a = 1 is the most interesting. We know that there are two different Gaussian
primes ρ and ρ̄ with norm p. In general, the a+1 choices of z with N(z) = pa are z = ρj ρ̄a−j

for j = 0, 1, . . . , a.
We briefly review how to find the Gaussian prime ρ in the above discussion. This is

accomplished via the following algorithm.

Algorithm 3. Given a prime p ≡ 1 (mod 4), this algorithm produces a Gaussian prime ρ
with N(ρ) = p.

(1) Choose a random integer R in the interval [2, p − 2]. If R(p−1)/2 ≡ −1 (mod p),
output x = R(p−1)/4 mod p. Continue choosing random numbers R until a successful
number x is found. (This value of x satisfies x2 ≡ −1 (mod p).)

(2) Using the Euclidean algorithm in Z[i], compute gcd(x+ i, p) and output this as ρ.

Note that the random search for a square root of−1 in Step 1 can be done deterministically
and in polynomial time using the method of Schoof [10]. Also, Step 2 can also be done via
the Cornacchia–Smith algorithm, see [4, Algorithm 2.3.12].

We now combine Algorithms 2 and 3.

Algorithm 4. Given a positive integer N this algorithm produces a nonzero Gaussian integer
z with 0 ≤ arg z < π/2, N(z) ≤ N , with the uniform distribution, and with its prime
factorization.

(1) Follow Algorithm 2 to produce an integer r in [1, N] with its prime factorization.
(2) Let z = (1 + i)v2(r).
(3) For each prime p ≡ 3 (mod 4) with p | r, multiply z by pvp(r)/2.
(4) For each prime p ≡ 1 (mod 4) with p | r, follow Algorithm 3 to find a Gaussian

prime ρ with N(ρ) = p, then choose a uniform random integer j in [0, vp(r)] and
multiply z by ρj ρ̄ vp(r)−j.

(5) Multiply z by one of ±1,±i so that z satsifies 0 ≤ arg z < π/2. Output z and the
primes used to form z.

Theorem 2. Given a positive integer N , Algorithm 4 produces a nonzero Gaussian integer
with the uniform distribution among those with norm at most N and with argument in
[0, π/2), together with its prime factorization in the Gaussian integers. The expected time is
O(log3N) primality tests with integers in [1, N].

6. An improvement

We can make an improvement to Algorithm 4 by adding one extra step. This improvement
reduces the expected time from O(log3N) primality tests to O(log2N), and so the improved
algorithm has about the same complexity bound as does Kalai’s algorithm.

In Step 4 of Algorithm 2, if r ≤ N is presented to us from the prior steps, we output r
with probability rD(r)/(2Ω1(r)N). Note that D(r) = 0 unless r3 is a square, so if r3 is not a
square, we certainly reject this value of r and so we are kicked back to Step 1. Here is the
improvement. Given a positive integer r, let

r̃3 =
∏

p≡ 3 (mod 4)
vp(r) odd

p.

8 NOAH LEBOWITZ-LOCKARD AND CARL POMERANCE

Note that r/r̃3 is the largest divisor of r that is a Gaussian norm. Our improvement is to
replace r with r/r̃3 at the start of Step 4 in Algorithm 2.

Algorithm 5. This algorithm has the same goal and description as Algorithm 2 except that
Step 4 is replaced by the following procedure.

4’. Let R = r/r̃3. If R ≤ N , output R with probability RD(R)/(2Ω1(R)N). If you did not
output R, return to Step 1.

The change in this algorithm is that instead of throwing r away if it is not a Gaussian
norm, we modify r so that it becomes a Gaussian norm. To show that this is acceptable, we
will show the following two statements.

(1) Our modification outputs every Gaussian norm R ≤ N with a probability propor-
tional to D(R).

(2) Our modification improves the expected running time by a factor of logN .

For a Gaussian norm R ≤ N consider the various numbers r with r/r̃3 = R. These are
precisely those integers Rd where d is a squarefree product of primes p ≤ N with p ≡ 3
(mod 4); that is, d | T , where

T =
∏

p≤N
p≡ 3 (mod 4)

p.

For each Gaussian norm R ≤ N , let P̃G(R) be the probability that Algorithm 5 outputs R.
Then, using (1),

P̃G(R) =
RD(R)

2Ω1(R)N

∑

r/r̃3=R

P ∗
G(r) =

RD(R)

2Ω1(R)N

∑

d|T

2Ω1(Rd)LN

2Rd

=
D(R)LN

2N

∑

d|T

2Ω1(d)

d
=

D(R)LN

2N

∏

p≡ 3 (4)
p≤N

(

1 +
2

p

)

.

The key observation here is that this probability is proportional to D(R), and so Algorithm
5 does indeed perform as claimed above. Further, the probability that a list generated in
Algorithm 5 will be accepted is

∑

R≤N

D(R)LN

2N

∏

p≡ 3 (4)
p≤N

(

1 +
2

p

)

= O









LN

∏

p≡ 3 (4)
p≤N

(

1 +
2

p

)









.

Dirichlet not only proved that there are infinitely many primes in every coprime arithmetic
progression, he proved a quantified form of this result (see [7, Chapter 4]) from which it
follows that the product here is asymptotically of magnitude logN . Since LN is of magnitude
log−2N , it follows that we expect Algorithm 5 to generate O(logN) lists before one is
approved for output in Step 4’. The expected number of primality tests for a given list is as
before O(logN). Hence, we expect to perform O(log2N) primality tests, just as in Kalai’s
algorithm.

We have proved the following result.

GENERATING RANDOM FACTORED GAUSSIAN INTEGERS, EASILY 9

Theorem 3. Given a positive integer N , Algorithm 4, with Algorithm 2 in Step 1 replaced
with Algorithm 5, produces a nonzero Gaussian integer with the uniform distribution among
those with norm at most N and with argument in [0, π/2), together with its prime factoriza-
tion in the Gaussian integers. The expected time is O(log2N) primality tests with integers
in [1, N].

7. Quadratic number fields

In this section, we shall generalize our algorithms for the Gaussian integers to the ring
OK of algebraic integers in a quadratic number field K. Except for some special cases,
such as the Eisenstein integers, we cannot expect to produce ring elements with their prime
factorization because OK will rarely be a unique factorization domain with only finitely many
units. However, OK is always a Dedekind domain, so we have unique factorization of ideals
into prime ideals. So, it makes sense to try and generalize Kalai’s algorithm to produce a
random ideal with norm at most N along with its prime ideal factorization.

As is well known, the prime ideals of OK fall into 3 types. If p is a rational prime and
(p) is a prime ideal of OK , we say p is inert. If (p) = P1P2 where P1, P2 are distinct prime
ideals in OK , we say p is split. And if (p) = P 2, where P is a prime ideal of OK we say p is
ramified. In the latter two cases, the norms of these prime ideals in OK are the underlying
rational prime p, while in the inert case, the norm is p2. The norm map is multiplicative,
and so we see that a rational integer r is a norm of a nonzero ideal in OK if r > 0 and for
each inert prime p | r, we have vp(r) even.

In the Gaussian case, 2 is ramified, primes that are congruent to 1 mod 4 are split, and
primes that are congruent to 3 mod 4 are inert. Suppose that K = Q(

√
D) where D 6= 1 is a

squarefree integer. There is a simple criterion for how p splits in OK . The prime 2 ramifies
if D ≡ 2, 3 (mod 4), is inert if D ≡ 5 (mod 8), and splits if D ≡ 1 (mod 8). If p is an
odd prime, then p ramifies if p | D, is inert if (D/p) = −1, and splits if (D/p) = 1. In the
Gaussian case we factor a positive integer r into a power of 2 and the factors r1, r3. Here is
how we generalize this.

Definition. For a positive integer r, let rI be the largest divisor of r where every prime
factor is inert in OK and let rS be the largest divisor of r where every prime factor is split
in OK . Further, let

r̃I =
∏

p|rI
vp(r) odd

p.

Note that a positive integer r is a norm of an ideal of OK if and only if rI is a square.
Further, for every positive integer r, there are precisely τ(rS) ideals with norm r/r̃I . Here
is our generalization of Kalai’s algorithm to the setting of OK .

Algorithm 6. Given integers N and D with N positive, D 6= 1 squarefree, this algorithm
produces a random ideal in OQ(

√
D) with norm in [1, N], with uniform distribution, and with

its prime ideal factorization.

(1) Let M be the largest odd number less than or equal to N . Create a list s1 ≥ s2 ≥
. . . ≥ sk = 1 of odd numbers, where s1 is 1 with probability 1/M and any odd element
of [3, N] with probability 2/M . If si has already been chosen and si > 1, then let
si+1 equal 1 with probability 1/si and any other odd integer in the interval [3, si] with
probability 2/si.

10 NOAH LEBOWITZ-LOCKARD AND CARL POMERANCE

(2) Let r be the product of the prime si for each si in the list.
(3) If D ≡ 1 mod 8, multiply r by 2 with probability 3/4. Otherwise, multiply by 2 with

probability 1/2. If you just multiplied by 2, repeat this step.
(4) Let R = r/r̃I. If R > N , do not output R and return to Step 1. If D ≡ 1 (mod 8),

output r with probability

3

4

(

2

3

)v2(R)
Rτ(RS)

2Ω1(R)N
.

Otherwise, output r with probability Rτ(RS)/(2
Ω1(R)N). If you did not output R,

return to Step 1.
(5) Generate a random ideal with norm R.

The instances of 3/4 and 2/3 in this algorithm may seem strange. However, in the case
when D ≡ 1 (mod 8), the prime 2 splits and so affects the number of ideals with even norm
more strongly than if 2 were ramified. In particular, τ(RS), which is the number of ideals
with norm R, could now be larger than 2Ω1(R), and so the fraction Rτ(RS)/(2

Ω1(R)N) could
be larger than 1.

Consider the following example. Suppose, to be extreme, we have N = 2k and D ≡ 1
(mod 8). If the algorithm chooses r = R = 2k before the final filter, it does not make sense to
accept it with probability Rτ(RS)/(2

Ω1(R)N) = k + 1 > 1. However, note the easily verified
inequality

3

4

(

2

3

)k

(k + 1) ≤ 1. (2)

Here is an analysis of the probability distribution of numbers R produced in Step 4. Let
T be the product of all inert primes p ≤ N . For an odd positive integer r supported on the
primes in [1, N], the probability that r is produced in Step 2 is

2Ω1(r)

r
LN .

Let P ∗
D(r) be the probability that r is produced in Step 3. First assume that D 6≡ 1 (mod 8).

Thus,

P ∗
D(r) =

2Ω1(r)

2r
LN .

Hence, if PD(R) is the probability that R is produced in Step 4, then

PD(R) =
Rτ(RS)

2Ω1(R)N

∑

d|T
P ∗
D(dR) =

τ(RS)LN

2N

∑

d|T

2Ω1(d)

d
=

τ(RS)LN

2N

∏

p≤N
p inert

(

1 +
2

p

)

.

Using either Dirichlet’s theorem on primes in a residue class (and the law of quadratic
reciprocity) or the Chebotarev density theorem, the final product here is of magnitude logN ,
with a constant depending on the value of D. Thus, we have PD(R) proportional to τ(RS)
(the number of ideals with norm R), and the expected number of lists for Step 4 to output
some value of R is of magnitude logN .

Now assume that D ≡ 1 (mod 8). Then

P ∗
D(r) =

1

4

(

3

4

)v2(r) 2Ω1(r)

r/2v2(r)
LN =

1

4

(

3

2

)v2(r) 2Ω1(r)

r
LN .

GENERATING RANDOM FACTORED GAUSSIAN INTEGERS, EASILY 11

To see that the probability in Step 4 is at most 1, say v2(R) = k. Then τ(RS) = (k +
1)τ(RS/2

k). Now τ(RS/2
k) ≤ 2Ω1(R), and so by (2), the probability is at most 1. We have

PD(R) =
3

4

(

2

3

)v2(R)
1

4

(

3

2

)v2(R)
Rτ(RS)LN

2Ω(R)N

∑

d|T

2Ω1(Rd)

Rd

=
3

16

τ(RS)LN

N

∑

d|T

2Ω1(d)

d
=

3

16

τ(RS)LN

N

∏

p≤N
p inert

(

1 +
2

p

)

,

so the same conclusions are warranted as in the case D 6≡ 1 (mod 8).
There is an alternate process one can use if 2 is split. In Step 3, replace 3/4 with (n +

3)/(2n+ 4), where n is the number of copies of 2 that the algorithm has already multiplied.
Then, Step 4 outputs R with probability Rτ(RS)/(2

Ω1(R)N), regardless of whether or not 2
is split.

Step 5 requires some exposition. We are given a positive integer R with RI a square, and
we wish to find a random ideal with norm R. As with the Gaussian case, it suffices to deal
with the case when R = pa for some prime number a. We follow the ideas in [11]. If p is
inert then a is even, and there is just the one ideal (pa/2). If p ramifies, there is just one
prime ideal P with norm p and so the only ideal with norm pa is P a. Here is how the ideal
P can be identified. If p is odd, then p | D and P = (p,

√
D). The same holds for p = 2 if

D ≡ 2 (mod 4). If D ≡ 3 (mod 4), then 2 ramifies, and P = (2,
√
D − 1).

Finally suppose that p splits. Then (p) = P1P2 where P1, P2 are distinct prime ideals with
norm p. Thus to find a random ideal with norm pa, one can choose a random integer j ∈ [0, a]
and choose the ideal P a

1 P
a−j
2 . To identify the ideals P1, P2 in the case of on odd prime p, one

solves the congruence x2 ≡ D (mod p), let b be an integral solution. (This exists since we

are in the case that p splits.) Then we can take P1 = (p,
√
D− b) and P2 = (p,

√
D+ b). One

can solve the quadratic congruence for b by using a polynomial-time random algorithm as in
[4] or via Schoof’s deterministic algorithm [10] whose run time for a fixed D is polynomial

in log p. If 2 splits then P1 = (2, (1 +
√
D)/2), P2 = (2, (1−

√
D)/2).

With such subroutines Algorithm 6 is now fully fleshed out. We have the following result.

Theorem 4. Given a positive integer N and a squarefree integer D 6= 1, Algorithm 6
produces a random ideal with norm in [1, N], with the uniform distribution, and with its
prime ideal factorization in OQ(

√
D). The running time is OD(log

2N) primality tests with

integers in [1, N].

8. Higher degree fields

This section contains some ideas on generalizing the quadratic fields algorithm to higher
degree fields. What one first notices in higher degree fields is that there is a proliferation of
splitting types for rational primes. However, for a given field there are only finitely many
types and it is well understood how to algorithmically determine to which type a rational
prime belongs. Namely, if f(x) ∈ Z[x] is a monic irreducible polynomial that determines
the field, then we know after Kummer that the splitting type of p is essentially given by
the factorization of f(x) over Z /pZ. (This is so if p does not divide the discriminant of f ,
the remaining finite set of primes can be handled as special cases; these were the ramified

12 NOAH LEBOWITZ-LOCKARD AND CARL POMERANCE

primes in the quadratic case—for details, see [3, Section 6.2].) And we know (random)
polynomial-time algorithms for splitting a polynomial over a finite field.

As in the quadratic case, to produce a factored and uniformly distributed ideal with norm
at most N , one may approach this by first producing the factored norm of the ideal with
a distribution compatible with norms of ideals. That is, integers which are norms of many
ideals should appear proportionally more frequently than integers which are norms of few
ideals. To be specific, if K is the number field, let DK(r) be the number of ideals of OK

with norm r. If the degree of K over Q is d, then an upper bound (coming from the split-
completely case) for DK(r) is d

Ω(r). Thus, we seek a method to generate integers r in [1, N]
where the probability of choosing r is proportional to dΩ(r). Given such an algorithm, we
could then accept r with probability DK(r)/d

Ω(r), resulting in the correct distribution for
K.

In the case d = 2 we solved this problem essentially by modifying Kalai’s algorithm to run
only through odd numbers, dealing with the single even prime in a separate step. Since the
odd numbers have density 1/2 in the integers, we then double the likelihood of choosing a
particular odd prime, resulting in our 2Ω(r) distribution (actually, 2Ω1(r), but close enough).

Suppose now that d = 3. We seek then to modify Kalai’s algorithm so that a prime p is
chosen with probability 3/p, or close to this. Here is how this might be accomplished. Notice
that the integers coprime to 6 form a set of asymptotic density 1/3 and this set contains all
primes except 2 and 3. Let F6(n) denote the number of integers in [1, n] that are coprime to
6. And suppose in Step 1 of Kalai’s algorithm we choose s1 in [1, N] coprime to 6 uniformly,
but such that the probability that s1 = 1 is 1/3 the chance of choosing s1 = s for each s in
(3, N] coprime to 6. We similarly choose s2 in [1, s1] and so on. Then the probability that a
prime p in (3, N] is chosen is 3/(3F6(p)− 2) and the probability that it is chosen exactly j
times is

1

(3F6(p)− 2)j

(

1− 3

3F6(p)− 2

)

.

If r is the product of the prime si in the list, then the probability that a particular number
r supported on the primes in (3, N] is generated is

∏

3<p≤N

1

(3F6(p)− 2)vp(r)

(

1− 3

3F6(p)− 2

)

=
∏

pj‖r

1

(3F6(p)− 2)j

∏

3<p≤N

(

1− 3

3F6(p)− 2

)

.

Note that F6(p) = (p+1)/3 if p ≡ 5 (mod 6) and F6(p) = (p+2)/3 if p ≡ 1 (mod 6). Thus,
3/(F6(p)− 2) = 3/(p− 1) if p ≡ 5 (mod 6) and 3/(F6(p)− 2) = 3/p if p ≡ 1 mod 6. Also
note that

L3,N :=
∏

3<p≤N

(

1− 3

3F6(p)− 2

)

.

is of magnitude (logN)−3 by Mertens’ theorem. If r′ is the same as r except that each prime
p | r in the factorization of r with p ≡ 5 (mod 6) is changed to a factor p − 1, then the
probability that a particular r supported on the primes in (3, N] is chosen is

3Ω(r)

r′
L3,N .

One need only note that if r ≤ N , then r′DK(r)/(3
Ω(r)N) ≤ 1. So, if we accept r with

this probability then we achieve a probability proportional to DK(r). Adjustments should

GENERATING RANDOM FACTORED GAUSSIAN INTEGERS, EASILY 13

be made to this argument for the primes 2 and 3, and so we would have a solution to our
problem in the case of cubic fields.

This path gets more difficult to follow for higher degree fields. For example, if K has
degree 4 over Q then we need to choose r with probability at least proportional to 4Ω(r). The
least number n with n/ϕ(n) ≥ 4 is n = 210, so we might choose numbers s coprime to 210,
that is, with least prime factor larger than 7, with special cases reserved at the end for the
primes 2, 3, 5, and 7. For degree 5 fields, 210 is replaced with 30,030, and so on.

In conclusion, an elaboration of our ideas is likely able to give a polynomial-time algorithm
for producing random factored ideals in a given OK . Some variation of the improvement we
described in Section 6 should likely be applicable as well.

It is interesting as well to consider an algorithm to produce a random principal ideal of
norm at most N along with its prime ideal factorization. This could be accomplished by
first producing a random ideal, and then accepting it only if it is principal, which occurs
with probability 1/h with h the class number. If the field K is fixed, this then is a fixed,
positive probability. A fast subroutine for recognizing when an ideal is principal and finding
a generator in that case would be needed. The reduction theory for binary quadratic forms
is of help in the quadratic case, higher degree fields may be problematic.

9. Further thoughts

A somewhat different algorithm not using norms might be used in the setting of Gaussian
integers. The sequence s1, s2, . . . of integers in Kalai’s algorithm might be changed to a
sequence of Gaussian integers with arguments in [0, π/2) and with N ≥ |s1|2 ≥ |s2|2 ≥
One then multiplies those si together that are Gaussian primes getting a Gaussian integer
r. If |r|2 ≤ N , then r should be accepted with probability |r|2/N , and then adjusted by a
unit to place it in the first quadrant. This method expects to produce about (logN)4/π lists,
and so would take about (logN)1+4/π primality tests. It is closer to the true spirit of Kalai’s
original algorithm, but as we see, it is somewhat slower. Can it be improved? It is clear how
this method can be generalized to a few other cases, such as for the Eisenstein integers, but
it seems difficult to do something similar in general.

As mentioned in the Introduction, the algorithm of Bach is faster than that of Kalai. It
would be very interesting to see if a modified version of Bach’s algorthm could work for the
Gaussian integers and more generally.

Acknowledgment. We thank the referees for their careful reading of the paper and for
some helpful suggestions. We also thank John Voight for a helpful discussion involving the
problem of choosing a random factored principal ideal.

References

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math., 160 (2004), 781–793.
[2] E. Bach, How to generate factored random numbers, SIAM J. Computing, 17 (1988), 179–193.
[3] H. Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin, 1993.
[4] R. Crandall and C. Pomerance, Prime numbers: a computational perspective, 2nd ed., Springer-Verlag,

New York, NY, 2005.
[5] A. Kalai, Generating random factored numbers, easily, J. Cryptology 16 (2003), 287–289.

[6] E. Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu
ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. Math. Phys., (3) 13 (1908), 305–312;
Collected works, Vol. 4, Thales Verlag, Essen, 1986, 59–66.

14 NOAH LEBOWITZ-LOCKARD AND CARL POMERANCE

[7] P. Pollack, Not always buried deep: a second course in elementary number theory, American Mathemat-
ical Society, Providence, RI, 2009.

[8] S. Ramanujan, Highly composite numbers, Proc. London Math. Soc., (2) 14 (1915), 347–409; Collected
papers, Cambridge University Press, Cambridge, 1927, 78–128.

[9] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J.

Math., 6 (1962), 64–94.
[10] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp.

44 (1985), 483-494.
[11] E. Weiss, Algebraic number theory, McGraw-Hill, New York, 1963.
[12] S. Wigert, Sur l’ordre de grandeur du nombre des diviseurs d’un entier, Ark. Math., 3 (1906/7), 1–9.

Department of Mathematics & Computer Science, Emory University, Atlanta, GA 30307,

USA

E-mail address : nlebowi@emory.edu

Mathematics Department, Dartmouth College, Hanover, NH 03755, USA

E-mail address : carl.pomerance@dartmouth.edu

