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For a natural number n let

D(n) = {d > 0 ∶ d ∣n}, τ(n) = #D(n).

Say n is matchable if D(n) can be matched with {1,2, . . . , τ(n)}

where each match is a coprime pair.

For example, n = 10:

1 ←→ 2

2 ←→ 3

5 ←→ 4

10 ←→ 1
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Non-matchable numbers

In a matching for n, its even divisors must be paired with odd

numbers in {1,2, . . . , τ(n)}.

Consider n = 8: There are 3 even numbers in D(8) = {1,2,4,8}

but only 2 odd numbers in {1,2,3,4}. So, 8 is not matchable.

This generalizes: Every number 4m has at least 2/3 of D(4m)

even, but {1,2, . . . , t} has < 2/3 of its elements odd, once t ≥ 4.

Thus 4m is non-matchable provided m > 1.

So, the non-matchable numbers contain a subset of asymptotic

density 1/4, namely the multiples of 4 except for 4 itself.
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Non-matchable numbers, continued

Now consider n = 27m = 33m. Then D(27m) has ≥75% of its
members divisible by 3. In a matching these must be sent to
non-multiples of 3. If t ≥ 9, then {1,2, . . . , t} has < 75%
non-multiples of 3, so if 27m is to be matchable, then
τ(27m) < 9. One can check that 27q is matchable for every
prime q, but not for other multiples of 27.

But from a density aspect, we see that 0% of the multiples of
27 are matchable.

What about multiples of 55? 77? In general, if pp ∣n and
τ(n) ≥ p2, then n is not matchable.

Theorem: Among the set of numbers divisible by some pp,
with p prime, the matchable ones comprise a set of density 0.
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M-numbers

Say n is an “M-number” if it is not divisible by any pp with p

prime. So, all squarefree numbers are M-numbers. We’ve seen
that matchable numbers that are not M-numbers are sparse.

Note that the set of M-numbers has asymptotic density

α ∶= ∏
p
(1 − 1/pp) = 0.72199 . . . .

Conjecture: Every M-number is matchable.

Theorem (McNew, P): The set of non-matchable
M-numbers comprise a set of asymptotic density 0.

Corollary: The set of matchable numbers has density α.
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A possible way to prove the conjecture that every M-number is
matchable:

Let S be a finite set of primes and let

nS = ∏
p∈S

pp−1.

We prove that nS is matchable: Note that τ(nS) = ∏p∈S p. For
j ≤ τ(nS), send j to ∏p∈S pj mod p. The exponent on p is 0 if and
only if p ∣ j, so that j gets sent to a number that is coprime to
j. Also, the exponent is ≤ p−1, so j gets sent to a divisor of nS.
And the Chinese remainder theorem shows the map is
one-to-one.

So, to prove the conjecture, one needs only show that all
divisors of matchable numbers are themselves matchable, an
observation of Joachim König. In fact, one need only prove
that if n is matchable and p2 ∣n, then n/p is matchable.
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Another way to show a number is matchable: the König–Hall

theorem (these are Dénes König and Philip Hall):

Suppose we have a bipartite graph from finite set A to B and

for each S ⊂ A with neighboring set T ⊂ B (here T is the set of

elements of B connected to some member of A), we have

#S ≤ #T . Then the graph contains a matching from A into B.

(So, if #B = #A, it is a perfect matching.)

In our case we have A = {1,2, . . . , τ(n)}, B =D(n), and the graph

connects each a ∈ A to all b ∈ B with (a, b) = 1.
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A simple consequence

Let ω(n) = ∑p ∣n1 and f(n) = ∑p ∣n1/p.

Lemma. Suppose n is squarefree and f(n) ≤ 1/2. Then n is
matchable.

Proof. Let A ⊂ {1,2, . . . , τ(n)} and let B be the set of divisors of
n coprime to at least one member of A. Choose a ∈ A with
k = ω((a,n)) minimal over all a ∈ A. Then B has at least τ(n)/2k

elements, namely all of those divisors of n coprime to a (using
n squarefree). But, using the minimality of k,

#A ≤ ∑
a≤ τ(n)

ω((a,n))≥k

1 ≤ ∑
d ∣n

ω(d)=k

τ(n)

d
≤ τ(n)

f(n)k

k!
≤
τ(n)

2kk!
≤
τ(n)

2k
.

This is ≤ #B, so by König–Hall the Lemma is proved. 2
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As an aside, lets look at the step above:

∑
a≤ τ(n)

ω((a,n))≥k

1 ≤ ∑
d ∣n

ω(d)=k

τ(n)

d
.

To justify this note that if ω((a,n)) ≥ k, then a is divisible by

some d ∣n with ω(d) ≥ k and so is divisible by some d ∣n with

ω(d) = k. And the number of multiples of d that are in

{1,2, . . . , τ(n)} is ≤ τ(n)/d.

Later we’ll generalize this Lemma where we don’t have an

initial interval {1,2, . . . , τ(n)} but we are concerned about the

multiples of d in the set we do have.

But for now, what does the Lemma get us?
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A positive proportion is matchable

We can show a positive proportion of integers satisfy the two

hypotheses: n is squarefree and f(n) ≤ 1/2 (where recall that

f(n) = ∑p ∣n1/p). This is done by averaging f(n) over

squarefrees, this is < 1/3, so a positive proportion of squarefrees

have f(n) ≤ 1/2.

However to make further progress we should at least try to

show that asymptotically all squarefrees are matchable, and

then see if we can tackle M-numbers. As mentioned, we

conjecture that all M-numbers (which includes all squarefrees)

are matchable.
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Filling in

Note that the Lemma is not very useful if n is even. By slightly

strengthening the Lemma we can get around this.

Suppose n is odd and squarefree with f(n) ≤ 1/2. Then we can

not only coprimely match the divisors of n with {1,2, . . . , τ(n)},

but we can coprimely match them with the first τ(n) odd

numbers {1,3, . . . ,2τ(n) − 1} (using a slightly stronger Lemma).

These two matchings show that 2n is matchable. Indeed, the

matching of D(n) to the odds can be used to match 2D(n)

with the odds in [1, τ(2n)] = [1,2τ(n)]. And the matching of

D(n) to the numbers up to τ(n) can be used to match the odd

divisors of 2n with {2,4, . . . ,2τ(n)}, since D(n) =D(2n) ∖ 2D(n).
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Filling in, continued

We can use a similar plan to fill in an odd prime, say 3. So

suppose n is squarefree with f(n) ≤ 1/2 and 3 ∤ n. We try to

show that 3n is matchable. We partition D(3n) into D(n) and

3D(n). And we partition {1,2, . . . , τ(3n)} = {1,2, . . . ,2τ(n)} into

the multiples of 3 and the non-multiples. The non-multiples of

3 are the set difference of two AP’s. We match the set 3D(n)

into the least τ(n) of these non-multiples of 3. The remaining

τ(n) numbers in the interval consist of 2 parts, all of the

multiples of 3 and some of the non-multiples of 3. We match

D(n) into these remaining numbers.

We then show that we can fill in with many small primes.

What’s needed is a stronger Lemma that allows us to do this.
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Stronger Lemma. Suppose n is squarefree, f(n) ≤ 1/2,
√

logn ≤ τ(n) ≤ logn, and the number of primes p ∣n with

p ≤ (logn)2 is at most
√

log logn. Suppose A ⊂ [1, (logn)2] ∩N
with #A = τ(n), and 0 ≤ κ ≤ (logn)1/3 is such that for each d ∣ n,

the number of members of A divisible by d is within κ of τ(n)/d.

There is an absolute constant N0 such that if n ≥N0, there is a

one-to-one correspondence between D(n) and A such that

corresponding numbers are relatively prime.

Note too that all numbers n but for a set of density 0 have
√

logn ≤ τ(n) ≤ logn.
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A positive proportion of squarefree numbers u have f(u) > 1/2,

so the trick is to write u =mn where m has the small primes in

u, say up to (logu)2, and n = u/m. Then we have f(n) = o(1), so

we may assume f(n) ≤ 1/2.

We then use the filling-in plan to show that all squarefree

numbers, but for a possible exceptional set of asymptotic

density 0, are matchable.

And by generalizing the filling-in algorithm to prime powers pj

where j ≤ p − 1, we show the same for M-numbers. (Recall that

n is an M-number if it is not divisible by pp for any prime p.)
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Theorem (McNew, P). All M-numbers, but for a possible

exceptional set of asymptotic density 0, are matchable.

As mentioned, we have shown that the set of matchable

non-M-numbers has asymptotic density 0. As a corollary we

have that the density of the set of matchable numbers exists

and is equal to

∏
p
(1 − 1/pp) = 0.72199 . . . .
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We conjecture that every M-number is matchable. In fact, we

even conjecture that D(n) for an M-number n can be coprimely

matched into any interval of τ(n) consecutive integers.

This is not true for non-M-numbers. Namely if n is a

non-M-number then there is an interval of τ(n) consecutive

integers that has no coprime matching with D(n).

Take the matchable numbers 4, 27, and 135 as examples.

Consider n = 4 and the interval {2,3,4}.

Or n = 27 and the interval {3,4,5,6}.

Or n = 135 and the interval {3,4,5,6,7,8,9,10}.
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Thank you
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