SHIFTED-PRIME DIVISORS

KAI (STEVE) FAN AND CARL POMERANCE

For Helmut Maier on his seventieth birthday

Abstract

Let $\omega^{*}(n)$ denote the number of divisors of n that are shifted primes, that is, the number of divisors of n of the form $p-1$, with p prime. Studied by Prachar in an influential paper from 70 years ago, the higher moments of $\omega^{*}(n)$ are still somewhat a mystery. This paper addresses these higher moments and considers other related problems.

1. Introduction

Let $\omega(n)$ denote the number of different primes that divide n. This function has been well-studied, and in particular we know that

$$
\begin{align*}
\frac{1}{x} \sum_{n \leq x} \omega(n) & =\log \log x+O(1) \tag{1}\\
\frac{1}{x} \sum_{n \leq x} \omega(n)^{2} & =(\log \log x)^{2}+O(\log \log x)
\end{align*}
$$

after results of Hardy-Ramanujan and Turán. Further, $\omega(n)$ obeys a normal distribution as given by the Erdős-Kac theorem. For extreme values, we know that

$$
\begin{equation*}
\omega(n) \leq(1+o(1)) \log n / \log \log n, n \rightarrow \infty \tag{2}
\end{equation*}
$$

a best-possible result of Ramanujan.
Consider the analogous function $\omega^{*}(n)$ which counts the number of shifted prime divisors of n, that is, the number of divisors of n of the form $p-1$, with p prime. One might guess that assertions like (1) and (2) hold as well for ω^{*}. And in fact, it is easy to prove that

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x} \omega^{*}(n)=\log \log x+O(1) \tag{3}
\end{equation*}
$$

However, the analogy stops here. As it turns out, the function ω^{*} is considerably wilder than ω. In some sense, ω^{*} is closer to the total number $\tau(n)$ of divisors of n. For example, after work of Prachar [15]

[^0]we have $\omega^{*}(n) \geq n^{c /(\log \log n)^{2}}$ for some positive constant c and infinitely many n. This was improved in [1, Proposition 10] to
\[

$$
\begin{equation*}
\omega^{*}(n) \geq n^{c / \log \log n} \tag{4}
\end{equation*}
$$

\]

for a positive constant c and infinitely many n, a result which is clearly best possible, but for the choice of c, due to the upper bound

$$
\omega^{*}(n) \leq \tau(n) \leq n^{(\log 2+o(1)) / \log \log n}, n \rightarrow \infty
$$

a result due to Wigert. (Also see [2, Section 3].)
This paper deals with the moments

$$
M_{k}(x):=\frac{1}{x} \sum_{n \leq x} \omega^{*}(n)^{k},
$$

for $k=2$ and 3. Prachar [15] showed that

$$
\begin{equation*}
M_{2}(x) \ll(\log x)^{2} . \tag{5}
\end{equation*}
$$

In a letter to the same journal, Erdős [5] proved that

$$
\begin{equation*}
S_{2}(x):=\frac{1}{x} \sum_{[p-1, q-1] \leq x} 1 \ll(\log \log x)^{3}, \tag{6}
\end{equation*}
$$

and indicated how the exponent 3 could be replaced by 1 , and possibly even by 0 . Here, p, q run over prime numbers and $[a, b]$ denotes the least common multiple of a and b. The connection of these results on $S_{2}(x)$ to Prachar's theorem is as follows. We have

$$
\begin{equation*}
M_{2}(x)=\frac{1}{x} \sum_{[p-1, q-1] \leq x}\left\lfloor\frac{x}{[p-1, q-1]}\right\rfloor, \tag{7}
\end{equation*}
$$

where $[a, b]$ denotes the least common multiple of a, b, so that (6) and a partial summation argument imply that

$$
\begin{equation*}
M_{2}(x) \ll \log x(\log \log x)^{3} \tag{8}
\end{equation*}
$$

with the same remark pertaining to the exponent 3 .
In a recent paper Murty and Murty [11], completed the proof that

$$
\begin{equation*}
M_{2}(x) \ll \log x, \tag{9}
\end{equation*}
$$

and they showed the lower bound

$$
\begin{equation*}
M_{2}(x) \gg(\log \log x)^{3}, \tag{10}
\end{equation*}
$$

which improves on the trivial bound

$$
M_{2}(x) \geq\left(\frac{1}{x} \sum_{n \leq x} 1\right)^{-1}\left(\frac{1}{x} \sum_{n \leq x} \omega^{*}(n)\right)^{2} \gg(\log \log x)^{2}
$$

implied by (3) and the Cauchy-Schwarz inequality. Further, they made the conjecture that there is a positive constant C such that

$$
\begin{equation*}
M_{2}(x) \sim C \log x, x \rightarrow \infty . \tag{11}
\end{equation*}
$$

The topic was picked up again by Ding [3] who, using the claim [11, Equation (4.8)], showed that

$$
\begin{equation*}
M_{2}(x) \gg \log x . \tag{12}
\end{equation*}
$$

Further in [4] he gave a heuristic argument for the Murty-Murty conjecture (11) based on the Elliott-Halberstam conjecture, with $C=$ $2 \zeta(2) \zeta(3) / \zeta(6) \approx 3.88719$.

However, as it turns out, there is an error in the proof of [11, Equation (4.8)]. In particular, the error term $O(x)$ there, which results from removing the floor symbol in (7), is only valid for those pairs p, q with $[p-1, q-1] \leq x$ and not for all pairs $p, q \leq x$. We show below in Section 7 how a modified version of Ding's argument [3] can save the proof of (12). Further, we show that not only is the proof of [11, Equation (4.8)] in error, but the assertion is false, see Section 8. This unfortunately seems to invalidate the heuristic in [4]. We certainly agree that the Murty-Murty conjecture (11) holds, but we think the correct constant is closer to 3.1. We give the results of some calculations that support this.

We conjecture that $M_{k}(x) \asymp(\log x)^{2^{k}-k-1}$ and prove this for the third moment $M_{3}(x)$. The proof is considerably more involved than the second moment, but hopefully we have presented it in a manner that leaves open the possibility of getting analogous results for higher moments.

We also consider the level sets $\left\{n: \omega^{*}(n)=j\right\}$, showing that for each fixed positive integer j, the natural density exists and is positive, with the sum of these densities being 1 .

It may be worth pointing out that our methods used to treat the moments of $\omega^{*}(n)$ can be used to deal with the natural generalization where $p-1$ is replaced with $p+a$ for a fixed integer $a \neq 0$.

Throughout we let p, q, r, s, ℓ run over prime numbers. We let (m, n) denote the greatest common divisor of m, n, and $[m, n]$ their least common multiple. We also use the standard order notations \ll, \asymp, \gg from analytic number theory.

2. The constant C in (11)

In Section 8 we shall prove Theorem 5 which not only shows that the correction that we make to Ding's proof of the lower bound for $M_{2}(x)$ is necessary (see Section 7), but it also suggests that the constant $C=$
$2 \zeta(2) \zeta(3) / \zeta(6)$ for the Murty-Murty conjecture shown by his heuristic argument in [4] is probably incorrect. So, what is the correct value of C ? We leave this as an unsolved problem, but perhaps it is helpful to look at some actual numbers. We have numerical calculations of the values of $M_{2}(x)=\frac{1}{x} \sum_{n \leq x} \omega^{*}(n)^{2}$ with $x=10^{k}$ and $2 \leq k \leq 10$ using Mathematica. In view of the relation

$$
M_{2}(x)=\int_{1}^{x} \frac{S_{2}(t)}{t} d t+O(1)
$$

we also calculated the values of $S_{2}(x):=(1 / x) \sum_{[p-1, q-1] \leq x} 1$ for x in the same range. These values are recorded in the table below.

Table 1. Numerical values of $M_{2}\left(10^{k}\right)$ and $S_{2}\left(10^{k}\right)$

k	$M_{2}\left(10^{k}\right)$	$S_{2}\left(10^{k}\right)$
2	9.71	2.42
3	15.530	2.624
4	21.9128	2.8175
5	28.49311	2.88636
6	35.261891	2.950910
7	42.1296839	2.9923851
8	49.02181351	3.02166709
9	56.067311859	3.043042188
10	63.1033824202	$3.0595625,181$

The M_{2} numbers in Table 1 seem to fit nicely with $3 \log x-6$, and the S_{2} numbers may fit with $3.2(1-1 / \log x)$. Perhaps $C \approx 3.1$?

3. The level sets of $\omega^{*}(n)$

For $x, y \geq 1$, let $N(x, y):=\#\left\{n \leq x: \omega^{*}(n) \geq y\right\}$. The following theorem provides upper and lower bounds for $N(x, y)$.

Theorem 1. There exists a suitable constant $c>0$ such that

$$
\left\lfloor\frac{x}{y^{c \log \log y}}\right\rfloor \leq N(x, y) \ll \frac{x \log y}{y}
$$

for all $x \geq 1$ and all sufficiently large y.
Proof. The lower bound follows immediately from [1, Proposition 10], which asserts that there exists some constant $c_{0}>0$ such that for all $z>100$, there is some positive integer $m_{z}<z$ with $\omega^{*}\left(m_{z}\right)>$
$e^{c_{0} \log z / \log \log z}$. Taking $z=y^{c \log \log y}$ with some suitable constant $c>0$, we have $\omega^{*}\left(m_{z}\right)>y$ and hence

$$
N(x, y) \geq\left\lfloor\frac{x}{m_{z}}\right\rfloor \geq\left\lfloor\frac{x}{y^{c \log \log y}}\right\rfloor .
$$

To prove the upper bound, we first note that since the average of $\omega^{*}(n)$ for $n \leq x$ is $\log \log x+O(1)$, it follows that $N(x, y) \ll$ $x \log \log x / y$. So we have the desired upper bound when $y>(\log x)^{.05}$, say. Assume now that $y \leq(\log x)^{.05}$, and let $z=\exp \left(y^{19}\right)$, so that $z=\exp \left((\log x)^{0.95}\right)=x^{o(1)}$. There are two possibilities for n counted by $N(x, y)$:
(1) n is divisible by a shifted prime $p-1>z$,
(2) n is divisible by at least y shifted primes $p-1 \leq z$.

By [9, Theorem 1.2], the count of the numbers in (1) is $\ll x /(\log z)^{\beta+o(1)}$, where $\beta:=1-(1+\log \log 2) / \log 2$ is the Erdős-Ford-Tenenbaum constant. Since $19 \beta>1$, the count in this case is $\ll x \log y / y$. For (2), let $\omega_{z}^{*}(n)$ denote the number of shifted primes $p-1 \leq z$ with $(p-1) \mid n$. It is easily seen that the average value of $\omega_{z}^{*}(n)$ for $n \leq x$ is $\log \log z+O(1)$. Thus, the count in this case is $\ll x \log \log z / y \ll x \log y / y$. Adding up the bounds for the counts in both cases yields the desired upper bound for $N(x, y)$.

Now we study the k-level set $\mathcal{L}_{k}:=\left\{n \in \mathbb{N}: \omega^{*}(n)=k\right\}$ for each $k \in \mathbb{N}$. It is clear that

$$
N(x, y)=\sum_{k \geq y} \#\left(\mathcal{L}_{k} \cap[1, x]\right) .
$$

We shall show that each \mathcal{L}_{k} has a positive natural density δ_{k}, which is defined by

$$
\begin{equation*}
\delta_{k}:=\lim _{x \rightarrow \infty} \frac{\#\left(\mathcal{L}_{k} \cap[1, x]\right)}{x} . \tag{13}
\end{equation*}
$$

Theorem 2. For every $k \in \mathbb{N}$, the k-level set \mathcal{L}_{k} admits a positive natural density δ_{k}. Moreover, we have $\sum_{k} \delta_{k}=1$.

We first show that each \mathcal{L}_{k} is nonempty.
Lemma 1. For every $k \in \mathbb{N}$, we have $\mathcal{L}_{k} \neq \emptyset$.
Proof. Note that $\mathcal{L}_{1}=\mathbb{N} \backslash 2 \mathbb{N}$ and $2 \in \mathcal{L}_{2}$. So we may assume that $k \geq 2$, so that $\mathcal{L}_{k} \subseteq 2 \mathbb{N}$. We shall show that for any $n \in 2 \mathbb{N}$, there exists an integral multiple $m \in \mathbb{N}$ of n such that $\omega^{*}(m)=\omega^{*}(n)+1$. The lemma would then follow from this result in an inductive manner.

To prove this, we fix $n \in 2 \mathbb{N}$ and consider

$$
\mathcal{P}_{2}(x):=\left\{2<p \leq x: \Omega((p-1) / 2) \leq 2 \text { and } P^{-}((p-1) / 2)>x^{3 / 11}\right\}
$$

(The notation here is standard, signifying that $(p-1) / 2$ is either prime or the product of two primes, and this prime or primes are $>x^{3 / 11}$.) By [7, Theorem 25.11], we have $\# \mathcal{P}_{2}(x) \gg x /(\log x)^{2}$ for all sufficiently large x. We wish to find some large $p \in \mathcal{P}_{2}(x)$ with $\omega^{*}(n(p-1) / 2)=$ $\omega^{*}(n)+1$. To this end, we shall show that the number of those $p \in \mathcal{P}_{2}(x)$ which do not have this property is $O\left(x \log \log x /(\log x)^{3}\right)$. Note that if $p \in \mathcal{P}_{2}(x)$ does not possess this property, then we can find $a \mid n$ and $b \mid(p-1) / 2$ with $a, b>1$ such that $a b+1$ is a prime not equal to p.

There are two possibilities: (i) $b=(p-1) / 2$ and $a b+1$ is prime with $a>2$ and (ii) $p-1=2 q r$ with q, r primes in $\left(x^{3 / 11}, x^{8 / 11} / 2\right)$ and $a q+1$ is prime.

Case (i) is simple. Fix $a \mid n$ with $a>2$. The number of integers $b \leq x$ with $P^{-}(b)>x^{3 / 11}$ and both $2 b+1$ and $a b+1$ are prime is $\ll x /(\log x)^{3}$. (The implied constant depends on a but there is a bounded number of choices for a.)

Now we consider Case (ii). Again, let us fix $a \mid n$. For any prime $q \in\left(x^{3 / 11}, x^{8 / 11} / 2\right)$, the number of primes $b<x / 2 q$ such that both $a b+1$ and $2 q b+1$ are prime is

$$
\ll \frac{x}{q(\log x)^{3}} \prod_{r \mid(2 q-a)}\left(1-\frac{1}{r}\right)^{-1} \ll \frac{\log \log q}{q} \cdot \frac{x}{(\log x)^{3}} .
$$

Summing this bound over all $q \in\left(x^{3 / 11}, x^{8 / 11} / 2\right)$ and $a \mid n$, we see that the number of choices of p with b in Case (ii) is $\ll x \log \log x /(\log x)^{3}$. This completes the proof.

We are now ready to prove Theorem 2.
Proof of Theorem 2. As we have pointed out, it suffices to demonstrate the existence and positivity of δ_{k} as defined by (13). The case $k=1$ is obvious, since the level set \mathcal{L}_{1} consists of the odd numbers, so that $\delta_{1}=1 / 2$. Now let us fix $k \geq 2$. Then $\mathcal{L}_{k} \subseteq 2 \mathbb{N}$. We define an equivalence relation \simeq on \mathcal{L}_{k} by declaring that $m \simeq n$ if and only if m and n have exactly the same set of shifted prime divisors. Let \mathcal{C}_{k} be the set of all equivalence classes ${ }^{1}\langle n\rangle$ of \mathcal{L}_{k} under \simeq. Then

$$
\begin{equation*}
\mathcal{L}_{k}=\bigcup_{\langle n\rangle \in \mathcal{C}_{k}}\langle n\rangle . \tag{14}
\end{equation*}
$$

[^1]It is known [6, Theorem 3] that each $\langle n\rangle$ has a positive natural density. Thus, if natural density were countably additive, then we would be able to conclude that δ_{k} exists and equals the sum of the natural densities of the sets $\langle n\rangle \in \mathcal{C}_{k}$. Since Lemma 1 implies that $\mathcal{C}_{k} \neq \emptyset$, we would also have $\delta_{k}>0$. Unfortunately, $\# \mathcal{C}_{k}$ may be infinite and natural density is only finitely additive.

To overcome this issue we appeal to the following elementary result.
Lemma 2. Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots$ be an infinite sequence of pairwise disjoint subsets of \mathbb{N}, such that each \mathcal{A}_{i} has a natural density $\delta\left(\mathcal{A}_{i}\right)$. If the upper asymptotic density of $\bigcup_{i>j} \mathcal{A}_{i} \rightarrow 0$ as $j \rightarrow \infty$, then the density of $\bigcup_{i \geq 1} \mathcal{A}_{i}$ exists and

$$
\delta\left(\bigcup_{i \geq 1} \mathcal{A}_{i}\right)=\sum_{i \geq 1} \delta\left(\mathcal{A}_{i}\right)
$$

This result can be applied to the sets in \mathcal{C}_{k}, since if there are infinitely many, then all but finitely many have their elements divisible by a shifted prime $p-1>y$, for any fixed y. Appealing to $[6$, Theorem 2] (or to Theorem 1 above), the union of these sets has upper density tending to 0 as $y \rightarrow \infty$. Thus, to complete the proof, we now have

$$
\delta_{k}=\sum_{\langle n\rangle \in \mathcal{C}_{k}} \delta(\langle n\rangle) \text { and } \sum_{k} \delta_{k}=1
$$

Here are some exact counts of the level sets \mathcal{L}_{k} for $k \leq 11$.
TABLE 2. Exact counts of level sets for $k<12$

					10
k	10^{4}	10^{6}	10^{8}	$\approx 0^{10}$	$\approx \delta_{k}$
1	5,000	500,000	$50,000,000$	$5,000,000,000$.5
2	834	77,696	$7,436,825$	$720,726,912$.070
3	965	91,602	$8,826,498$	$859,002,140$.084
4	877	79,986	$7,691,971$	$748,412,490$.074
5	612	59,518	$5,684,323$	$555,900,984$.055
6	456	40,641	$4,031,009$	$401,146,301$.040
7	287	29,565	$3,016,881$	$300,330,932$.030
8	202	23,190	$2,324,769$	$233,611,502$.023
9	153	17,914	$1,800,298$	$182,793,491$.018
10	159	13,899	$1,401,307$	$144,740,573$.015
11	103	10,487	$1,131,836$	$118,302,267$.012
≥ 12	352	55,682	$6,654,283$	$735,032,408$	

The largest values of k encountered here up to the various bounds: $10^{4}: 28,10^{6}: 86,10^{8}: 247,10^{10}: 618$.

Perhaps the densities δ_{k} are monotone for $k \geq 3$. Note that in [14] it is shown that the largest density of some $\langle n\rangle$ for n even is given for $n=2$, which improves slightly on an earlier result of Sunseri. It would be good to have some sort of asymptotic inequalities for these densities, and a result in this direction is produced in the next section.

4. A LOWER BOUND FOR $\delta(\langle n\rangle)$

Let $n \in 2 \mathbb{N}$ and consider the equivalence class $\langle n\rangle$ of \mathbb{N} under the same relation \simeq as introduced in the proof of Theorem 2 above. Suppose that $n=\min \langle n\rangle$. In other words, n is the least common multiple of all shifted prime divisors of n. We clearly have $\delta(\langle n\rangle)<1 / n$. Erdős and Wagstaff [6] asked what a positive lower bound could be for $\delta(\langle n\rangle)$. The following theorem provides such a lower bound.

Theorem 3. Let $n \in 2 \mathbb{N}$ be such that $n=\min \langle n\rangle$. Then

$$
\delta(\langle n\rangle) \geq \frac{1}{n^{O(\tau(n))}}
$$

Proof. We follow the proof of [6, Theorem 3] on the existence and positivity of $\delta(\langle n\rangle)$. For any $a_{1}, \ldots, a_{r} \in \mathbb{N}$, denote by $T_{n}\left(a_{1}, \ldots, a_{r}\right)$ the natural density of the set of multiples of n which are not divisible by any a_{i} for $1 \leq i \leq r$. Explicitly, we have

$$
T_{n}\left(a_{1}, \ldots, a_{r}\right)=\sum_{j=0}^{r}(-1)^{j} \sum_{1 \leq i_{1}<\cdots<i_{j} \leq r} \frac{1}{\left[n, a_{i_{1}}, \ldots, a_{i_{j}}\right]} .
$$

By [6, Eq. (2), p. 110], we have

$$
\frac{1}{n} T_{n}\left(a_{1}, \ldots, a_{r+s}\right) \geq T_{n}\left(a_{1}, \ldots, a_{r}\right) T_{n}\left(a_{r+1}, \ldots, a_{r+s}\right)
$$

for any integers $r, s \geq 0$ and any $a_{1}, \ldots, a_{r+s} \in \mathbb{N}$. From this inequality with $s=1$ it follows immediately by induction that

$$
\begin{equation*}
T_{n}\left(a_{1}, \ldots, a_{r}\right) \geq \frac{1}{n} \prod_{i=1}^{r}\left(1-\frac{n}{\left[n, a_{i}\right]}\right)^{1 / m_{i}} \tag{15}
\end{equation*}
$$

where $m_{i}:=\#\left\{1 \leq j \leq r: a_{j}=a_{i}\right\}$.
It suffices to prove the theorem for large values of n. Let $y \geq 1$ be a parameter depending on n. Let $\mathscr{A}_{1}:=\{[p-1, n]: p-1 \leq y$ and $(p-1) \nmid$ $n\}$ and $\mathscr{A}_{2}:=\{[p-1, n]: p-1>y$ and $(p-1) \nmid n\}$. Denote by $\mathscr{B}\left(\mathscr{A}_{2}\right)$ the set of multiples of elements of \mathscr{A}_{2}. We arrange the elements of \mathscr{A}_{1}
as a strictly increasing sequence $\left\{a_{i}\right\}_{i=1}^{r}$. The proof of [6, Theorem 3] shows that

$$
\frac{1}{n} \delta(\langle n\rangle) \geq T_{n}\left(a_{1}, \ldots, a_{r}\right)\left(\frac{1}{n}-\delta\left(\mathscr{B}\left(\mathscr{A}_{2}\right)\right)\right)>0
$$

provided that y is sufficiently large in terms of n. To get a positive lower bound for $\delta(\langle n\rangle)$, it suffices to obtain a positive lower bound for $T_{n}\left(a_{1}, \ldots, a_{r}\right)$ and an upper bound $<1 / n$ for $\delta\left(\mathscr{B}\left(\mathscr{A}_{2}\right)\right)$. Take $y=e^{n^{1 / \beta}}$. By [9, Theorem 1.2] we have

$$
\delta\left(\mathscr{B}\left(\mathscr{A}_{2}\right)\right) \ll \frac{1}{(\log y)^{\beta} \sqrt{\log \log y}} \ll \frac{1}{n \sqrt{\log n}} .
$$

To handle $T_{n}\left(a_{1}, \ldots, a_{r}\right)$, we appeal to (15) to obtain

$$
\begin{aligned}
T_{n}\left(a_{1}, \ldots, a_{r}\right) & \geq \frac{1}{n} \prod_{\substack{d \mid n}} \prod_{\substack{p \leq y+1 \\
(p-1, n)=d \\
(p-1) \nmid n}}\left(1-\frac{d}{p-1}\right) \\
& \geq \frac{1}{n} \exp \left(-\sum_{d \mid n} \sum_{\substack{p \leq y+1 \\
(p-1, n)=d \\
(p-1) \nmid n}} \frac{d}{p-1}\right) \\
& =\frac{e^{\omega^{*}(n)}}{n} \exp \left(-\sum_{d \mid n} \sum_{\substack{p \leq y+1 \\
(p-1, n)=d}} \frac{d}{p-1}\right) .
\end{aligned}
$$

If we replace $d /(p-1)$ with d / p, the error created in the double sum is $\ll \sigma(n) / n$, where σ is the sum-of-divisors function. Thus,

$$
\begin{equation*}
T_{n}\left(a_{1}, \ldots, a_{r}\right) \geq \frac{e^{\omega^{*}(n)}}{n} \exp \left(-\sum_{d \mid n} \sum_{\substack{p \leq y+1 \\(p-1, n)=d}} \frac{d}{p}+O(\log \log n)\right) \tag{16}
\end{equation*}
$$

Lemma 3. For each number $A>0$ there is a positive constant κ such that for all large x and $d<(\log x)^{A}$, we have

$$
\sum_{\substack{d<p \leq x \\ p \equiv a(\bmod d)}} \frac{1}{p}=\frac{\log \log x}{\varphi(d)}+E(d)+O\left(\exp \left(-\kappa(\log x)^{1 / 2}\right)\right),
$$

for all a coprime to d. The number $E(d)$ satisfies $|E(d)| \ll \log (2 d) / \varphi(d)$.
This follows from the Siegel-Walfisz theorem, where the estimation for $E(d)$ appears in works of Norton and Pomerance, see [11, Lemma 2.1].

Consider the double sum in (16). It follows that

$$
\begin{aligned}
& \sum_{d \mid n} d \sum_{\substack{p \leq y+1 \\
(p-1, n)=d}} \frac{1}{p}=\sum_{c d \mid n} \mu(c) d \sum_{\substack{p \leq y+1 \\
p \equiv 1(\bmod c d)}} \frac{1}{p} \\
&=\sum_{c d \mid n} \mu(c) d\left(\frac{\log \log y}{\varphi(c d)}+E(c d)+O\left(\exp \left(-\kappa(\log y)^{1 / 2}\right)\right)\right) \\
&=\tau(n) \log \log y+\sum_{m \mid n} \varphi(m) E(m)+O\left(n^{2} \exp \left(-\kappa(\log y)^{1 / 2}\right)\right) \\
& \quad \leq \tau(n)(\log \log y+O(\log n))=O(\tau(n) \log n) .
\end{aligned}
$$

Hence, we have

$$
T_{n}\left(a_{1}, \ldots, a_{r}\right) \geq \frac{e^{\omega^{*}(n)}}{n^{O(\tau(n))}}=\frac{1}{n^{O(\tau(n))}},
$$

the last estimate coming from $\omega^{*}(n) \leq \tau(n)$. Combining the above estimate with that for $\delta\left(\mathscr{B}\left(\mathscr{A}_{2}\right)\right)$ completes the proof.

5. Higher moments of $\omega^{*}(n)$

For every $k \in \mathbb{N}$, we define the k th moment of $\omega^{*}(n)$ by

$$
M_{k}(x):=\frac{1}{x} \sum_{n \leq x} \omega^{*}(n)^{k} .
$$

Then we have

$$
\begin{equation*}
M_{k}(x)=\frac{1}{x} \sum_{\left[p_{1}-1, \ldots, p_{k}-1\right] \leq x}\left\lfloor\frac{x}{\left[p_{1}-1, \ldots, p_{k}-1\right]}\right\rfloor . \tag{17}
\end{equation*}
$$

This shows that $M_{k}(x)$ is intimately related to

$$
S_{k}(x):=\frac{1}{x} \sum_{\left[p_{1}-1, \ldots, p_{k}-1\right] \leq x} 1 .
$$

In fact, if $S_{k}(x) \ll(\log x)^{c_{k}}$, then a partial summation argument applied to the upper bound in (17) afforded by removing the floor function shows that $M_{k}(x) \ll(\log x)^{c_{k}+1}$. A similar argument shows that a lower bound for $S_{k}(x)$ implies one for $M_{k}(x)$.

For $k \geq 2$, it is natural to relate the function $\omega^{*}(n)^{k}$ to $\tau(n)^{k}$. It is well-known that

$$
\frac{1}{x} \sum_{n \leq x} \tau(n)^{k} \sim \frac{1}{\left(2^{k}-1\right)!} \prod_{p}\left(1-\frac{1}{p}\right)^{2^{k}} \sum_{\nu \geq 0} \frac{(\nu+1)^{k}}{p^{\nu}}(\log x)^{2^{k}-1}
$$

for every $k \geq 1$. Comparing ω^{*} with τ and taking the primality conditions into account, one may conjecture that $M_{k}(x) \sim \mu_{k}(\log x)^{2^{k}-k-1}$ for every $k \geq 2$, where $\mu_{k}>0$ is a constant depending on k. Similarly, one may also conjecture that $S_{k}(x) \sim\left(2^{k}-k-1\right) \mu_{k}(\log x)^{2^{k}-k-2}$ for every $k \geq 2$ with the same constant μ_{k}. As in the case $k=2$, we have the upper and lower bounds for $M_{3}(x)$ of the conjectured magnitude.

Theorem 4. We have $M_{3}(x) \asymp(\log x)^{4}$ for all $x \geq 2$.
The upper and lower bounds will be proved by using different types of arguments. The rest of this section will be devoted to proving the upper bound $M_{3}(x) \ll(\log x)^{4}$, with the proof of the lower bound $M_{3}(x) \gg(\log x)^{4}$ given in Section 6.

We begin with some lemmas. The first is a variant of [11, Lemma 2.7].

Lemma 4. Uniformly for coprime integers e, f in $[1, x]$,

$$
\begin{equation*}
\sum_{\substack{a, b \leq x \\(a e, b f)=1 \\ a e \neq b f}} \frac{1}{a b} \prod_{p \mid a b(a e-b f)}\left(1+\frac{1}{p}\right) \ll(\log x)^{2} \tag{18}
\end{equation*}
$$

Proof. First note that the product contributes at most a factor of magnitude $\log \log x$ to the sum, so the result holds trivially if either a or b is bounded by $x^{1 / \log \log x}$. Hence, we may assume that $a, b>x^{1 / \log \log x}$. Further, every integer $n \leq x$ has $<\log x$ prime divisors, so that

$$
\prod_{\substack{p \mid n \\ p>(\log x)^{1 / 2}}}\left(1+\frac{1}{p}\right) \ll 1,
$$

uniformly. Let u be the product of all primes $p \leq(\log x)^{1 / 2}$. Thus, we may restrict the primes p in the product in the lemma to those that also divide u. We have the expression in (18) is

$$
\begin{equation*}
\ll \sum_{\substack{x^{1 / \log \log x<a, b \leq x} \\(a e, b f)=1 \\ a e \neq b f}} \frac{1}{a b} \sum_{\substack{j|u \\ j| a b(a e-b f)}} \frac{1}{j} \leq \sum_{\substack{j \mid u}} \frac{1}{j} \sum_{\substack{j<a, b \leq x \\ j \mid a e-b f \\(a e, b f==1 \\ a e \neq b f}} \frac{1}{a b} . \tag{19}
\end{equation*}
$$

(Note that we assume here that $a, b>j$, since they are $>x^{1 / \log \log x}$ and $j \leq u \leq \exp \left((1+o(1))(\log x)^{1 / 2}\right)$.) For $p \mid j$ with $j \mid a b(a e-b f)$, we have either $a \equiv 0(\bmod p), b \equiv 0(\bmod p)$, or $a \equiv b f e^{-1}(\bmod p)($ if $p \mid e$ then $p \nmid a e-b f)$. Since j is squarefree, there are at most $3^{\omega(j)} j$ pairs a, b $(\bmod j)$ with $j \mid a b(a e-b f)$. For a fixed pair of residues $(\bmod j)$ that we have here, the sum of $1 / a b$ in this class is $\ll(\log x)^{2} / j^{2}$ uniformly,
so the total contribution in the last sum in (19) is $\ll 3^{\omega(j)}(\log x)^{2} / j$. We thus have the last double sum in (19) is

$$
\ll \sum_{j \mid u} \frac{3^{\omega(j)}(\log x)^{2}}{j^{2}}=(\log x)^{2} \prod_{p \leq(\log x)^{1 / 2}}\left(1+\frac{3}{p^{2}}\right) \ll(\log x)^{2},
$$

which completes the proof of the lemma.
Lemma 5. Uniformly for $1 \leq u<x$ we have

$$
\sum_{\substack{q \leq x \\ q \equiv 1(\bmod u)}} \frac{\tau((q-1) / u)}{\varphi((q-1) / u)} \ll \frac{u}{\varphi(u)} \log x .
$$

Proof. The result holds trivially when $x \leq 2$ or $u \geq x / 2$, so assume that $x>2$ and $u<x / 2$. (In fact, the lemma follows from a trivial argument if $u>x / \exp \left((\log x)^{1 / 2}\right)$, but we won't use this.) We first consider

$$
T=\sum_{\substack{q \leq x \\ q \equiv 1(\bmod u)}} \frac{\tau((q-1) / u)(q-1) / u}{\varphi((q-1) / u)} .
$$

Using that

$$
\frac{n}{\varphi(n)}=\sum_{d \mid n} \frac{\mu^{2}(d)}{\varphi(d)}
$$

we have

$$
T \leq \sum_{d<x} \frac{1}{\varphi(d)} \sum_{\substack{q \leq x \\ q \equiv 1(\bmod d u)}} \tau((q-1) / u) .
$$

Using the maximal order of the divisor function and that q is an integer that is $1(\bmod u d)$ and $>u d$, the contribution to T from a particular number d is $\ll(x / d u)(x / u)^{\epsilon}$, so the contribution to T from numbers $d>(x / u)^{1 / 4}$ is $\ll(x / u)^{3 / 4+\epsilon}<(x / u)^{4 / 5}$, say. We also use that $\tau((q-$ 1)/u) is at most twice the number of divisors $j \mid(q-1) / u$ with $j \leq$ $(x / u)^{1 / 2}$. Thus,

$$
T \ll \sum_{d \leq(x / u)^{1 / 4}} \frac{1}{\varphi(d)} \sum_{j \leq(x / u)^{1 / 2}} \sum_{\substack{q \leq x \\ q \equiv 1(\bmod [j, d j u)}} 1+(x / u)^{4 / 5} .
$$

We have $[j, d] \leq(x / u)^{3 / 4}$ and so $x /([j, d] u) \geq(x / u)^{1 / 4}$ and the inner sum here is $\ll x /(\varphi([j, d] u) \log (x / u))$. Now $[j, d]=j d / i$, where $i=$ (j, d), so

$$
T \ll \sum_{d \leq(x / u)^{1 / 4}} \frac{1}{\varphi(d)} \sum_{i \mid d} \sum_{k \leq(x / u)^{1 / 2} / i} \frac{x}{\varphi(d) \varphi(u) \varphi(k) \log (x / u)}+(x / u)^{4 / 5}
$$

The sum of $1 / \varphi(k)$ in the indicated range is $\ll \log (x / u)$, so

$$
T \ll \sum_{d \leq(x / u)^{1 / 4}} \frac{x \tau(d)}{\varphi(u) \varphi(d)^{2}}+(x / u)^{4 / 5} \ll \frac{x}{\varphi(u)}
$$

It immediately follows that

$$
\sum_{\substack{q \leq x \\ q \equiv 1(\bmod u)}} \frac{\tau((q-1) / u)(q-1)}{\varphi((q-1) / u)} \ll \frac{u x}{\varphi(u)}
$$

and the lemma follows by partial summation.
At this point we find it convenient to reprise the upper bound proof for $k=2$ from [11] since we take a slightly different perspective, the proof is short, and the case $k=3$ follows with similar tools. We show that

$$
\begin{equation*}
S_{2}(x) \ll 1 \tag{20}
\end{equation*}
$$

We are to count pairs of primes p, q with $[p-1, q-1] \leq x$. Let

$$
d=(p-1, q-1), p-1=a d, q-1=b d
$$

The case $p=q$ has the count $O(x / \log x)$, so we may assume that $a \neq b$. So, we are counting triples a, b, d with $(a, b)=1, a \neq b, a b d \leq x$, with $a d+1, b d+1$ both prime. First suppose that $d=\max \{a, b, d\}$. Since $a b d \leq x$, we have $a b \leq x^{2 / 3}$. For a given choice of a, b, the number of choices for $d \leq x / a b$ with $a d+1, b d+1$ both prime is

$$
\ll \frac{x}{a b(\log x)^{2}} \prod_{\ell \mid a b(a-b)}\left(1+\frac{1}{\ell}\right)
$$

where ℓ runs over primes. This follows from the upper bound in either Brun's or Selberg's sieve. Lemma 4 in the case $e=f=1$ completes the proof of (20) in this case.

Now assume that $a=\max \{a, b, d\}$. Then $b d=q-1 \leq x^{2 / 3}$. For a given prime $q \leq x^{2 / 3}+1$ and a divisor d of $q-1$, we count values of $a \leq x /(q-1)$ with $a d+1$ prime. By the Brun-Titchmarsh inequality, the number of such values of a is

$$
\ll \frac{d}{\varphi(d)} \frac{x}{(q-1) \log x} \leq \frac{x}{\varphi(q-1) \log x} .
$$

So, in all, there are $\ll \tau(q-1) x /(\varphi(q-1) \log x)$ choices for a. Lemma 5 in the case $u=1$ completes the proof of (20) in this case. The last case $b=\max \{a, b, d\}$ is completely symmetric with the case just considered, so we are done.

Now we prove the upper bound $M_{3}(x) \ll(\log x)^{4}$ asserted in Theorem 4. For this it is sufficient to prove that

$$
\begin{equation*}
S_{3}(x)=\frac{1}{x} \sum_{[p-1, q-1, r-1] \leq x} 1 \ll(\log x)^{3} \tag{21}
\end{equation*}
$$

where p, q, r run over prime numbers. From the case of the second moment, we may assume that p, q, r are distinct. Note that

$$
[p-1, q-1, r-1]=a b c d e f g,
$$

where

$$
\begin{gathered}
g=\operatorname{gcd}(p-1, q-1, r-1) \\
d g=\operatorname{gcd}(p-1, q-1), e g=\operatorname{gcd}(p-1, r-1), f g=\operatorname{gcd}(q-1, r-1) \\
a=(p-1) / d e g, b=(q-1) / d f g, c=(r-1) / e f g
\end{gathered}
$$

Note that we have a, b, c pairwise coprime, as well as d, e, f. Also,

$$
\operatorname{gcd}(a e, b f)=1, \operatorname{gcd}(a d, c e)=1, \operatorname{gcd}(b d, c f)=1
$$

To prove (21), we consider 7 cases depending on the largest of a, \ldots, g. By symmetry this collapses to 3 cases:

$$
\max \{a, \ldots, g\}=a, d, \text { or } g
$$

Beginning with the max being a, first choose a prime r and a factorization of $r-1$ as cefg. Next choose a prime q with $q \equiv 1(\bmod f g)$ and take a factorization of $(q-1) / f g$ as $b d$. Finally, let $a \leq x / b c d e f g$ with $a d e g+1$ prime. The number of choices for a is

$$
\ll \frac{x}{b c d e f g \log x} \frac{d e g}{\varphi(d e g)}
$$

The number of choices for c, e, f, g is $\tau_{4}(r-1)$. Given an ordered factorization cefg of $r-1$, let $u=u_{r-1}=f g$. The number of choices for b, d is $\tau((q-1) / u)$. Thus, the total number of choices in this case is

$$
\ll \sum_{r<x} \frac{\tau_{4}(r-1)}{\varphi(r-1)} \sum_{\substack{q<x \\ q \equiv 1\left(\bmod u_{r-1}\right)}} \frac{\tau((q-1) / u)}{\varphi((q-1) / u)} \frac{x}{\log x} .
$$

Using Lemma 5, we have the number of choices

$$
\begin{equation*}
\ll x \sum_{r<x} \frac{\tau_{4}(r-1)}{\varphi(r-1)} \frac{u}{\varphi(u)} \leq x \sum_{r<x} \frac{\tau_{4}(r-1)(r-1)}{\varphi(r-1)^{2}} . \tag{22}
\end{equation*}
$$

We now appeal to [12, Theorem 1.2] or [13, Corollary 1.2] from which we see this last sum is $\ll(\log x)^{3}$. This completes the proof when $a=\max \{a, \ldots, g\}$.

Now assume that $d=\max \{a, \ldots, g\}$. We choose a prime $r<x$ and a factorization cefg of $r-1$. We then choose a, b with $a b(r-1) \leq x^{6 / 7}$. We now let d run up to $x /(a b(r-1)$ with $a d e g+1$ and $b d f g+1$ prime. The number of choices is

$$
\ll \frac{x \tau_{4}(r-1)}{a b(r-1)(\log x)^{2}} \prod_{\ell \mid a b e f(b f-a e)}\left(1+\frac{1}{\ell}\right) \prod_{\ell \mid g}\left(1+\frac{1}{\ell}\right),
$$

where ℓ runs over prime numbers. We can absorb the part of the product coming from $\ell \mid$ ef and $\ell \mid g$ into the main term, getting

$$
\frac{x \tau_{4}(r-1)(r-1)}{\varphi(r-1)^{2} a b(\log x)^{2}} \prod_{\ell \mid a b(b f-a e)}\left(1+\frac{1}{\ell}\right)
$$

Note that this final product is finite, since $(a e, b f)=1$ and $a e \neq b f$ (If $a=b=e=f=1$, then one has $p=q$, a possibility we ruled out). Lemma 4 and then the argument as in (22) completes the proof of the case when d is the maximum of a, \ldots, g.

We now consider the case that $g=\max \{a, \ldots, g\}$, which is quite similar to the previous case. For a given choice of a, \ldots, f, we have $a \ldots f \leq x^{6 / 7}$, so the number of values of $g \leq x / a \ldots f$ with adeg + $1, b d f g+1, c e f g+1$ all prime is

$$
\ll \frac{x}{A(\log x)^{3}} \prod_{\ell \mid A E}\left(1+\frac{2}{\ell}\right),
$$

where

$$
A=a b c d e f, \quad E=(a e-b f)(a d-c f)(b d-c e)
$$

Without the product, the sum of $1 / A$ is $O\left((\log x)^{6}\right)$. We would like to show the same estimate holds with the product included. Note however that the product is in the worst case $O\left((\log \log x)^{2}\right)$, so our result holds trivially if any of a, \ldots, f is $\leq x^{1 /(\log \log x)^{2}}$. We thus assume they are all $>x^{1 /(\log \log x)^{2}}$. Further, as in the proof of Lemma 4, let u be the product of all primes $\ell \leq(\log x)^{1 / 2}$. We may restrict primes ℓ in the product to such primes. We wish to estimate

$$
\sum_{j \mid u} \frac{2^{\omega(j)}}{j} \sum_{\substack{a, \ldots, f<x \\ j \mid A E}} \frac{1}{a \ldots f}
$$

Note that $A E$ is the product of 9 expressions, so that in the inner sum, the 6 -tuple (a, \ldots, f) lies in $\leq 9^{\omega(j)} j^{5}$ residue classes $\bmod j$. For each
one of these classes the inner sum is $\ll(\log x)^{6} / j^{6}$, so we have

$$
\sum_{j \mid u} \frac{2^{\omega(j)}}{j} \frac{9^{\omega(j)}}{j}(\log x)^{6}=(\log x)^{6} \sum_{j \mid u} \frac{18^{\omega(j)}}{j^{2}} \ll(\log x)^{6} .
$$

This completes our proof of the upper bound in Theorem 4.

6. A LOWER BOUND FOR THE THIRD MOMENT

By (17), we have

$$
M_{3}(x) \geq \frac{1}{2} \sum_{[p-1, q-1, r-1] \leq x} \frac{1}{[p-1, q-1, r-1]} .
$$

Thus, we wish to show that

$$
\begin{equation*}
\sum_{[p-1, q-1, r-1] \leq x} \frac{1}{[p-1, q-1, r-1]} \gg(\log x)^{4} . \tag{23}
\end{equation*}
$$

We restrict to the case that p, q, r are distinct primes, noting that the complementary case is negligible. We use the identity

$$
\frac{1}{[p-1, q-1, r-1]}=\sum_{\substack{u|r-1 \\ u|[p-1, q-1]}} \frac{\varphi(u)}{[p-1, q-1](r-1)} .
$$

Let

$$
\begin{equation*}
M_{2}(x ; u):=\sum_{\substack{[p-1, q-1] \leq x \\ u \mid[p-1, q-1]}} \frac{1}{[p-1, q-1]} . \tag{24}
\end{equation*}
$$

We thus have that

$$
\begin{equation*}
M_{3}(x) \geq \frac{1}{2} \sum_{\substack{u \leq x^{1 / 3}}} \sum_{\substack{r \leq x^{1 / 3} \\ u \backslash r-1}} \frac{1}{r-1} M_{2}\left(x^{2 / 3} ; u\right) \tag{25}
\end{equation*}
$$

Our goal then is to obtain a lower bound for $M_{2}\left(x^{2 / 3}, u\right)$ and use that in (25).

Helpful will be a tool from [2], namely Theorem 2.1: For each $\varepsilon>0$ there are numbers $\delta>0$ and x_{0}, such that if $x>x_{0}, k<x^{\delta}$, and $(a, k)=1$, then

$$
\begin{equation*}
\left|\sum_{\substack{p \leq y \\ p \equiv a(\bmod k)}} \log p-\frac{x}{\varphi(k)}\right| \leq \varepsilon \frac{y}{\varphi(k)}, \tag{26}
\end{equation*}
$$

for all $y \geq x$, except possibly for those k divisible by a certain number $k_{0}(x)>\log x$.

If $k_{0}(x)$ should exist and is divisible by a prime $>(1 / 3) \log \log x$, let $s=s(x)$ be the largest such prime. Otherwise, let $s=s(x)$ be the least prime $>(1 / 3) \log \log x$. Note that if x is sufficiently large and $k_{0}(x)$ exists and is not divisible by any prime $>(1 / 3) \log \log x$, then $k_{0}(x)$ must be divisible by the cube of some prime. Indeed

$$
\prod_{\ell \leq(1 / 3) \log \log x} \ell^{2}=(\log x)^{2 / 3+o(1)}
$$

so this product is smaller than $k_{0}(x)$. In particular, if x is large and k is cube-free, then (26) holds whenever $s \nmid k$.

Corollary 1. Suppose that $\varepsilon=1 / 4$ and we have the corresponding number δ as above. If x is sufficiently large, $k<x^{\delta}$ is cube-free and not divisible by $s(x)$, then

$$
\sum_{\substack{x<p \leq x^{2} \\ p \equiv a(\bmod k)}} \frac{1}{p} \gg \frac{1}{\varphi(k)},
$$

uniformly.
This follows instantly from the above theorem, namely [2, Theorem 2.1], by either partial summation or a dyadic summation.

Let $\varphi_{2}(n)$ be the multiplicative function with value at a prime power ℓ^{j} equal to $\ell^{j}(1-2 / \ell)$.

Proposition 1. Let δ be the corresponding constant for $\varepsilon=1 / 4$. Suppose that x is large and $u<x^{\delta / 12}$ is squarefree and not divisible by $s=s\left(x^{1 / 6}\right)$. Then

$$
M_{2}\left(x^{2 / 3} ; u\right) \gg \log x \sum_{\substack{u=u_{1} u_{2} u_{3} \\ u_{1} u_{2} \text { odd }}} \frac{u_{3} \varphi_{2}\left(u_{1} u_{2}\right)}{\varphi(u)^{2}},
$$

uniformly.
Proof. We have

$$
\begin{equation*}
M_{2}\left(x^{2 / 3} ; u\right) \geq \sum_{\substack{u_{1} u_{1} u_{2} u_{3} \\ u_{1} u_{2} \text { odd }}} \sum_{\substack{p \leq x^{1 / 3} \\ p=1\left(\bmod u_{1} u_{3}\right) \\\left(p-1, u_{2} s\right)=1}} \sum_{\substack{q=1 \\ q \leq x^{1 / 3} \\\left(q-1, u_{1} s\right)=1}} \frac{1}{[p-1, q-1]} . \tag{27}
\end{equation*}
$$

We write $1 /[p-1, q-1]$ as $(p-1, q-1) /(p-1)(q-1)$ and note that $u_{3} \mid(p-1, q-1)$. Thus,

$$
1 /[p-1, q-1]=u_{3} \sum_{d \mid(p-1, q-1) / u_{3}} \varphi(d) /(p-1)(q-1) .
$$

Thus, for a given choice of u_{1}, u_{2}, u_{3}, the contribution in (27) is at least

$$
\sum_{\substack{d<x^{1 / 12} \tag{28}\\
d \text { squarefree } \\
(d, s)=1}} u_{3} \varphi(d) \sum_{\substack{p \leq x^{1 / 3} \\
p \equiv \begin{array}{c}
1\left(\text { mod } d u_{1} u_{3}\right) \\
\left(p-1, u_{2} s\right)=1
\end{array}}} \frac{1}{p-1} \sum_{\substack{q \leq x^{1 / 3} \\
q \equiv 1\left(\bmod d u_{2} u_{3}\right) \\
\left(q-1, u_{1} s\right)=1}} \frac{1}{q-1} .
$$

For the sum over p we temporarily ignore the condition that $s \nmid p-1$. Then p runs over $\varphi_{2}\left(u_{2}\right)$ residue classes mod $d u$. In each of these classes, the sum of $1 /(p-1)$ is $\gg 1 / \varphi(d u)$ by Corollary 1 . So, the sum over p appears to be $\gg \varphi_{2}\left(u_{2}\right) / \varphi(d u)$. But, we also need to take into account the condition $s \nmid p-1$. For this, we compute an upper bound for the sum where $s \mid p-1$. An upper bound sieve result shows that the contribution is $\ll \varphi_{2}\left(u_{2}\right) /(\varphi(d u) \log \log x)$, which justifies ignoring the condition $s \nmid p-1$. For the sum over q, the analogous argument shows that it is $\gg \varphi_{2}\left(u_{1}\right) / \varphi(d u)$.

Thus, the expression in (28) is at least of magnitude

$$
\sum_{\substack{d<x^{1 / 12} \\ d \text { squarefree } \\(d, s)=1}} \frac{u_{3} \varphi(d) \varphi_{2}\left(u_{1} u_{2}\right)}{\varphi(d u)^{2}} \geq \sum_{\substack{d<x^{1 / 12} \\ d \text { squarefree } \\(d, s)=1}} \frac{u_{3} \varphi_{2}\left(u_{1} u_{2}\right)}{d \varphi(u)^{2}} \gg \frac{u_{3} \varphi_{2}\left(u_{1} u_{2}\right)}{\varphi(u)^{2}} \log x .
$$

Thus, the proposition now follows from (27).
We are now ready to complete the proof of the lower bound in Theorem 4, that is, $M_{3}(x) \gg(\log x)^{4}$. From (25) and Proposition 1 we have

$$
M_{3}(x) \gg \sum_{\substack{u \leq x^{\delta / 12} \\ u \text { squarefree } \\ s \nmid u}} \varphi(u) \sum_{\substack{r \leq x^{1 / 3} \\ u \mid r-1}} \frac{1}{r-1} \sum_{\substack{u=u_{1} u_{2} u_{3} \\ u_{1} u_{2} \text { odd }}} \frac{u_{3} \varphi_{2}\left(u_{1} u_{2}\right)}{\varphi(u)^{2}} \log x .
$$

It thus follows from Corollary 1 that

$$
M_{3}(x) \gg \sum_{\substack{u \leq x^{\delta / 12} \\ u \text { squarefree } \\ s \nmid u}} \sum_{\substack{u=u_{1} u_{2} u_{3} \\ u_{1} u_{2} \text { odd }}} \frac{u_{3} \varphi_{2}\left(u_{1} u_{2}\right)}{\varphi(u)^{2}} \log x .
$$

We factor the u-expression as

$$
\frac{u_{3} \varphi_{2}\left(u_{1} u_{2}\right)}{\varphi(u)^{2}}=\frac{\varphi_{2}\left(u_{1}\right)}{\varphi\left(u_{1}\right)^{2}} \frac{\varphi_{2}\left(u_{2}\right)}{\varphi\left(u_{2}\right)^{2}} \frac{u_{3}}{\varphi\left(u_{3}\right)^{2}} .
$$

Note that for n odd we have $\varphi_{2}(n) / \varphi(n)^{2} \gg 1 / n$, so that

$$
M_{3}(x) \gg \log x\left(\sum_{\substack{u_{1} \leq x^{\delta / 36} \\ u_{1} \text { odd, suarefree } \\ s \nmid u_{1}}} \frac{1}{u_{1}}\right)^{2} \sum_{\substack{u_{3} \leq x^{\delta / 36} \\ u_{3} \text { squarefree } \\ s \nmid u_{3}}} \frac{1}{u_{3}} \gg(\log x)^{4} .
$$

This completes the proof of (23).

7. The lower bound for the second moment

As mentioned, the proof in Ding [3] that $M_{2}(x) \gg \log x$ is not complete since it relies on an incorrect statement from [11]. The proof is easily correctable, and we give the few details here.

The goal is to show that

$$
\begin{equation*}
\sum_{[p-1, q-1] \leq x} \frac{1}{[p-1, q-1]} \gg \log x \tag{29}
\end{equation*}
$$

We may assume here that $p \neq q$. As before,

$$
\frac{1}{[p-1, q-1]}=\sum_{d \mid(p-1, q-1)} \frac{\varphi(d)}{(p-1)(q-1)},
$$

so that

$$
\sum_{[p-1, q-1] \leq x} \frac{1}{[p-1, q-1]}=\sum_{d \leq x} \varphi(d) \sum_{\substack{[p-1, q-1] \leq x \\ d \mid(p-1, q-1)}} \frac{1}{(p-1)(q-1)}
$$

By placing additional restrictions on d, p, q the expression here only gets smaller. We do this as follows. Consider Corollary 1 from the previous section with $\varepsilon=1 / 4$. We assume that d is squarefree, $d \leq x^{\delta / 4}$, and that $s\left(x^{1 / 4}\right) \nmid d$. We further assume that $p, q \in\left(x^{1 / 4}, x^{1 / 2}\right]$. So, Corollary 1 implies that $\sum_{p} 1 /(p-1) \gg 1 / \varphi(d)$, and the same for the sum over q. Thus,

$$
\sum_{[p-1, q-1] \leq x} \frac{1}{[p-1, q-1]} \gg \sum_{d} \frac{1}{\varphi(d)} \geq \sum_{d} \frac{1}{d} \gg \log x
$$

This completes the proof of (29).
A similar proof can show that $S_{2}(x) \gg 1$. Note that the claim that $S_{2}(x) \asymp 1$ was asserted without proof in [8]. Concerning $S_{3}(x)$, we have a proof that it is $\gg(\log x)^{3}$ (and so $S_{3}(x) \asymp(\log x)^{3}$ after the result in Section 5), but we do not present the details here.

8. A tail estimate

In this section we prove the following theorem.
Theorem 5. We have

$$
\sum_{\substack{p, q \leq x \\[p-1, q-1]>x}} \frac{1}{[p-1, q-1]} \gg \log x
$$

In [11] it is claimed that

$$
\begin{equation*}
\sum_{p, q \leq x} \frac{1}{[p-1, q-1]}=\sum_{[p-1, q-1] \leq x} \frac{1}{[p-1, q-1]}+O(1) \tag{30}
\end{equation*}
$$

see the discussion in [11] at the start of Section 4. However, the difference between the two sums in (30) is the sum in Theorem 5, so it cannot be $O(1)$.

Proof. We use the full strength of [2, Theorem 2.1] instead of the simplified version used in Section 6. Let $\mathcal{D}=\mathcal{D}(x)=\left\{d \leq x^{1 / 20}\right.$: d even, $\operatorname{gcd}(15, d)=1\}$ with x being sufficiently large. Let $\varepsilon=\delta=.01$, and let $\mathcal{D}_{\varepsilon, \delta}=\mathcal{D}_{\varepsilon, \delta}(x)$ be the possible set of exceptional moduli as described in [2, Theorem 2.1]. The set $\mathcal{D}_{\varepsilon, \delta}$ has cardinality $O_{\varepsilon, \delta}(1)$, and the members are all $>\log x$. Let $\mathcal{D}^{\prime}=\mathcal{D}^{\prime}(x)$ denote the subset of \mathcal{D} of elements d with $30 d$ not divisible by any member of $\mathcal{D}_{\varepsilon, \delta}(x)$.

For each $d \in \mathcal{D}^{\prime}$ let $\mathcal{P}=\mathcal{P}(x, d)$ denote the set of primes p with

- $p \equiv 1(\bmod d)$,
- $p \leq x$,
- $\operatorname{gcd}(30,(p-1) / d)=1$.

Since $\varphi(30 d) / \varphi(d)=16$, it follows from the conditions above that \mathcal{P} consists of primes $p \leq x$ in precisely 3 of the $16 \varphi(d)$ reduced residue classes modulo $30 d$. Indeed, if $2^{a} \| d$, with $a \geq 1$, then $p \equiv 2^{a}+$ $1\left(\bmod 2^{a+1}\right)$. Also, $p \equiv 2(\bmod 3)$ and $p \equiv 2,3$, or $4(\bmod 5)$.

Note that via [2, Theorem 2.1] and partial summation, if $x^{9 / 10}<t \leq$ x with x sufficiently large, then

$$
\begin{equation*}
\left|\sum_{\substack{p \leq t \\ p \in \mathcal{P}}} 1-\frac{3 t}{16 \varphi(d) \log t}\right| \leq \frac{6 \varepsilon t}{16 \varphi(d) \log t} \tag{31}
\end{equation*}
$$

With r running over primes, let

$$
f(n)=f(n, x)=\sum_{\substack{7 \leq r \leq x^{1 / 20} \\ r \mid n}} \frac{1}{r-1} .
$$

Note that

$$
\begin{aligned}
\sum_{\substack{p \in \mathcal{P} \\
p \leq t}} f((p-1) / d) & =\sum_{\substack{7 \leq r \leq x^{1 / 20}}} \sum_{\substack{p \in \mathcal{P}, p \leq t \\
r \mid(p-1) / d}} \frac{1}{r-1} \\
& <\frac{2 t}{(16 / 3) \varphi(d) \log \left(t^{8 / 9} / 30\right)} \sum_{r \geq 7} \frac{1}{(r-1)^{2}},
\end{aligned}
$$

using the explicit version of the Brun-Titchmarsh inequality due to Montgomery-Vaughan [10, Theorem 2]. Since the final sum here is a constant smaller than .063, it follows from (31) that

$$
\begin{equation*}
\sum_{\substack{p \in \mathcal{P} \\ p \leq t}} f((p-1) / d) \leq \frac{3}{20} \sum_{\substack{p \in \mathcal{P} \\ p \leq t}} 1 \tag{32}
\end{equation*}
$$

for $x^{9 / 10}<t \leq x$ and x sufficiently large. Let

$$
\mathcal{P}^{\prime}=\mathcal{P}^{\prime}(x, d)=\{p \in \mathcal{P}: f((p-1) / d) \leq 1 / 5\}
$$

so that from (32) we see that

$$
\sum_{\substack{p \in \mathcal{P}^{\prime} \\ p \leq t}} 1 \geq \frac{1}{4} \sum_{\substack{p \in \mathcal{P} \\ p \leq t}} 1
$$

for x sufficiently large and $x^{9 / 10}<t \leq x$. Combining this with (31) and applying partial summation we obtain

$$
\begin{equation*}
\sum_{\substack{p \in \mathcal{P}^{\prime} \\ x^{9 / 10}<p \leq x}} \frac{1}{p}>\frac{.0048}{\varphi(d)} \geq \frac{.0096}{d} \tag{33}
\end{equation*}
$$

for all $d \in \mathcal{D}^{\prime}$ and x beyond some uniform bound.
For each $d \in \mathcal{D}^{\prime}(x)$ let

$$
\mathcal{Q}=\mathcal{Q}(x, d)=\{q \leq x: q \equiv 1(\bmod d)\}
$$

so that for $x^{9 / 10}<t \leq x$, we have

$$
\begin{equation*}
\left|\sum_{\substack{q \in \mathcal{Q} \\ q \leq t}} 1-\frac{t}{\varphi(d) \log t}\right|=\left|\pi(t ; d, 1)-\frac{t}{\varphi(d) \log t}\right| \leq \frac{2 \varepsilon t}{\varphi(d) \log t} \tag{34}
\end{equation*}
$$

for x sufficiently large.
Next, for $d \in \mathcal{D}^{\prime}(x)$ and $p \in \mathcal{P}^{\prime}(x, d)$, let

$$
\mathcal{Q}^{\prime}=\mathcal{Q}^{\prime}(x, d, p)=\{q \in \mathcal{Q}: \operatorname{gcd}(q-1, p-1)=d\}
$$

If $\operatorname{gcd}(q-1, p-1)>d$, then $r d \mid q-1$ for some prime $r \mid(p-1) / d$ with $r \geq 7$ (since $(p-1) / d$ is coprime to 30). For $x^{9 / 10}<t \leq x$ we have (using $d \leq x^{1 / 20}$ and $\pi(t ; r d, 1) \leq t / r d$),

$$
\begin{aligned}
\sum_{r \mid(p-1) / d} \pi(t ; r d, 1) & =\sum_{\substack{r \mid(p-1) / d \\
r \leq x^{1 / 20}}} \pi(t ; r d, 1)+\sum_{\substack{r \mid p-1 \\
r>x^{1 / 20}}} \pi(t ; r d, 1) \\
& \leq \sum_{\substack{r \mid(p-1) / d \\
r \leq x^{1 / 20}}} \frac{2 t}{\varphi(d)(r-1) \log (t / r d)}+\sum_{\substack{r \mid p-1 \\
r>x^{1 / 20}}} \frac{t}{r d} \\
& \leq \frac{9}{4} f((p-1) / d) \frac{t}{\varphi(d) \log t}+O\left(\frac{t}{d x^{1 / 20}}\right) .
\end{aligned}
$$

Since $f((p-1) / d) \leq 1 / 5$, we conclude that

$$
\sum_{\substack{q \leq t \\ q \in \mathcal{Q} \backslash \mathcal{Q}^{\prime}}} 1 \leq \frac{.46 t}{\varphi(d) \log t}
$$

for x sufficiently large and $x^{9 / 10}<t \leq x$. Thus, from (34),

$$
\sum_{\substack{q \leq t \\ q \in \mathcal{Q}^{\prime}}} 1 \geq \frac{t}{2 \varphi(d) \log t},
$$

so that

$$
\begin{equation*}
\sum_{\substack{q \in \mathcal{Q}^{\prime} \\ x^{9 / 10}<q \leq x}} \frac{1}{q}>\frac{.0525}{\varphi(d)} \geq \frac{.105}{d} \tag{35}
\end{equation*}
$$

Now for each pair p, q with $p \in \mathcal{P}^{\prime}(x, d)$ and $q \in \mathcal{Q}^{\prime}(x, d, p)$ with $p, q>x^{9 / 10}$, we have $[p-1, q-1]=(p-1)(q-1) / d>x^{1.75}$. Further, from (33) and (35),

$$
\sum_{p, q} \frac{1}{[p-1, q-1]}=d \sum_{p} \frac{1}{p-1} \sum_{q} \frac{1}{q-1}>\frac{.001 d}{d^{2}}=\frac{.001}{d}
$$

It remains to note that $\sum_{d \in \mathcal{D}^{\prime}} 1 / d \gg \log x$. In fact, since every member of $\mathcal{D}_{\varepsilon, \delta}(x)$ exceeds $\log x$, we have

$$
\sum_{a \in \mathcal{D}_{\varepsilon, \delta}(x)} \sum_{\substack{d \in \mathcal{D} \\ a \mid 30 d}} \frac{1}{d}=O_{\varepsilon, \delta}(1),
$$

so that

$$
\sum_{\substack{p, q \leq x \\[p-1, q-1]>x}} \frac{1}{[p-1, q-1]}>.001 \sum_{d \in \mathcal{D}} \frac{1}{d}+O(1)=\frac{1}{75000} \log x+O(1)
$$

for all sufficiently large x. This completes the proof.

Acknowledgments

We thank Nathan McNew and Paul Pollack for some helpful comments.

References

[1] L. M. Adleman, C. Pomerance, and R. S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. (2) 117 (1983), 173-206.
[2] W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), 703-722.
[3] Y. Ding, On a conjecture of M. R. Murty and V. K. Murty, Canad. Math. Bull. 66 (2023), 679-681.
[4] Y. Ding, On a conjecture of M. R. Murty and V. K. Murty II, arXiv:2209.01087.
[5] P. Erdős, Über die Anzahl der Lösungen von $[p-1, q-1] \leq x$, (Aus einen Brief von P. Erdős an K. Prachar), Monatsh. Math. 59 (1955), 318-319.
[6] P. Erdős and S. S. Wagstaff, Jr., The fractional parts of the Bernoulli numbers, Illinois J. Math. 24 (1980), 104-112.
[7] J. Friedlander and H. Iwaniec, Opera de cribro, Amer. Math. Soc. Colloq. Pub. 57, 2010.
[8] F. Luca and C. Pomerance, The range of Carmichael's universal exponent function, Acta Arith. 162 (2014), 289-308.
[9] N. McNew, P. Pollack, and C. Pomerance, Numbers divisible by a large shifted prime and large torsion subgroups of CM elliptic curves, Int. Math. Res. Not. IMRN (2017), no.18, 5525-5553.
[10] H. L. Montgormery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.
[11] M. R. Murty and V. K. Murty, A variant of the Hardy-Ramanujan theorem, Hardy-Ramanujan J. 44 (2021), 32-40.
[12] P. Pollack, A remark on divisor weighted sums, Ramanujan J. 40 (2016), 6369.
[13] P. Pollack, Nonnegative multiplicative functions on sifted sets, and the square roots of -1 modulo shifted primes, Glasg. Math. J. 62 (2020), no.1, 187-199.
[14] C. Pomerance and S. S. Wagstaff, Jr., The denominators of the Bernoulli numbers, Acta Arith. 209 (2023), 1-15.
[15] K. Prachar, Über die Anzahl der Teiler einer natürlichen Zahl, welche die Form $p-1$ haben, Monatsh. Math. 59 (1955), 91-97.

Max-Planck-Institut für Mathematik, 53111 Bonn, Germany
E-mail address: steve.fan@mpim-bonn.mpg.de
Mathematics Department, Dartmouth College, Hanover, NH 03755, USA

E-mail address: carlp@math.dartmouth.edu

[^0]: Date: January 25, 2024.

[^1]: ${ }^{1}$ In [14], the class containing n is denoted \mathcal{S}_{n}.

