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§1. ZIntroduction.

Suppose a is a given non—zetg.integer. In this note
we show that there is an infinitude of positive integers I
{relatively prime to a) for each of which there are.many primes
p not wmuch larger than Y and congruent to a modulo r. Ve
prove'two theorens of this type, in the second of which we impose
the additional requirément that the ratios {p~a)/x are also
prime. The proof of each theorem consists of a straightforward
application of the pigeonwhole_principle and is based only on
classical results in multiolicative number theory. Arguments of
the sort given here were used in an essential way in [11.

our: theorems are as follows. Both theorems remain true

when k = 0 -but are trivial in that case.

;U)

GWHEOREM 1. If a 1s a given non~zero integer and K

is a given positive inteqger, there are infinitely many positive

integers « coprime to a £9£"yhich we can find k + 1 distinct

primes pO'pl"‘°’pk satisfying

i

P atmod x), Py © € k¥ r log ¥

for 1= 0, l,...s K.
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THEOREM 2. Suppose A » e. If a 1is a given non-zero

integer and k is a given positive integer, there are infinitely

many positive integers « coprime to a for which we can find

k + 1 distinct primes Pgr Py rPy satisfying -

o
it

a{mod r), (pi—a)/r is prime, Py < Ak v log ¥ loglog x

for i =0, 1,...,k.

I+ is not hard to see that the prime k-tuples conjecture
would implyrstronger results than these theorems, for example the
assertion in which‘the inequalities for the pr:i,mess:‘j’p_.l in Theorem 1
are replaced by the inequalities of the form pj; <Aky, where A 1is
constant depending only on a. However, the inequalities for the
primes i .given in these theorems are about the best that
can be expected by simple averaging arguments, aside possibly for -

constant factors (possibly depending on a.) This optimality

follows from the fact that the relative frequency of priges around
, P

r is about 1/log r and the relative frequency of primes around
log r is about 1/loglog r. Morxe spacifically, in the case of
Theorem 1 the early primes congruent to a moduloe r could be
expectéd to lie about r log r apart, so that we could not expect
to find k such primes until we reach numbers of the ordér of
magnitude k r log r. In the case of Theorem 2 the ratiosl

1+e

(pi - a)/r are D (log r) ) and so the extra condition that

these ratios are primes introduces an exira factor loglog » in

the preceding discussion., In the case of both Theorems 1 and 2

we do not guarantee that the results cannot be improved by a

a



numerical factor . (possibly depanding on a.) In fact, in the case

of Theorem 2, the condition A » e could be replaced by the

condition log A > dla)/a; where, as wsual, ¢f{a) denotes the

nuber of positive integers not exceedindg ]a{ and coprime to &.
The authors would 1ike to thank Paul prdds for his

interest in these theorems.
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§2. Necessary Lemmas.

We require the following classical results from multi-
plicative number theory. AS usual w(y;m, %} denotes the number

of primes not exceeding y which are congruent to & modulo m.

In Lemmas Bl and B2 (as in our two theorems)} the letter a

stands for a given non~-zero integer.

LEMMA A. If y > 3, then

1 Y  aqu
Tr(y;m,?,) = m J iog u + Of

)
) (1og ) 07

for all m less than (log Y)B/Z and all & relaéiﬁely prime

to m, where the constant impliéd by the O symbol is absolute

and effectively computable.

The result of Lemmé A follows from eguation (36) of
{3). The exponent 3/2 could be replaced by any number less than

2 and the exponent 100 could be replaced by any positive

constant whatever.

LEMMA Bl. If p is a fixed number greater than 1,

then for y > 3 we have

¥ E%”m = C, log p + O{lgg—i),
Y<gspy. {g,a) = % 4 Y
where
. ¢la) v Ay ela)
c. = N

pfa

and the constant implied by the O-symbol depends on  a.
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PROOF. By [21 we have

57%7 =c, logy+D, + 0(59%w1),
l.f.q_iyr (q,a) = 1 '

where Ca is as above, Da is another constant depending on = a,

and rhe constant implied by the O-symbol depends on

a. The stated result follows by subtraction.
LEMMA B2. If P is a fixed number greater than 1,
then for vy > 3 we have

1 lcg p 1
[ vord P S +
5y = Togy T O

—z) 4
y<g<py, d prime {log y)z

whére tngwgpnstant img;ied by the 'O~§Imbqé deggnds on p.

L4

PROOF. From Lemma A with m = 1 we veadily obtain

by partial summation

A - 3 1
l<g<y, ¢ prime ¢ {q) 1<q<y, g prime a~1

= log log y + b + 0 9),

{(log Yy)

where b is a cerxtain absolute constant. By subtraction we obtain

) 1w tog(1 + 2090 4 ot ),

y<ciipy, q prime b {q) log ¥ (log y)99

from which the conclusion of the lemma follows.




§3, proof of Theoren 1.

et X be a laryge positive chstant,‘to be specified
later in terms of a. For large positive X et P be the set
of primes P such that x<p§}K+l)x, et ¢ be the set of

integers such that

= L1y k ola) 1, ek¢(a) ,
(qta) - ll (1 i K) Ca a lOC_] ®x < q f_(l+K) Ca a lOCj ), )

and let M Dbe the set of palrs (p,q) with P £ r, g €0, and
p = a (mod q). We define a function £ on M by ‘putting
fip,q) = (p-a)/q. In view of the definitions of P and Q,
the range of f is contained in the set R consisting of the

integers T satisfying

c, a (x- a) - C, a{ (K+l)x~a}
(x ) 8 T T -.
(14K 7)) e Kk d(aYloyg X (L+X Tk ¢fa)log X
By Lemma A the cardinality of M is given by
bl = 5 O (k) x5 @) - w(x;q,a)}
qeQ '
(K+1)x
qeQ < (log x)
) "% ) {lo§k% +0(— b O(—#-E*W"§§q'
SR d 7 (log x) (log x)
By Lemma B 1
1 logloyg %
e N S el G Foroas o
C_I'CQ @(C{) a 3-0@1 x

so that



IMj = C X Xy o(ﬁwlgﬂipﬁ é).
(log x)

On the other hand the cardinality of R satisfies

1

IR| = ¢, K{L= goy7e’ X .+ 0(1).

K 1og %

Hence for large K we have X|R| < |4}, so that the function f
nust take on some value at least k + 1i times. Thus for
sufficiently large x there exists an element r of R and

k 4+ 1 distigct pairs {po,qo), (pl,ql),...,(pk,qk) in M such

that

—— e TR :.-7.:;#— = I
dp qy Ak

Clearly the primes p, are distinct and Py = a(mod r) for each

i. Further

P, & 94 r + a < Fl + K) ca = x r log % + a.

Since log r = log x + 0(loglog x), we have

2, ¢0(a)
Py < (1 4 ﬁ) c k r log r
a
if % is sufficiently large. Since 'Ca > ééél, we may take K

Yarge enough so that

2

—— a__
K

¢la)’

)

(1 + <

1
C
a
Then the primes Py satisfy the ineguality of the theoremn,
provided of course that X is sufficiently large. Since ¥
tends to infinity with x, therc are infinitely many positive

integers 1 for which the conclusicn of the theorem holds.
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§4. Proof of Theorem 2.

et K be a laxge positive constant and let p be a
constant greater than 1, both of which will be specified later.
For large positive x let P be the set of primes p such that

x <p < (K + 1) %, let Q Dbe the set of primes g such that
k log x loglog x < d <P k log x logloy X,

and let M be the set of pairs (p,q) with p € P, d & 9, and
p £ a(mod q). We define a function f on M by putting
£(p,q) = {p - al/q. Clearly the range of £ is contained in the

set R consisting of the integers r satisfying

(K + 1) x — &

X — a RN ¢ S B Sk
k log x logloyg X

'As in the proof of Theorem 1 +the cardinality of M 1is

given by
il = 3 gor Gt o) Y ols e
q€Q (tog %) (log x)
By Lemma B2
) 1 logo & 0f 1 ;
G Tlog x 16giog X) '
q€0 o (c1) 1Tog (k log = loglog x) (1ogloy x)2
so that
2 % logloglog X
1] = K log o s T il EREASA E LA B
log x loglog x log x (Loglog x)2

"On the other hand the cardinality of R satisfies

P S SN
IRp = (x + 1 p) X log x loglog x b o(1).
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Honce for large x we have k|R] < |], provided that p > €

and we choose K large enough sO that
K({log p — 1) > 1 - 1/p.

Accordingly for sufficiently large x there exists an element r
of R and k + 1 distinct pairs (po,qO), (pl’ql)f°"’(pk'qk)
in M such that

Po m 2 Pp T BT

Clearly the primes p,; are distinct, p; = a(mod r) for each i,

and (p.l - a)/r = d; is prime for each 1. Further

Py = 9y r+a <pkzxrlogx loglog % + a.

gince log r = log x + 0O{loglog x), we have

P < p k r log ¥ loglog r + o{r (logloy r)z)

if x is sﬁfficiently large. If we now choose 0 8O that
L < p < k,_-say, p = (€ + ») /2, and choose

K > (1L - pnl)/(log p - 1), we have

py < A k¥ r log r loglog ¥,

provided of course that X is sufficiently large x. Since ¥
tends to infinitg with x, there are infinitely many positive
integers r for which the conclusion of the theorem holds.

By redefining the set R to include only integers co-
prime toe a, we could renlace the condition A > e in Theorei

by the condition log * > 4{a)/a.

2
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§5. Gome Related Conijectures.

If a is a non-zero integer and ¥ is a positive
integer coprime to &, let pk{r;a) denote the k-th prime
number congruent to a module r and greater than r. Put

p, (r,a)
clr,a) = sup 17 )5q(K 1)

Since pk(r,a) = 0(kx log k) for fixed ¥ and a ~by Lemma

cleaxrly cl(x,a) exists.

Theorem 1 asserts that if & and k are given,

there are infinitely many r coprime to & for which
_ o y
pk(r,a)/{k r Loy (X 1X§< &,

However c(r,a) considers the soerowhat deepex guestion of

the ratio pb(r,a)/{k rotog (K rﬁ' for all positive

~

bounding

¥ while @ and & remain fixed. The

integral values of

following conjectures anouit ef{r,) secm reasonable to us.

10

A,

CONJECTURE L. AR is an absolute constant ¢ for

1v rany paira of integers r,a such that

which there are infinitely many pA30
which the: fe 4
o < P‘ < r , {r,2} = 1, and clxr,a) < c.

[t

Conjooty

e

S Ty v,

ip which @ 3n npsenoies e

Pa e nore specific form of Conjecture

conavTe eRE 2L e taoan absolute constant ¢ such

Cor apy ot on ol iptenor g, there are infinitely

that o L2070 g : S hdls

b w for which

e D0
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c{r,a) <c.

Cconjecture 3 js a guantitative form of Conjacture 2
in which we agsert (1) that, for any positive Cy a positive
fraction of the positive integers coprime to & have the pfoperty
c{xr,a) £¢c and also (2) that, if ¢ 1is large, the vasﬁ
majority of the positive integers coprime to a have the'property
c(r,a)_i c. In order to state this formally, we need the follow-
ing notation. It a“ ig a non~zero integer and € 2 0, we let

N{a,c,x) denote +he number of integers r satisfying

(r,a) = 1, L1 =¥ < Xy clr,a) < ¢C.

CONJRCTURE 3. If a ig_gﬂgivgg‘non"zero integer, then

£ (c) = lim <1 na,c,x)
a Wb

exists for every © 2 0 and-is a continuous function of c.
Moreover fa(c) s g for ¢ >0 and
1im f£_(c} = adla)/a.
) a
o
Clearly Conjecture 7 implies conjecture 2 which
in turn implies Coniecture 1. While Conjecture 3 seems

difficult, Conjectures 1 and 2 may be assailable.
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