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Abstract. Let ω∗(n) denote the number of divisors of n that are
shifted primes, that is, the number of divisors of n of the form p−1,
with p prime. Studied by Prachar in an influential paper from
70 years ago, the higher moments of ω∗(n) are still somewhat a
mystery. This paper addresses these higher moments and considers
other related problems.

1. Introduction

Let ω(n) denote the number of different primes that divide n. This
function has been well-studied, and in particular we know that

(1)

1

x

∑
n≤x

ω(n) = log log x+O(1),

1

x

∑
n≤x

ω(n)2 = (log log x)2 +O(log log x),

after results of Hardy–Ramanujan and Turán. Further, ω(n) obeys a
normal distribution as given by the Erdős–Kac theorem. For extreme
values, we know that

(2) ω(n) ≤ (1 + o(1)) log n/ log log n, n→∞,
a best-possible result of Ramanujan.

Consider the analogous function ω∗(n) which counts the number of
shifted prime divisors of n, that is, the number of divisors of n of the
form p− 1, with p prime. One might guess that assertions like (1) and
(2) hold as well for ω∗. And in fact, it is easy to prove that

(3)
1

x

∑
n≤x

ω∗(n) = log log x+O(1).

However, the analogy stops here. As it turns out, the function ω∗ is
considerably wilder than ω. In some sense, ω∗ is closer to the total
number τ(n) of divisors of n. For example, after work of Prachar [15]
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we have ω∗(n) ≥ nc/(log logn)
2

for some positive constant c and infinitely
many n. This was improved in [1, Proposition 10] to

(4) ω∗(n) ≥ nc/ log logn

for a positive constant c and infinitely many n, a result which is clearly
best possible, but for the choice of c, due to the upper bound

ω∗(n) ≤ τ(n) ≤ n(log 2+o(1))/ log logn, n→∞,
a result due to Wigert. (Also see [2, Section 3].)

This paper deals with the moments

Mk(x) :=
1

x

∑
n≤x

ω∗(n)k,

for k = 2 and 3. Prachar [15] showed that

(5) M2(x)� (log x)2.

In a letter to the same journal, Erdős [5] proved that

(6) S2(x) :=
1

x

∑
[p−1,q−1]≤x

1� (log log x)3,

and indicated how the exponent 3 could be replaced by 1, and possibly
even by 0. Here, p, q run over prime numbers and [a, b] denotes the
least common multiple of a and b. The connection of these results on
S2(x) to Prachar’s theorem is as follows. We have

(7) M2(x) =
1

x

∑
[p−1,q−1]≤x

⌊
x

[p− 1, q − 1]

⌋
,

where [a, b] denotes the least common multiple of a, b, so that (6) and
a partial summation argument imply that

(8) M2(x)� log x(log log x)3,

with the same remark pertaining to the exponent 3.
In a recent paper Murty and Murty [11], completed the proof that

(9) M2(x)� log x,

and they showed the lower bound

(10) M2(x)� (log log x)3,

which improves on the trivial bound

M2(x) ≥

(
1

x

∑
n≤x

1

)−1(
1

x

∑
n≤x

ω∗(n)

)2

� (log log x)2
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implied by (3) and the Cauchy–Schwarz inequality. Further, they made
the conjecture that there is a positive constant C such that

(11) M2(x) ∼ C log x, x→∞.
The topic was picked up again by Ding [3] who, using the claim [11,

Equation (4.8)], showed that

(12) M2(x)� log x.

Further in [4] he gave a heuristic argument for the Murty–Murty con-
jecture (11) based on the Elliott–Halberstam conjecture, with C =
2ζ(2)ζ(3)/ζ(6) ≈ 3.88719.

However, as it turns out, there is an error in the proof of [11, Equa-
tion (4.8)]. In particular, the error term O(x) there, which results from
removing the floor symbol in (7), is only valid for those pairs p, q with
[p− 1, q− 1] ≤ x and not for all pairs p, q ≤ x. We show below in Sec-
tion 7 how a modified version of Ding’s argument [3] can save the proof
of (12). Further, we show that not only is the proof of [11, Equation
(4.8)] in error, but the assertion is false, see Section 8. This unfor-
tunately seems to invalidate the heuristic in [4]. We certainly agree
that the Murty–Murty conjecture (11) holds, but we think the correct
constant is closer to 3.1. We give the results of some calculations that
support this.

We conjecture that Mk(x) � (log x)2
k−k−1 and prove this for the

third moment M3(x). The proof is considerably more involved than
the second moment, but hopefully we have presented it in a manner
that leaves open the possibility of getting analogous results for higher
moments.

We also consider the level sets {n : ω∗(n) = j}, showing that for
each fixed positive integer j, the natural density exists and is positive,
with the sum of these densities being 1.

It may be worth pointing out that our methods used to treat the
moments of ω∗(n) can be used to deal with the natural generalization
where p− 1 is replaced with p+ a for a fixed integer a 6= 0.

Throughout we let p, q, r, s, ` run over prime numbers. We let (m,n)
denote the greatest common divisor of m,n, and [m,n] their least com-
mon multiple. We also use the standard order notations�,�,� from
analytic number theory.

2. The constant C in (11)

In Section 8 we shall prove Theorem 5 which not only shows that the
correction that we make to Ding’s proof of the lower bound for M2(x)
is necessary (see Section 7), but it also suggests that the constant C =



4 KAI (STEVE) FAN AND CARL POMERANCE

2ζ(2)ζ(3)/ζ(6) for the Murty–Murty conjecture shown by his heuristic
argument in [4] is probably incorrect. So, what is the correct value of
C? We leave this as an unsolved problem, but perhaps it is helpful to
look at some actual numbers. We have numerical calculations of the
values of M2(x) = 1

x

∑
n≤x ω

∗(n)2 with x = 10k and 2 ≤ k ≤ 10 using
Mathematica. In view of the relation

M2(x) =

∫ x

1

S2(t)

t
dt+O(1),

we also calculated the values of S2(x) := (1/x)
∑

[p−1,q−1]≤x 1 for x in
the same range. These values are recorded in the table below.

Table 1. Numerical values of M2(10k) and S2(10k)

k M2(10k) S2(10k)
2 9.71 2.42
3 15.530 2.624
4 21.9128 2.8175
5 28.49311 2.88636
6 35.261891 2.950910
7 42.1296839 2.9923851
8 49.02181351 3.02166709
9 56.067311859 3.043042188
10 63.1033824202 3.0595625,181

The M2 numbers in Table 1 seem to fit nicely with 3 log x − 6, and
the S2 numbers may fit with 3.2(1− 1/ log x). Perhaps C ≈ 3.1?

3. The level sets of ω∗(n)

For x, y ≥ 1, let N(x, y) := #{n ≤ x : ω∗(n) ≥ y}. The following
theorem provides upper and lower bounds for N(x, y).

Theorem 1. There exists a suitable constant c > 0 such that⌊
x

yc log log y

⌋
≤ N(x, y)� x log y

y

for all x ≥ 1 and all sufficiently large y.

Proof. The lower bound follows immediately from [1, Proposition 10],
which asserts that there exists some constant c0 > 0 such that for
all z > 100, there is some positive integer mz < z with ω∗(mz) >
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ec0 log z/ log log z. Taking z = yc log log y with some suitable constant c > 0,
we have ω∗(mz) > y and hence

N(x, y) ≥
⌊
x

mz

⌋
≥
⌊

x

yc log log y

⌋
.

To prove the upper bound, we first note that since the average
of ω∗(n) for n ≤ x is log log x + O(1), it follows that N(x, y) �
x log log x/y. So we have the desired upper bound when y > (log x).05,
say. Assume now that y ≤ (log x).05, and let z = exp(y19), so that
z = exp((log x)0.95) = xo(1). There are two possibilities for n counted
by N(x, y):

(1) n is divisible by a shifted prime p− 1 > z,
(2) n is divisible by at least y shifted primes p− 1 ≤ z.

By [9, Theorem 1.2], the count of the numbers in (1) is� x/(log z)β+o(1),
where β := 1− (1+log log 2)/ log 2 is the Erdős–Ford–Tenenbaum con-
stant. Since 19β > 1, the count in this case is � x log y/y. For (2), let
ω∗z(n) denote the number of shifted primes p−1 ≤ z with (p−1) | n. It
is easily seen that the average value of ω∗z(n) for n ≤ x is log log z+O(1).
Thus, the count in this case is � x log log z/y � x log y/y. Adding up
the bounds for the counts in both cases yields the desired upper bound
for N(x, y). �

Now we study the k-level set Lk := {n ∈ N : ω∗(n) = k} for each
k ∈ N. It is clear that

N(x, y) =
∑
k≥y

#(Lk ∩ [1, x]).

We shall show that each Lk has a positive natural density δk, which is
defined by

(13) δk := lim
x→∞

#(Lk ∩ [1, x])

x
.

Theorem 2. For every k ∈ N, the k-level set Lk admits a positive
natural density δk. Moreover, we have

∑
k δk = 1.

We first show that each Lk is nonempty.

Lemma 1. For every k ∈ N, we have Lk 6= ∅.

Proof. Note that L1 = N \ 2N and 2 ∈ L2. So we may assume that
k ≥ 2, so that Lk ⊆ 2N. We shall show that for any n ∈ 2N, there
exists an integral multiple m ∈ N of n such that ω∗(m) = ω∗(n) + 1.
The lemma would then follow from this result in an inductive manner.
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To prove this, we fix n ∈ 2N and consider

P2(x) := {2 < p ≤ x : Ω((p− 1)/2) ≤ 2 and P−((p− 1)/2) > x3/11}.

(The notation here is standard, signifying that (p−1)/2 is either prime
or the product of two primes, and this prime or primes are > x3/11.)
By [7, Theorem 25.11], we have #P2(x)� x/(log x)2 for all sufficiently
large x. We wish to find some large p ∈ P2(x) with ω∗(n(p − 1)/2) =
ω∗(n)+1. To this end, we shall show that the number of those p ∈ P2(x)
which do not have this property is O(x log log x/(log x)3). Note that if
p ∈ P2(x) does not possess this property, then we can find a | n and
b | (p− 1)/2 with a, b > 1 such that ab+ 1 is a prime not equal to p.

There are two possibilities: (i) b = (p−1)/2 and ab+1 is prime with
a > 2 and (ii) p−1 = 2qr with q, r primes in (x3/11, x8/11/2) and aq+1
is prime.

Case (i) is simple. Fix a | n with a > 2. The number of integers b ≤ x
with P−(b) > x3/11 and both 2b+1 and ab+1 are prime is� x/(log x)3.
(The implied constant depends on a but there is a bounded number of
choices for a.)

Now we consider Case (ii). Again, let us fix a | n. For any prime
q ∈ (x3/11, x8/11/2), the number of primes b < x/2q such that both
ab+ 1 and 2qb+ 1 are prime is

� x

q(log x)3

∏
r|(2q−a)

(
1− 1

r

)−1
� log log q

q
· x

(log x)3
.

Summing this bound over all q ∈ (x3/11, x8/11/2) and a | n, we see that
the number of choices of p with b in Case (ii) is � x log log x/(log x)3.
This completes the proof. �

We are now ready to prove Theorem 2.

Proof of Theorem 2. As we have pointed out, it suffices to demonstrate
the existence and positivity of δk as defined by (13). The case k = 1
is obvious, since the level set L1 consists of the odd numbers, so that
δ1 = 1/2. Now let us fix k ≥ 2. Then Lk ⊆ 2N. We define an
equivalence relation ' on Lk by declaring that m ' n if and only if m
and n have exactly the same set of shifted prime divisors. Let Ck be
the set of all equivalence classes1 〈n〉 of Lk under '. Then

(14) Lk =
⋃
〈n〉∈Ck

〈n〉.

1In [14], the class containing n is denoted Sn.
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It is known [6, Theorem 3] that each 〈n〉 has a positive natural density.
Thus, if natural density were countably additive, then we would be able
to conclude that δk exists and equals the sum of the natural densities
of the sets 〈n〉 ∈ Ck. Since Lemma 1 implies that Ck 6= ∅, we would also
have δk > 0. Unfortunately, #Ck may be infinite and natural density
is only finitely additive.

To overcome this issue we appeal to the following elementary result.

Lemma 2. Let A1,A2, . . . be an infinite sequence of pairwise disjoint
subsets of N, such that each Ai has a natural density δ(Ai). If the
upper asymptotic density of

⋃
i>j Ai → 0 as j → ∞, then the density

of
⋃
i≥1Ai exists and

δ
(⋃
i≥1

Ai
)

=
∑
i≥1

δ(Ai).

This result can be applied to the sets in Ck, since if there are infinitely
many, then all but finitely many have their elements divisible by a
shifted prime p − 1 > y, for any fixed y. Appealing to [6, Theorem
2] (or to Theorem 1 above), the union of these sets has upper density
tending to 0 as y →∞. Thus, to complete the proof, we now have

δk =
∑
〈n〉∈Ck

δ(〈n〉) and
∑
k

δk = 1.

�

Here are some exact counts of the level sets Lk for k ≤ 11.

Table 2. Exact counts of level sets for k < 12

k 104 106 108 1010 ≈ δk
1 5,000 500,000 50,000,000 5,000,000,000 .5
2 834 77,696 7,436,825 720,726,912 .070
3 965 91,602 8,826,498 859,002,140 .084
4 877 79,986 7,691,971 748,412,490 .074
5 612 59,518 5,684,323 555,900,984 .055
6 456 40,641 4,031,009 401,146,301 .040
7 287 29,565 3,016,881 300,330,932 .030
8 202 23,190 2,324,769 233,611,502 .023
9 153 17,914 1,800,298 182,793,491 .018

10 159 13,899 1,401,307 144,740,573 .015
11 103 10,487 1,131,836 118,302,267 .012

≥ 12 352 55,682 6,654,283 735,032,408
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The largest values of k encountered here up to the various bounds:
104: 28, 106: 86, 108: 247, 1010: 618.

Perhaps the densities δk are monotone for k ≥ 3. Note that in [14]
it is shown that the largest density of some 〈n〉 for n even is given for
n = 2, which improves slightly on an earlier result of Sunseri. It would
be good to have some sort of asymptotic inequalities for these densities,
and a result in this direction is produced in the next section.

4. A lower bound for δ(〈n〉)

Let n ∈ 2N and consider the equivalence class 〈n〉 of N under the
same relation ' as introduced in the proof of Theorem 2 above. Sup-
pose that n = min〈n〉. In other words, n is the least common multiple
of all shifted prime divisors of n. We clearly have δ(〈n〉) < 1/n. Erdős
and Wagstaff [6] asked what a positive lower bound could be for δ(〈n〉).
The following theorem provides such a lower bound.

Theorem 3. Let n ∈ 2N be such that n = min〈n〉. Then

δ(〈n〉) ≥ 1

nO(τ(n))
.

Proof. We follow the proof of [6, Theorem 3] on the existence and
positivity of δ(〈n〉). For any a1, ..., ar ∈ N, denote by Tn(a1, ..., ar) the
natural density of the set of multiples of n which are not divisible by
any ai for 1 ≤ i ≤ r. Explicitly, we have

Tn(a1, ..., ar) =
r∑
j=0

(−1)j
∑

1≤i1<···<ij≤r

1

[n, ai1 , ..., aij ]
.

By [6, Eq. (2), p. 110], we have

1

n
Tn(a1, ..., ar+s) ≥ Tn(a1, ..., ar)Tn(ar+1, ..., ar+s)

for any integers r, s ≥ 0 and any a1, ..., ar+s ∈ N. From this inequality
with s = 1 it follows immediately by induction that

(15) Tn(a1, ..., ar) ≥
1

n

r∏
i=1

(
1− n

[n, ai]

)1/mi

,

where mi := #{1 ≤ j ≤ r : aj = ai}.
It suffices to prove the theorem for large values of n. Let y ≥ 1 be a

parameter depending on n. Let A1 := {[p−1, n] : p−1 ≤ y and (p−1) -
n} and A2 := {[p− 1, n] : p− 1 > y and (p− 1) - n}. Denote by B(A2)
the set of multiples of elements of A2. We arrange the elements of A1
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as a strictly increasing sequence {ai}ri=1. The proof of [6, Theorem 3]
shows that

1

n
δ(〈n〉) ≥ Tn(a1, ..., ar)

(
1

n
− δ(B(A2))

)
> 0,

provided that y is sufficiently large in terms of n. To get a positive
lower bound for δ(〈n〉), it suffices to obtain a positive lower bound for

Tn(a1, ..., ar) and an upper bound < 1/n for δ(B(A2)). Take y = en
1/β

.
By [9, Theorem 1.2] we have

δ(B(A2))�
1

(log y)β
√

log log y
� 1

n
√

log n
.

To handle Tn(a1, ..., ar), we appeal to (15) to obtain

Tn(a1, ..., ar) ≥
1

n

∏
d|n

∏
p≤y+1

(p−1,n)=d
(p−1)-n

(
1− d

p− 1

)

≥ 1

n
exp

(
−
∑
d |n

∑
p≤y+1

(p−1,n)=d
(p−1) -n

d

p− 1

)

=
eω
∗(n)

n
exp

(
−
∑
d |n

∑
p≤y+1

(p−1,n)=d

d

p− 1

)
.

If we replace d/(p − 1) with d/p, the error created in the double sum
is � σ(n)/n, where σ is the sum-of-divisors function. Thus,

(16) Tn(a1, ..., ar) ≥
eω
∗(n)

n
exp

(
−
∑
d |n

∑
p≤y+1

(p−1,n)=d

d

p
+O(log log n)

)
.

Lemma 3. For each number A > 0 there is a positive constant κ such
that for all large x and d < (log x)A, we have∑

d<p≤x
p≡ a (mod d)

1

p
=

log log x

ϕ(d)
+ E(d) +O(exp(−κ(log x)1/2)),

for all a coprime to d. The number E(d) satisfies |E(d)| � log(2d)/ϕ(d).

This follows from the Siegel–Walfisz theorem, where the estimation
for E(d) appears in works of Norton and Pomerance, see [11, Lemma
2.1].
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Consider the double sum in (16). It follows that∑
d|n

d
∑
p≤y+1

(p−1,n)=d

1

p
=
∑
cd|n

µ(c)d
∑
p≤y+1

p≡1 (mod cd)

1

p

=
∑
cd|n

µ(c)d

(
log log y

ϕ(cd)
+ E(cd) +O(exp(−κ(log y)1/2))

)
= τ(n) log log y +

∑
m |n

ϕ(m)E(m) +O(n2 exp(−κ(log y)1/2))

≤ τ(n)(log log y +O(log n)) = O(τ(n) log n).

Hence, we have

Tn(a1, ..., ar) ≥
eω
∗(n)

nO(τ(n))
=

1

nO(τ(n))
,

the last estimate coming from ω∗(n) ≤ τ(n). Combining the above
estimate with that for δ(B(A2)) completes the proof. �

5. Higher moments of ω∗(n)

For every k ∈ N, we define the kth moment of ω∗(n) by

Mk(x) :=
1

x

∑
n≤x

ω∗(n)k.

Then we have

(17) Mk(x) =
1

x

∑
[p1−1,...,pk−1]≤x

⌊
x

[p1 − 1, ..., pk − 1]

⌋
.

This shows that Mk(x) is intimately related to

Sk(x) :=
1

x

∑
[p1−1,...,pk−1]≤x

1.

In fact, if Sk(x) � (log x)ck , then a partial summation argument ap-
plied to the upper bound in (17) afforded by removing the floor func-
tion shows that Mk(x) � (log x)ck+1. A similar argument shows that
a lower bound for Sk(x) implies one for Mk(x).

For k ≥ 2, it is natural to relate the function ω∗(n)k to τ(n)k. It is
well-known that

1

x

∑
n≤x

τ(n)k ∼ 1

(2k − 1)!

∏
p

(
1− 1

p

)2k∑
ν≥0

(ν + 1)k

pν
(log x)2

k−1
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for every k ≥ 1. Comparing ω∗ with τ and taking the primality condi-
tions into account, one may conjecture that Mk(x) ∼ µk(log x)2

k−k−1

for every k ≥ 2, where µk > 0 is a constant depending on k. Similarly,
one may also conjecture that Sk(x) ∼ (2k − k − 1)µk(log x)2

k−k−2 for
every k ≥ 2 with the same constant µk. As in the case k = 2, we have
the upper and lower bounds for M3(x) of the conjectured magnitude.

Theorem 4. We have M3(x) � (log x)4 for all x ≥ 2.

The upper and lower bounds will be proved by using different types
of arguments. The rest of this section will be devoted to proving the
upper bound M3(x) � (log x)4, with the proof of the lower bound
M3(x)� (log x)4 given in Section 6.

We begin with some lemmas. The first is a variant of [11, Lemma
2.7].

Lemma 4. Uniformly for coprime integers e, f in [1, x],

(18)
∑
a,b≤x

(ae,bf)=1
ae6=bf

1

ab

∏
p | ab(ae−bf)

(
1 +

1

p

)
� (log x)2.

Proof. First note that the product contributes at most a factor of mag-
nitude log log x to the sum, so the result holds trivially if either a or b
is bounded by x1/ log log x. Hence, we may assume that a, b > x1/ log log x.
Further, every integer n ≤ x has < log x prime divisors, so that∏

p |n
p>(log x)1/2

(
1 +

1

p

)
� 1,

uniformly. Let u be the product of all primes p ≤ (log x)1/2. Thus, we
may restrict the primes p in the product in the lemma to those that
also divide u. We have the expression in (18) is

(19) �
∑

x1/ log log x<a,b≤x
(ae,bf)=1
ae 6=bf

1

ab

∑
j |u

j | ab(ae−bf)

1

j
≤
∑
j |u

1

j

∑
j<a,b≤x
j | ae−bf
(ae,bf)=1
ae6=bf

1

ab
.

(Note that we assume here that a, b > j, since they are > x1/ log log x and
j ≤ u ≤ exp((1+o(1))(log x)1/2).) For p | j with j | ab(ae−bf), we have
either a ≡ 0 (mod p), b ≡ 0 (mod p), or a ≡ bfe−1 (mod p) (if p | e
then p - ae−bf). Since j is squarefree, there are at most 3ω(j)j pairs a, b
(mod j) with j | ab(ae− bf). For a fixed pair of residues (mod j) that
we have here, the sum of 1/ab in this class is � (log x)2/j2 uniformly,
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so the total contribution in the last sum in (19) is � 3ω(j)(log x)2/j.
We thus have the last double sum in (19) is

�
∑
j|u

3ω(j)(log x)2

j2
= (log x)2

∏
p≤(log x)1/2

(
1 +

3

p2

)
� (log x)2,

which completes the proof of the lemma. �

Lemma 5. Uniformly for 1 ≤ u < x we have∑
q≤x

q≡ 1 (mod u)

τ((q − 1)/u)

ϕ((q − 1)/u)
� u

ϕ(u)
log x.

Proof. The result holds trivially when x ≤ 2 or u ≥ x/2, so assume
that x > 2 and u < x/2. (In fact, the lemma follows from a trivial
argument if u > x/ exp((log x)1/2), but we won’t use this.) We first
consider

T =
∑
q≤x

q≡ 1 (mod u)

τ((q − 1)/u)(q − 1)/u

ϕ((q − 1)/u)
.

Using that
n

ϕ(n)
=
∑
d|n

µ2(d)

ϕ(d)
,

we have

T ≤
∑
d<x

1

ϕ(d)

∑
q≤x

q≡ 1 (mod du)

τ((q − 1)/u).

Using the maximal order of the divisor function and that q is an integer
that is 1 (mod ud) and > ud, the contribution to T from a particular
number d is � (x/du)(x/u)ε, so the contribution to T from numbers
d > (x/u)1/4 is � (x/u)3/4+ε < (x/u)4/5, say. We also use that τ((q −
1)/u) is at most twice the number of divisors j | (q − 1)/u with j ≤
(x/u)1/2. Thus,

T �
∑

d≤(x/u)1/4

1

ϕ(d)

∑
j≤(x/u)1/2

∑
q≤x

q≡ 1 (mod [j,d]u)

1 + (x/u)4/5.

We have [j, d] ≤ (x/u)3/4 and so x/([j, d]u) ≥ (x/u)1/4 and the inner
sum here is � x/(ϕ([j, d]u) log(x/u)). Now [j, d] = jd/i, where i =
(j, d), so

T �
∑

d≤(x/u)1/4

1

ϕ(d)

∑
i|d

∑
k≤(x/u)1/2/i

x

ϕ(d)ϕ(u)ϕ(k) log(x/u)
+ (x/u)4/5.
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The sum of 1/ϕ(k) in the indicated range is � log(x/u), so

T �
∑

d≤(x/u)1/4

xτ(d)

ϕ(u)ϕ(d)2
+ (x/u)4/5 � x

ϕ(u)
.

It immediately follows that∑
q≤x

q≡ 1 (mod u)

τ((q − 1)/u)(q − 1)

ϕ((q − 1)/u)
� ux

ϕ(u)

and the lemma follows by partial summation. �

At this point we find it convenient to reprise the upper bound proof
for k = 2 from [11] since we take a slightly different perspective, the
proof is short, and the case k = 3 follows with similar tools. We show
that

(20) S2(x)� 1.

We are to count pairs of primes p, q with [p− 1, q − 1] ≤ x. Let

d = (p− 1, q − 1), p− 1 = ad, q − 1 = bd.

The case p = q has the count O(x/ log x), so we may assume that a 6= b.
So, we are counting triples a, b, d with (a, b) = 1, a 6= b, abd ≤ x, with
ad + 1, bd + 1 both prime. First suppose that d = max{a, b, d}. Since
abd ≤ x, we have ab ≤ x2/3. For a given choice of a, b, the number of
choices for d ≤ x/ab with ad+ 1, bd+ 1 both prime is

� x

ab(log x)2

∏
` | ab(a−b)

(
1 +

1

`

)
,

where ` runs over primes. This follows from the upper bound in either
Brun’s or Selberg’s sieve. Lemma 4 in the case e = f = 1 completes
the proof of (20) in this case.

Now assume that a = max{a, b, d}. Then bd = q − 1 ≤ x2/3. For a
given prime q ≤ x2/3 + 1 and a divisor d of q − 1, we count values of
a ≤ x/(q − 1) with ad+ 1 prime. By the Brun–Titchmarsh inequality,
the number of such values of a is

� d

ϕ(d)

x

(q − 1) log x
≤ x

ϕ(q − 1) log x
.

So, in all, there are� τ(q−1)x/(ϕ(q−1) log x) choices for a. Lemma 5
in the case u = 1 completes the proof of (20) in this case. The last case
b = max{a, b, d} is completely symmetric with the case just considered,
so we are done.
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Now we prove the upper bound M3(x)� (log x)4 asserted in Theo-
rem 4. For this it is sufficient to prove that

(21) S3(x) =
1

x

∑
[p−1, q−1, r−1]≤x

1� (log x)3,

where p, q, r run over prime numbers. From the case of the second
moment, we may assume that p, q, r are distinct. Note that

[p− 1, q − 1, r − 1] = abcdefg,

where

g = gcd(p− 1, q − 1, r − 1),

dg = gcd(p− 1, q − 1), eg = gcd(p− 1, r − 1), fg = gcd(q − 1, r − 1),

a = (p− 1)/deg, b = (q − 1)/dfg, c = (r − 1)/efg.

Note that we have a, b, c pairwise coprime, as well as d, e, f . Also,

gcd(ae, bf) = 1, gcd(ad, ce) = 1, gcd(bd, cf) = 1.

To prove (21), we consider 7 cases depending on the largest of a, . . . , g.
By symmetry this collapses to 3 cases:

max{a, . . . , g} = a, d, or g.

Beginning with the max being a, first choose a prime r and a factor-
ization of r − 1 as cefg. Next choose a prime q with q ≡ 1 (mod fg)
and take a factorization of (q − 1)/fg as bd. Finally, let a ≤ x/bcdefg
with adeg + 1 prime. The number of choices for a is

� x

bcdefg log x

deg

ϕ(deg)
.

The number of choices for c, e, f, g is τ4(r − 1). Given an ordered
factorization cefg of r − 1, let u = ur−1 = fg. The number of choices
for b, d is τ((q − 1)/u). Thus, the total number of choices in this case
is

�
∑
r<x

τ4(r − 1)

ϕ(r−1)

∑
q<x

q≡ 1 (mod ur−1)

τ((q − 1)/u)

ϕ((q − 1)/u)

x

log x
.

Using Lemma 5, we have the number of choices

(22) � x
∑
r<x

τ4(r − 1)

ϕ(r − 1)

u

ϕ(u)
≤ x

∑
r<x

τ4(r − 1)(r − 1)

ϕ(r − 1)2
.

We now appeal to [12, Theorem 1.2] or [13, Corollary 1.2] from which
we see this last sum is � (log x)3. This completes the proof when
a = max{a, . . . , g}.
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Now assume that d = max{a, . . . , g}. We choose a prime r < x and
a factorization cefg of r−1. We then choose a, b with ab(r−1) ≤ x6/7.
We now let d run up to x/(ab(r− 1) with adeg+ 1 and bdfg+ 1 prime.
The number of choices is

� xτ4(r − 1)

ab(r − 1)(log x)2

∏
`|abef(bf−ae)

(
1 +

1

`

)∏
`|g

(
1 +

1

`

)
,

where ` runs over prime numbers. We can absorb the part of the
product coming from ` | ef and ` | g into the main term, getting

xτ4(r − 1)(r − 1)

ϕ(r − 1)2ab(log x)2

∏
`|ab(bf−ae)

(
1 +

1

`

)
.

Note that this final product is finite, since (ae, bf) = 1 and ae 6= bf (If
a = b = e = f = 1, then one has p = q, a possibility we ruled out).
Lemma 4 and then the argument as in (22) completes the proof of the
case when d is the maximum of a, . . . , g.

We now consider the case that g = max{a, . . . , g}, which is quite
similar to the previous case. For a given choice of a, . . . , f , we have
a . . . f ≤ x6/7, so the number of values of g ≤ x/a . . . f with adeg +
1, bdfg + 1, cefg + 1 all prime is

� x

A(log x)3

∏
`|AE

(
1 +

2

`

)
,

where

A = abcdef, E = (ae− bf)(ad− cf)(bd− ce).

Without the product, the sum of 1/A is O((log x)6). We would like to
show the same estimate holds with the product included. Note however
that the product is in the worst case O((log log x)2), so our result holds

trivially if any of a, . . . , f is ≤ x1/(log log x)
2
. We thus assume they are

all > x1/(log log x)
2
. Further, as in the proof of Lemma 4, let u be the

product of all primes ` ≤ (log x)1/2. We may restrict primes ` in the
product to such primes. We wish to estimate∑

j|u

2ω(j)

j

∑
a,...,f<x
j|AE

1

a . . . f
.

Note that AE is the product of 9 expressions, so that in the inner sum,
the 6-tuple (a, . . . , f) lies in ≤ 9ω(j)j5 residue classes mod j. For each
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one of these classes the inner sum is � (log x)6/j6, so we have∑
j|u

2ω(j)

j

9ω(j)

j
(log x)6 = (log x)6

∑
j|u

18ω(j)

j2
� (log x)6.

This completes our proof of the upper bound in Theorem 4.

6. A lower bound for the third moment

By (17), we have

M3(x) ≥ 1

2

∑
[p−1,q−1,r−1]≤x

1

[p− 1, q − 1, r − 1]
.

Thus, we wish to show that

(23)
∑

[p−1,q−1,r−1]≤x

1

[p− 1, q − 1, r − 1]
� (log x)4.

We restrict to the case that p, q, r are distinct primes, noting that the
complementary case is negligible. We use the identity

1

[p− 1, q − 1, r − 1]
=

∑
u | r−1

u | [p−1,q−1]

ϕ(u)

[p− 1, q − 1](r − 1)
.

Let

(24) M2(x;u) :=
∑

[p−1,q−1]≤x
u | [p−1,q−1]

1

[p− 1, q − 1]
.

We thus have that

(25) M3(x) ≥ 1

2

∑
u≤x1/3

∑
r≤x1/3
u | r−1

1

r − 1
M2(x

2/3;u).

Our goal then is to obtain a lower bound for M2(x
2/3, u) and use that

in (25).
Helpful will be a tool from [2], namely Theorem 2.1: For each ε > 0

there are numbers δ > 0 and x0, such that if x > x0, k < xδ, and
(a, k) = 1, then

(26)

∣∣∣∣∣ ∑
p≤y

p≡ a (mod k)

log p− x

ϕ(k)

∣∣∣∣∣ ≤ ε
y

ϕ(k)
,

for all y ≥ x, except possibly for those k divisible by a certain number
k0(x) > log x.
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If k0(x) should exist and is divisible by a prime > (1/3) log log x, let
s = s(x) be the largest such prime. Otherwise, let s = s(x) be the least
prime > (1/3) log log x. Note that if x is sufficiently large and k0(x)
exists and is not divisible by any prime > (1/3) log log x, then k0(x)
must be divisible by the cube of some prime. Indeed∏

`≤(1/3) log log x

`2 = (log x)2/3+o(1),

so this product is smaller than k0(x). In particular, if x is large and k
is cube-free, then (26) holds whenever s - k.

Corollary 1. Suppose that ε = 1/4 and we have the corresponding
number δ as above. If x is sufficiently large, k < xδ is cube-free and
not divisible by s(x), then ∑

x<p≤x2
p≡ a (mod k)

1

p
� 1

ϕ(k)
,

uniformly.

This follows instantly from the above theorem, namely [2, Theorem
2.1], by either partial summation or a dyadic summation.

Let ϕ2(n) be the multiplicative function with value at a prime power
`j equal to `j(1− 2/`).

Proposition 1. Let δ be the corresponding constant for ε = 1/4. Sup-
pose that x is large and u < xδ/12 is squarefree and not divisible by
s = s(x1/6). Then

M2(x
2/3;u)� log x

∑
u=u1u2u3
u1u2 odd

u3ϕ2(u1u2)

ϕ(u)2
,

uniformly.

Proof. We have

(27) M2(x
2/3;u) ≥

∑
u=u1u2u3
u1u2 odd

∑
p≤x1/3

p≡ 1 (mod u1u3)
(p−1,u2s)=1

∑
q≤x1/3

q≡ 1 (mod u2u3)
(q−1,u1s)=1

1

[p− 1, q − 1]
.

We write 1/[p− 1, q − 1] as (p− 1, q − 1)/(p− 1)(q − 1) and note that
u3 | (p− 1, q − 1). Thus,

1/[p− 1, q − 1] = u3
∑

d | (p−1,q−1)/u3

ϕ(d)/(p− 1)(q − 1).
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Thus, for a given choice of u1, u2, u3, the contribution in (27) is at least

(28)
∑

d<x1/12
d squarefree
(d,s)=1

u3ϕ(d)
∑
p≤x1/3

p≡ 1 (mod du1u3)
(p−1,u2s)=1

1

p− 1

∑
q≤x1/3

q≡ 1 (mod du2u3)
(q−1,u1s)=1

1

q − 1
.

For the sum over p we temporarily ignore the condition that s - p− 1.
Then p runs over ϕ2(u2) residue classes mod du. In each of these
classes, the sum of 1/(p− 1) is� 1/ϕ(du) by Corollary 1. So, the sum
over p appears to be � ϕ2(u2)/ϕ(du). But, we also need to take into
account the condition s - p− 1. For this, we compute an upper bound
for the sum where s | p − 1. An upper bound sieve result shows that
the contribution is � ϕ2(u2)/(ϕ(du) log log x), which justifies ignoring
the condition s - p − 1. For the sum over q, the analogous argument
shows that it is � ϕ2(u1)/ϕ(du).

Thus, the expression in (28) is at least of magnitude∑
d<x1/12

d squarefree
(d,s)=1

u3ϕ(d)ϕ2(u1u2)

ϕ(du)2
≥

∑
d<x1/12

d squarefree
(d,s)=1

u3ϕ2(u1u2)

dϕ(u)2
� u3ϕ2(u1u2)

ϕ(u)2
log x.

Thus, the proposition now follows from (27). �

We are now ready to complete the proof of the lower bound in The-
orem 4, that is, M3(x) � (log x)4. From (25) and Proposition 1 we
have

M3(x)�
∑

u≤xδ/12
u squarefree

s -u

ϕ(u)
∑
r≤x1/3
u | r−1

1

r − 1

∑
u=u1u2u3
u1u2 odd

u3ϕ2(u1u2)

ϕ(u)2
log x.

It thus follows from Corollary 1 that

M3(x)�
∑

u≤xδ/12
u squarefree

s -u

∑
u=u1u2u3
u1u2 odd

u3ϕ2(u1u2)

ϕ(u)2
log x.

We factor the u-expression as

u3ϕ2(u1u2)

ϕ(u)2
=
ϕ2(u1)

ϕ(u1)2
ϕ2(u2)

ϕ(u2)2
u3

ϕ(u3)2
.
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Note that for n odd we have ϕ2(n)/ϕ(n)2 � 1/n, so that

M3(x)� log x

( ∑
u1≤xδ/36

u1 odd, squarefree
s -u1

1

u1

)2 ∑
u3≤xδ/36

u3 squarefree
s -u3

1

u3
� (log x)4.

This completes the proof of (23).

7. The lower bound for the second moment

As mentioned, the proof in Ding [3] that M2(x)� log x is not com-
plete since it relies on an incorrect statement from [11]. The proof is
easily correctable, and we give the few details here.

The goal is to show that

(29)
∑

[p−1,q−1]≤x

1

[p− 1, q − 1]
� log x.

We may assume here that p 6= q. As before,

1

[p− 1, q − 1]
=

∑
d | (p−1,q−1)

ϕ(d)

(p− 1)(q − 1)
,

so that ∑
[p−1,q−1]≤x

1

[p− 1, q − 1]
=
∑
d≤x

ϕ(d)
∑

[p−1,q−1]≤x
d | (p−1,q−1)

1

(p− 1)(q − 1)
.

By placing additional restrictions on d, p, q the expression here only gets
smaller. We do this as follows. Consider Corollary 1 from the previous
section with ε = 1/4. We assume that d is squarefree, d ≤ xδ/4,
and that s(x1/4) - d. We further assume that p, q ∈ (x1/4, x1/2]. So,
Corollary 1 implies that

∑
p 1/(p− 1)� 1/ϕ(d), and the same for the

sum over q. Thus,∑
[p−1,q−1]≤x

1

[p− 1, q − 1]
�
∑
d

1

ϕ(d)
≥
∑
d

1

d
� log x.

This completes the proof of (29).
A similar proof can show that S2(x)� 1. Note that the claim that

S2(x) � 1 was asserted without proof in [8]. Concerning S3(x), we have
a proof that it is� (log x)3 (and so S3(x) � (log x)3 after the result in
Section 5), but we do not present the details here.
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8. A tail estimate

In this section we prove the following theorem.

Theorem 5. We have∑
p, q≤x

[p−1,q−1]>x

1

[p− 1, q − 1]
� log x.

In [11] it is claimed that

(30)
∑
p,q≤x

1

[p− 1, q − 1]
=

∑
[p−1,q−1]≤x

1

[p− 1, q − 1]
+O(1),

see the discussion in [11] at the start of Section 4. However, the dif-
ference between the two sums in (30) is the sum in Theorem 5, so it
cannot be O(1).

Proof. We use the full strength of [2, Theorem 2.1] instead of the sim-
plified version used in Section 6. Let D = D(x) = {d ≤ x1/20 :
d even, gcd(15, d) = 1} with x being sufficiently large. Let ε = δ = .01,
and let Dε,δ = Dε,δ(x) be the possible set of exceptional moduli as de-
scribed in [2, Theorem 2.1]. The set Dε,δ has cardinality Oε,δ(1), and
the members are all > log x. Let D′ = D′(x) denote the subset of D of
elements d with 30d not divisible by any member of Dε,δ(x).

For each d ∈ D′ let P = P(x, d) denote the set of primes p with

• p ≡ 1 (mod d),
• p ≤ x,
• gcd(30, (p− 1)/d) = 1.

Since ϕ(30d)/ϕ(d) = 16, it follows from the conditions above that P
consists of primes p ≤ x in precisely 3 of the 16ϕ(d) reduced residue
classes modulo 30d. Indeed, if 2a ‖ d, with a ≥ 1, then p ≡ 2a +
1 (mod 2a+1). Also, p ≡ 2 (mod 3) and p ≡ 2, 3, or 4 (mod 5).

Note that via [2, Theorem 2.1] and partial summation, if x9/10 < t ≤
x with x sufficiently large, then

(31)

∣∣∣∣∣∑
p≤t
p∈P

1− 3t

16ϕ(d) log t

∣∣∣∣∣ ≤ 6εt

16ϕ(d) log t
.

With r running over primes, let

f(n) = f(n, x) =
∑

7≤r≤x1/20
r |n

1

r − 1
.
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Note that∑
p∈P
p≤t

f((p− 1)/d) =
∑

7≤r≤x1/20

∑
p∈P, p≤t
r | (p−1)/d

1

r − 1

<
2t

(16/3)ϕ(d) log(t8/9/30)

∑
r≥7

1

(r − 1)2
,

using the explicit version of the Brun–Titchmarsh inequality due to
Montgomery–Vaughan [10, Theorem 2]. Since the final sum here is a
constant smaller than .063, it follows from (31) that

(32)
∑
p∈P
p≤t

f((p− 1)/d) ≤ 3

20

∑
p∈P
p≤t

1

for x9/10 < t ≤ x and x sufficiently large. Let

P ′ = P ′(x, d) = {p ∈ P : f((p− 1)/d) ≤ 1/5},

so that from (32) we see that∑
p∈P ′
p≤t

1 ≥ 1

4

∑
p∈P
p≤t

1

for x sufficiently large and x9/10 < t ≤ x. Combining this with (31)
and applying partial summation we obtain

(33)
∑
p∈P ′

x9/10<p≤x

1

p
>
.0048

ϕ(d)
≥ .0096

d

for all d ∈ D′ and x beyond some uniform bound.
For each d ∈ D′(x) let

Q = Q(x, d) = {q ≤ x : q ≡ 1 (mod d)},

so that for x9/10 < t ≤ x, we have

(34)

∣∣∣∣∣∑
q∈Q
q≤t

1− t

ϕ(d) log t

∣∣∣∣∣ =

∣∣∣∣π(t; d, 1)− t

ϕ(d) log t

∣∣∣∣ ≤ 2εt

ϕ(d) log t

for x sufficiently large.
Next, for d ∈ D′(x) and p ∈ P ′(x, d), let

Q′ = Q′(x, d, p) = {q ∈ Q : gcd(q − 1, p− 1) = d}.



22 KAI (STEVE) FAN AND CARL POMERANCE

If gcd(q − 1, p − 1) > d, then rd | q − 1 for some prime r | (p − 1)/d
with r ≥ 7 (since (p − 1)/d is coprime to 30). For x9/10 < t ≤ x we
have (using d ≤ x1/20 and π(t; rd, 1) ≤ t/rd),∑

r | (p−1)/d

π(t; rd, 1) =
∑

r | (p−1)/d
r≤x1/20

π(t; rd, 1) +
∑
r | p−1
r>x1/20

π(t; rd, 1)

≤
∑

r | (p−1)/d
r≤x1/20

2t

ϕ(d)(r − 1) log(t/rd)
+
∑
r | p−1
r>x1/20

t

rd

≤ 9

4
f((p− 1)/d)

t

ϕ(d) log t
+O

( t

dx1/20

)
.

Since f((p− 1)/d) ≤ 1/5, we conclude that∑
q≤t

q∈Q\Q′

1 ≤ .46t

ϕ(d) log t

for x sufficiently large and x9/10 < t ≤ x. Thus, from (34),∑
q≤t
q∈Q′

1 ≥ t

2ϕ(d) log t
,

so that

(35)
∑
q∈Q′

x9/10<q≤x

1

q
>
.0525

ϕ(d)
≥ .105

d
.

Now for each pair p, q with p ∈ P ′(x, d) and q ∈ Q′(x, d, p) with
p, q > x9/10, we have [p− 1, q − 1] = (p− 1)(q − 1)/d > x1.75. Further,
from (33) and (35),∑

p,q

1

[p− 1, q − 1]
= d

∑
p

1

p− 1

∑
q

1

q − 1
>
.001d

d2
=
.001

d
.

It remains to note that
∑

d∈D′ 1/d� log x. In fact, since every member
of Dε,δ(x) exceeds log x, we have∑

a∈Dε,δ(x)

∑
d∈D
a|30d

1

d
= Oε,δ(1),
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so that∑
p, q≤x

[p−1,q−1]>x

1

[p− 1, q − 1]
> .001

∑
d∈D

1

d
+O(1) =

1

75000
log x+O(1)

for all sufficiently large x. This completes the proof. �
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