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This talk is in the area of combinatorial number theory (aka

arithmetic combinatorics). It is a branch of mathematics that

considers number-theoretic problems with a combinatorial

flavor. A totemic theorem from a century ago:

van der Waerden: If N is partitioned into two sets, at least

one of them contains arbitrarily long arithmetic progressions.

Fields Medalists Roth, Gowers, and Tao have all found

significant improvements of van der Waerden’s theorem, and

Szemerédi recently won the Abel Prize, in part for the same.
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These results are unrelated to the talk, and here is another!

Say a set A of integers larger than 1 is primitive if no member

divides another. For example, A could be the set of primes, or

it could be the set of integers which are the product of two

primes, or many other possibilities. Erdős proved in the 1930s

that if A is primitive, then

∑
a∈A

1

a loga
< ∞,

and in fact, there is a finite upper bound for all such sums. In

the 1980s, he asked if the maximum value for such a sum is

given when A is the set of primes. Known now as the “Erdős

primitive set conjecture,” this was just proved by Jared

Lichtman (class of ’18 and a current grad student at Oxford).
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An elementary and fundamental concept: Two integers are

relatively prime, or more briefly, coprime, if their greatest

common divisor is 1.

This thought can lead one into number theory, and also graph

theory! (Take the graph on N where there is an edge between

m,n if they are coprime. The number 1 is connected to

everything else, including itself.)

Here’s a third view, through geometry:

3



Visible lattice points: integer points (x,y) with x,y coprime.
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The proportion of lattice points that are visible is

∏
pprime

(1 − 1/p2) = 6/π2.

(Elizalde & Woods have considered generalizations in higher
dimensions.)
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A simple question:

Given two intervals I, J of n consecutive integers is there

always a one-to-one correspondence from I to J
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A simple question:

Given two intervals I, J of n consecutive integers is there

always a one-to-one correspondence from I to J

with corresponding numbers relatively prime?

We’re asking for a matching in the coprime graph.
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A simple question:

Given two intervals I, J of n consecutive integers is there

always a one-to-one correspondence from I to J

with corresponding numbers relatively prime?

We’re asking for a matching in the coprime graph.

A simple answer: No.

For example, I = {4}, J = {6}.

Or I = {3,4}, J = {5,6}.

Or I = {4,5,6}, J = {12,13,14}.
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In the first two examples, {4}, {6} and {3,4}, {5,6}, one set

contains a number divisible by a prime divisor of each number

in the other set. Namely, “6” in both cases.

The third example, {4,5,6}, {12,13,14}, has a strict majority of

even numbers in both sets.

There are other “monsters” too, like

I = {10,11,12,13}, J = {15,16,17,18}.

(Both 10 and 12 match only to 17.)
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Around 1960, D. J. Newman conjectured that in the special

case that

I = [n] = {1,2, . . . , n}, J is any interval of n consecutive integers,

there must be a coprime matching. (That is, there is a 1-1

correspondence with corresponding numbers coprime.)

In a lecture in 1962 at the University of Reading, Paul Erdős

offered £5 for a proof of the weaker conjecture where I = [n]

and J = {n + 1, . . . ,2n}. A year later, two Reading professors,

D. E. Daykin and M. J. Baines proved this weaker

conjecture. Mike Baines tells me they collected £2.5 each.

In 1971, Vašek Chvátal proved the full Newman conjecture for

n ≤ 1000.
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D. J. Newman Vašek Chvátal

11



In 1979 I attended a conference in Carbondale, Illinois, meeting

John Selfridge who told me about Newman’s conjecture, and

described an algorithm that, if correct, would give a coprime

matching.

We worked on this for a few months, and ended up with a proof

of Newman’s conjecture, published in Mathematika in 1980.

John Selfridge
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Selfridge’s algorithm:

First assume that n is even. Let J0 be the even members of J

and let J1 be the odd members. Let m be the product of the

elements of J1. By an induction hypothesis (this is a recursive

algorithm), there is a coprime matching between [n/2] and
1
2(J1 +m). This gives a coprime matching between the even

members of [n] and J1.

Now take the odd members of [n] and order them from hardest

to match to easiest: a1, a2, . . . , an/2, where

ϕ(a1)/a1 ≤ ϕ(a2)/a2 ≤ . . . ≤ ϕ(an/2)/an/2 = 1.

Here ϕ is Euler’s function: ϕ(a) = the number of members of [a]

coprime to a. Then choose b1 ∈ J0 coprime to a1, then b2 ∈ J0

coprime to a2 with b2 ≠ b1, etc.
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The algorithm in the case that n is odd is similar.

So, the hard work is in showing that one can continue with the

choosing of the numbers bi, never being blocked.

For a given a, the proportion of numbers coprime to a is

ϕ(a)/a, while the proportion of odd numbers a′ with

ϕ(a′)/a′ ≤ ϕ(a)/a (so a′ essentially comes before a in our

ordering) is D(ϕ(a)/a). Here D(u) is the relative asymptotic

density of the odd numbers a with ϕ(a)/a ≤ u. (By a theorem of

I. J. Schoenberg in 1928, this density exists.) So, basically

what Selfridge conjectured is that D(u) ≤ u and that the “at

infinity” asymptotics can be made rigorous at a finite level.

And this is what we proved.
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Fast forward 40+ years, and last fall Tom Bohman and

Fei Peng posted a paper to arXiv, proving the following:

Bohman, Peng: Suppose n is even and I, J are intervals of n

consecutive integers contained in [N]. There is a positive

constant c such that if n > ec(log logN)2
then there is coprime

matching from I to J.

They used this result to prove a weak form of the “lonely

runner conjecture” (more on this shortly). I was intrigued,

having worked on this conjecture and coprime matchings, and I

was able to improve this:

P: The same, but we only require that n > c(logN)2.
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The lonely runner conjecture: Suppose v1, . . . , vk are distinct

positive integers. There is some real number t such that the

fractional parts {v1t}, . . . ,{vkt} are all in [1/(k + 1), 1 − 1/(k + 1)].

One thinks of k runners on a circular track of length 1, with

the vi being their velocities. The special time t here makes a

(k+1)st runner with speed 0 lonely. This was proved for k = 4 by

Tom Cusick and me in 1984, for k = 5 by Bohman, Holzman,

& Kleitman in 2001, and k = 6 by Barajas & Serra in 2008.

Terry Tao (2018) showed it in the general case when all

velocities are ≤ 1.2k and the new results on coprime matchings

show it holds when the velocities are ≤ (2 − ε)k. The connection,

shown by Bohman, Peng, is not at all obvious. (My result

gets a slightly smaller ε than the Bohman, Peng result.)
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A brief word on my proof: Given a positive integer m one can

ask for the length of the longest interval of consecutive integers

each of which is not coprime to m. For example, if m = 6, we

have the integers {2,3,4} and for m = 30, we have {2,3,4,5,6}.

This is the Jacobsthal function j, so j(6) = 3 and j(30) = 5. It is

known that j(m)/ logm is unbounded and that

j(m) =O((logm)2), a result of Henryk Iwaniec. (It’s

conjectured that j(m) =O(logm(log logm)2) and that this is

best possible.) My argument for the coprime matching result

uses this circle of ideas.
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What about the case when I = J = [n], so we would have a

coprime permutation?
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What about the case when I = J = [n], so we would have a

coprime permutation?

Easy! Just take the cycle (1,2, . . . , n).
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What about the case when I = J = [n], so we would have a

coprime permutation?

Easy! Just take the cycle (1,2, . . . , n).

OK, a better question: Enumerate them. How many coprime

permutations are there of [n]?
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Let C(n) denote the number of permutations σ of [n] where

each gcd(j,σ(j)) = 1. So, for example, C(4) = 4.

Proof. It’s an even–odd thing. The numbers 2, 4 must be sent

to 1, 3 in some order, and vice versa.

I asked Sergi if he knew anything about this problem. He

computed the first few values and then checked OEIS, finding

that David Jackson had computed C(n) for n ≤ 24 in 1977.

Jackson’s view of the problem: Take the n ×n matrix M where

the i, j entry is 1 if gcd(i, j) = 1 and is 0 otherwise (the

adjacency matrix for the coprime graph on [n]). Then C(n) is

the permanent of M .
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Let C0(n) be the number of coprime matchings of [n] and [n]o,

the first n odd numbers. As we saw with C(4), we have

C(n) = C0(n/2)2 for n even. This observation immediately gives

us a nontrivial upper bound for C(n) when n is even, namely

C(n) ≤ (n/2)!2, n even.

A similar argument shows that C(n) ≤ (m + 1)!2 when n = 2m + 1

is odd.

We conclude: C(n) ≤ n!/(2 + o(1))n and so most permutations

are not coprime.

Is this the right magnitude for C(n), i.e., Is there a similar lower

bound?
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We have seen that C(n) = C0(n/2)2 for n even. A similar
argument shows that C(n) ≥ C0(m − 1)2 when n = 2m + 1 is odd.
So, basically we are interested in a lower bound for C0(n).

Note that C0(n) also has an OEIS page! It is the number of
partitions of [2n] into unordered coprime pairs.

Let’s take a clue from the algorithm that gets a coprime
matching in the Newman problem. We organize the first n odd
numbers by increasing value of ϕ(a)/a. For example, how many
of them have ϕ(a)/a ≤ 1/2? In our previous notation, this would
be ∼D(1/2)n. So, what is D(1/2)? This has been studied, and
the best we have is

0.02240 <D(1/2) < 0.02352,

a result of Mits Kobayashi. So, the overwhelming majority of
odd numbers have many coprime companions.

23



In general, consider an interval (α,β] in [0,1]. The number of
odd a among the first n odd numbers with ϕ(a)/a ≤ β is
∼D(β)n, while if ϕ(a)/a > α, then there are at least ∼ αn coprime
companions for a to which it can be mapped. If D(β) < α, this
can be done in many ways, not interfering with assignments for
other a with ϕ(a)/a ≤ β.

If we have m places in which to put k numbers, the number of
ways is m!/(m − k)!. In our case, we have m ≥ αn −D(α)n and
k =D(β)n −D(α)n. So, the number of assignments for these
values of a with ϕ(a)/a ∈ (α,β] is at least

=
(αn −D(α)n)!

(αn −D(β)n)!
.

We then do this for a particular numerical partition of (0,1]

into intervals (α,β].
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Other inequalities for the distribution function D(u), due to

Charles R. Wall, are used, as well as a strengthening of an

inequality of Paul Erdős. When the dust settles, we have a

proof that

C0(n) ≥ n!/1.8637n for all large n,

which in turn leads to

C(n) ≥ n!/3.73n for all large n.

So, the question is if there is a constant c with

C(n) = n!/(c + o(1))n. My preprint has 2.5 ≤ c ≤ 3.73.
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From Wall’s paper: the full distribution function for ϕ lies in
the shaded area.
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After showing a preliminary version of this paper to Nathan

McNew, he came up with a conjectured value for c, namely

c = ∏
pprime

p(p − 2)1−2/p

(p − 1)2−2/p
= 2.65044 . . . .

(One takes the local factor at p = 2 as 2.) The heuristic behind

this is that for a fixed prime p, the number of permutations σ

of [n] with p ∤ gcd(j,σ(j)) for each j is n!/(γp + o(1))n, where

γp = p(p − 2)1−2/p/(p − 1)2−2/p. And then argue “independence”.

A couple of days after posting to arXiv, two grad students at

MIT proved my conjecture with McNew’s constant c. These

are Ashwin Sah and Mehtaab Sawhney.
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Ashwin Sah Mehtaab Sawhney

I think we’ll be hearing more from these two in the future! They
have already been the subject of a Quanta magazine article!
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But as soon as one problem is solved, a few more arise! For
example:

1. How many “anti-coprime” permutations are there of [n]

(meaning that each gcd(j,σ(j)) > 1 for j > 1)? I have a lower
bound of the shape n!/(logn)cn. Is this the true order of
magnitude? I conjecture so, with c = e−γ.

2. How many permutations of [n] are there where for each j

either j ∣ σ(j) or σ(j) ∣ j? Or, for each j, lcm[j,σ(j)] ≤ n?
I can show the number of them is of the shape cn, and have
upper and lower bounds on c.

3. More problems?
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Thank you
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