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You would think that all of the issues surrounding addition and

multiplication were sewed up in third grade!

Well in this talk we’ll learn about some things they didn’t tell

you . . .
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Here’s one thing they did tell you:

Find 483 × 784.

483

× 784

———

1932

3864

3381

—–——

378672
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If instead you had a problem with two 23-digit numbers, well

you always knew deep down that math teachers are cruel and

sadistic. Just kidding!

In principle if you really have to, you could work out 23-digits

times 23-digits on paper, provided the paper is big enough, but

it’s a lot of work.

So here’s the real question: How much work?
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Of course the amount of work depends not only on the length

of the numbers. For example, multiplying 1022 by 1022, that’s

23-digits times 23-digits, but you can do it in your head.

In general, you’ll take each digit of the lower number, and

multiply it painstakingly into the top number. It’s less work if

some digit in the lower number is repeated, and there are

definitely repeats, since there are only 10 possible digits. But

even if it’s no work at all, you still have to write it down, and

that’s 23 or 24 digits. At the minimum (assuming no zeroes),

you have to write down 232 = 529 digits for the

“parallelogram” part of the product. And then comes the final

addition, where all of those 529 digits need to be processed.
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So in general if you multiply two n-digit numbers, it would

seem that you’d be taking n2 steps, unless there were a lot of

zeroes. This ignores extra steps, like carrying and so on, but

that at worst changes n2 to maybe 2n2 or 3n2. We say that

the “complexity” of “school multiplication” for two n-digit

numbers is of order n2.
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A. A. Karatsuba (1937–2008): Devised a faster way to multiply

two n-digit numbers taking about n1.6 elementary steps.
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Here is Karatsuba’s idea: use high school algebra!

Say the numbers A and B each have n digits. Let m = n/2
(okay, we assume that n is even). Write

A = A110m + A0, B = B110m + B0,

where A1, A0, B1, B0 are all smaller than 10m, so have at most
m digits. Then our product AB is

AB = (A1B1)102m + (A1B0 + A0B1)10m + A0B0,

so our problem is broken down to 4 smaller multiplication
problems, each of size m×m, namely

A1B1, A1B0, A0B1, A0B0,

and each of these would seem to take 1/4 as much work as the
original problem.
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So, unfortunately 4 problems each taking 1/4 as much work, is
no savings!

However, we also have

(A1 + A0)(B1 + B0) = A1B1 + (A1B0 + A0B1) + A0B0,

so we can really do it in 3 multiplications, not 4 (!). Namely,

A1B1, A0B0, (A1 + A0)(B1 + B0).

After we do these, we have our three coefficients, where the
middle one, A1B0 + A0B1, is the third product minus the first
two:

A1B0 + A0B1 = (A1 + A0)(B1 + B0)−A1B1 −A0B0.

This idea can then be used on each of the three smaller
multiplication problems, and so on down the fractal road,
ending in about n1.6 elementary steps.
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Karatsuba’s method was later improved by Toom, Cook,

Schönhage, & Strassen. After their efforts we have the Fast

Fourier Transform that allows you to multiply in about n · L(n)

steps, where L(n) is short-hand for the number of digits of n.

(So L(n) is the number of digits of the number of digits of the

numbers being multiplied!)

Small improvements were made by Fürer in 2007 and by De,

Kurur, Saha, & Saptharishi in 2008.

We don’t know if we have reached the limit! In particular:

What is the fastest way to multiply?
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Let’s play Jeopardy Multiplication!

Here are the rules: I give you the answer to the multiplication

problem, and you give me the problem phrased as a question.

You must use whole numbers larger than 1.

So, if I say “15”, you say “What is 3× 5?”

OK, let’s play.
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So, here’s what we don’t know:
How many steps does it take to figure out the factors if
you are given an n-digit number which can be factored?
(A trick problem would be: 17. The only way to write it as
a× b is to use 1, and that was ruled out. So, prime numbers
cannot be factored, and the thing we don’t know is how long it
takes to factor the non-primes.)

The best answer we have so far is about 10n1/3
steps, and

even this is not a theorem, but our algorithm (known as the
number field sieve) seems to work in practice.

This is all crucially important for the security of Internet
commerce. Or I should say that Internet commerce relies on
the premise that we cannot factor much more quickly than
that.
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A couple of words about factoring, that is, on how to win at
Multiplication Jeopardy.

The trick with 8051 (due to Fermat), namely that
8051 = 8100− 49, is sort of generalizable as might be
illustrated by 1649.

We look for a square just above 1649. The first is 412 = 1681.
Well

412 − 1649 = 32 and 32 is not a square.

Try again. The next square is 422 = 1764 and

422 − 1649 = 115 and 115 is not a square.

Trying again, the next square is 432 = 1849 and

432 − 1649 = 200 and 200 is not a square.
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But wait, look at our 3 non-squares: 32, 115, 200.

Note that we can make a square out of them:

32× 200 = 6400 = 802.

In general, if N is a positive integer, we’ll write x ≡ y (mod N)

if x, y leave the same remainder when divided by N . For

example, 17 ≡ 37 (mod 10) and 43 ≡ 98 (mod 11). It’s really

very handy notation!
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Let N = 1649, the number we’re trying to factor. Then we

have

412 ≡ 32 (mod N), 432 ≡ 200 (mod N),

and so

(41× 43)2 = 412 × 432 ≡ 32× 200 = 802 (mod N).

Now 41× 43 ≡ 114 (mod N), so 1142 ≡ 802 (mod N).

It is not true that N = (114− 80)(114 + 80), but it is true that

the greatest common divisor of 114− 80 = 34 with N is 17.

Hey! That proves that N = 1649 is divisible by 17. Dividing,

the other factor is 97. So, we have it: What is 17× 97?
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The various elements here can actually be made into a speedy

algorithm, the quadratic sieve. The number field sieve is a

fancier version but has the same underlying flavor of assembling

squares whose difference is divisible by N .

Despite our success with factoring, it still is very difficult. Hard

numbers with 300 decimal digits are beyond our reach at

present. The really amazing thing is we can apply our

ignorance to make a secure cryptographic system!
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Let’s play Hack the bank!

We’ll discuss a simple cryptographic system and how we might
hack it.

Here’s the set up. We have public numbers N,E and the bank
has a secret number D.

Say we have a message M to send the bank. First, M is
digitized and broken into pieces, so that each piece is a number
smaller than N . Let’s just assume that M is already one of
these pieces.

Here’s how to send a message to the bank: Multiply your
message M by E, then divide by N and get the remainder R. So

EM ≡ R (mod N).
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The bank then decrypts and finds the message M by

multiplying R by the secret number D, divides by N , and the

remainder will be M . That is,

DR ≡M (mod N).



Before we play, here’s a simple example to get us started.

Say the public numbers are E = 96, N = 1001. And say the

message is M = 561.

So first up, encrypting: 96× 561 = 53856, and when we divide

by 1001, the remainder (just subtract 53053) is 803.

The bank has a secret number D, which in this case happens

to be 73. Now 73× 803 = 58619, and dividing that by 1001,

the remainder is, sure enough, 561.

It’s not important that the message is 561, this would work for

any number up to 1000, with the same public numbers E,N

and the same secret number D.
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OK, let’s try it from the bank’s perspective.

An encrypted message has come in, and it is the number 591.

We’re using the same public numbers E = 96, N = 1001, and

the bank’s secret number D = 73. Their computer is down at

the moment, let’s help them decrypt and find the message.
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Now this part is more fun. We’re going to hack the bank.
We’re going to try and decrypt an encrypted message not
knowing the secret number D.

So, to keep things simple, we’ll use the same public number
N = 1001, but we’ll change the public encryption number to
E = 106. The encrypted message is R = 789.

What could the message be?

The numbers here are not so large, and we could use brute
force. If the original message were the number 1, then the
encrypted message would be E, and then D would satisfy

DE ≡ 1 (mod N), that is 106D ≡ 1 (mod 1001).

We could start at D = 1, then D = 2, and so on until the
correct choice is found.
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Now replace 1001 with a googol plus 1, namely 10100 + 1. Now

it’s not so easy to sequentially guess secret numbers D.

How can we hack the bank without guessing?
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Now replace 1001 with a googol plus 1, namely 10100 + 1. Now

it’s not so easy to sequentially guess secret numbers D.

How can we hack the bank without guessing?

Actually, there’s a simple and speedy algorithm due to Euclid,

discovered 2300 years ago that will let us hack the bank!

In our case with public numbers E = 106 and N = 1001, let’s

work it out.
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We look at the division problems

1001÷106 = 9 r47, 106÷47 = 2 r12, 47÷12 = 3 r11, 12÷11 = 1 r1.

Each of these can be written as an equation for the remainder:

47 = 1001−9·106, 12 = 106−2·47, 11 = 47−3·12, 1 = 12−1·11.

We then carefully back substitute, starting by replacing “11” in

the last equation with the expression in the next-to-last one:

1 = 12− 1 · (47− 3 · 12) = 4 · 12− 1 · 47.

We then substitute for 12, getting

1 = 4 · (106− 2 · 47)− 1 · 47 = 4 · 106− 9 · 47,

and once more:

1 = 4 · 106− 9 · (1001− 9 · 106) = 85 · 106− 9 · 1001.
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Our last line from before:

1 = 85 · 106− 9 · 1001.

And there you have it!

85 · 106 ≡ 1 (mod 1001).

The secret number is D = 85.

Recall the encrypted message was R = 789. Then,

85× 789 = 67065, and dividing by 1001, the remainder is 999.

That’s it! The message was 999, we’ve hacked the bank.
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Actually, a slight enhancement of this cryptosystem is in
widespread use in e-commerce! The enhancement: Instead of
encrypting by multiplying the message by E, we encrypt by
raising the message to the power E:

R ≡ME (mod N).

And decrypting is via raising to the power D:

RD ≡M (mod N).

To hack this cryptosystem, it’s necessary to factor N . If you
can do so, you find another number N ′ in a straightforward
way, and D,E are related by DE ≡ 1 (mod N ′). So, you can
hack this system with Euclid, but first you need to find N ′, and
finding N ′ requires factoring N .

And there it is, an application of our ignorance!
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Here are two famous unsolved problems involving both addition

and multiplication:

Goldbach’s conjecture: Every even number starting with 4

is the sum of two primes.

The twin prime conjecture: There are infinitely many

pairs of primes that differ by 2.
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Here’s a famous unsolved problem involving only simple

’rithmetic:

For even n, let f(n) = n/2 and for odd n, let f(n) = (3n+ 1)/2.

Consider the sequence n, f(n), f(f(n)), . . . .

For example: 3 7→ 5 7→ 8 7→ 4 7→ 2 7→ 1 7→ 2 7→ 1 . . .

Or: 7 7→ 11 7→ 17 7→ 26 7→ 13 7→ 20 7→ 10 7→ 5 7→ . . . 7→ 1

Is it true that starting with any positive integer n, the

sequence n, f(n), f(f(n)), . . . eventually hits the number 1?
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And here’s another famous problem (in disguised form):

Let A(N) be the least common multiple of 1,2, . . . , N

Let B(N) =
1

1
+

1

2
+ · · ·+

1

A(N)
.

For example: A(10) = 2520 and

B(10) = 1
1 + 1

2 + · · ·+ 1
2520 ≈ 8.4.

And: B(100,000,000) ≈ 99,998,243.4.

Do we always have |B(N)−N | <
√
NL(N)2?

(Recall: L(N) is the number of digits of N .)

The Clay Mathematics Institute offers $1,000,000 for a proof!
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Here’s an unsolved problem concerning just addition.

We all recall the addition table:

+ 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10 11 12 13
4 5 6 7 8 9 10 11 12 13 14
5 6 7 8 9 10 11 12 13 14 15
6 7 8 9 10 11 12 13 14 15 16
7 8 9 10 11 12 13 14 15 16 17
8 9 10 11 12 13 14 15 16 17 18
9 10 11 12 13 14 15 16 17 18 19

10 11 12 13 14 15 16 17 18 19 20
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The 10× 10 array of sums has all the numbers from 2 to 20

for a total of 19 different sums.

If you were to try this for the N ×N addition table we’d see all

of the numbers from 2 to 2N for a total of 2N − 1 different

sums.

Now, what if we were to be perverse and instead of having the

numbers from 1 to N , we had some arbitrary list of N different

numbers.

Can you arrange it so there are fewer than 2N − 1 different

sums?
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The 10× 10 array of sums has all the numbers from 2 to 20
for a total of 19 different sums.

If you were to try this for the N ×N addition table we’d see all
of the numbers from 2 to 2N for a total of 2N − 1 different
sums.

Now, what if we were to be perverse and instead of having the
numbers from 1 to N , we had some arbitrary list of N different
numbers.

Can you arrange it so there are fewer than 2N − 1 different
sums?

If you answered “No, there are always at least 2N − 1 different
sums,” you’d be right.
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Here’s an example where there are many different sums:

+ 1 2 4 8 16 32 64 128 256 512
1 2 3 5 9 17 33 65 129 257 513
2 3 4 6 10 18 34 66 130 258 514
4 5 6 8 12 20 36 68 132 260 516
8 9 10 12 16 24 40 72 136 264 520

16 17 18 20 24 32 48 80 144 272 528
32 33 34 36 40 48 64 96 160 288 544
64 65 66 68 72 80 96 128 192 320 576

128 129 130 132 136 144 160 192 256 384 640
256 257 258 260 264 272 288 320 384 512 768
512 513 514 516 520 528 544 576 640 768 1024
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So, sometimes there are few distinct sums and sometimes
many.
What structure is forced on the set if there are few
distinct sums?
We know the answer when there are very few distinct sums:

Gregory Freiman
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Here’s something with multiplication tables.

Let’s look at the N ×N multiplication table using the numbers

from 1 to N . With addition, we were able to count exactly how

many distinct numbers appear in the table.

How many different numbers appear in the N ×N

multiplication table?
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Let M(N) be the number of distinct entries in the N ×N
multiplication table.

× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

So M(10) = 42.
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It is really amazing that though M(N) is not far below N2

looking “from a distance”, if we look “close up” we see that

M(N)/N2 tends to 0 as N grows larger and larger.

It may be too difficult to expect a neat exact formula for M(N).

After Erdős, Tenenbaum, and Ford, we now know the

(complicated) order of magnitude for M(N) as N grows.

(It’s something like N2/L(N)EL(L(N))1.5, where E = 0.086 . . .

is an explicitly known constant.)
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Paul Erdős, 1913–1996

Find an asymptotic formula for M(N) as N grows?
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Let me close with one unified problem about addition and

multiplication tables. It’s due to Erdős & Szemerédi.

Look at both the addition and multiplication tables for N

carefully chosen numbers.

We’ve seen that if we take the first N numbers we get close to

N2 distinct entries in the multiplication table, but few in the

addition table.

At the other extreme, if we take for our N numbers the powers

of 2, namely 1,2,4, . . . ,2N−1, then there are at least 1
2N

2

distinct entries in the addition table and only 2N − 1 entries in

the multiplication table.
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If we take N random numbers, then it’s likely both tables have

close to N2 distinct entries.

The question is: If we choose our numbers so that the

number of distinct entries in one table is small, must the

other always be large?
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× 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 12 14 16 18 20

3 3 6 9 12 15 18 21 24 27 30

4 4 8 12 16 20 24 28 32 36 40

5 5 10 15 20 25 30 35 40 45 50

6 6 12 18 24 30 36 42 48 54 60

7 7 14 21 28 35 42 49 56 63 70

8 8 16 24 32 40 48 56 64 72 80

9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

+ 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11

2 3 4 5 6 7 8 9 10 11 12

3 4 5 6 7 8 9 10 11 12 13

4 5 6 7 8 9 10 11 12 13 14

5 6 7 8 9 10 11 12 13 14 15

6 7 8 9 10 11 12 13 14 15 16

7 8 9 10 11 12 13 14 15 16 17

8 9 10 11 12 13 14 15 16 17 18

9 10 11 12 13 14 15 16 17 18 19

10 11 12 13 14 15 16 17 18 19 20
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Many products Few sums

{1,2, . . . , N}
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× 1 2 4 8 16 32 64 128 256 512

1 1 2 4 8 16 32 64 128 256 512

2 2 4 8 16 32 64 128 256 512 1024

4 4 8 16 32 64 128 256 512 1024 2048

8 8 16 32 64 128 256 512 1024 2048 4096

16 16 32 64 128 256 512 1024 2048 4096 8192

32 32 64 128 256 512 1024 2048 4096 8192 16384

64 64 128 256 512 1024 2048 4096 8192 16384 32768

128 128 256 512 1024 2048 4096 8192 16384 32768 65536

256 256 512 1024 2048 4096 8192 16384 32768 65536 131072

512 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

+ 1 2 4 8 16 32 64 128 256 512

1 2 3 5 9 17 33 65 129 257 513

2 3 4 6 10 18 34 66 130 258 514

4 5 6 8 12 20 36 68 132 260 516

8 9 10 12 16 24 40 72 136 264 520

16 17 18 20 24 32 48 80 144 272 528

32 33 34 36 40 48 64 96 160 288 544

64 65 66 68 72 80 96 128 192 320 576

128 129 130 132 136 144 160 192 256 384 640

256 257 258 260 264 272 288 320 384 512 768

512 513 514 516 520 528 544 576 640 768 1024
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Few products Many sums

{1,2,4, . . . ,2N−1}
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Must one always be large?

Put more precisely: If we have N distinct numbers, must

one of

• the number of distinct pairwise sums,

• the number of distinct pairwise products,

be greater than N1.999 for all large values of N?

We don’t know.

And it’s not for lack of trying.
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The game players with the sum/product problem include:

Erdős, Szemerédi, Nathanson, Chen, Elekes, Bourgain,

Chang, Konyagin, Green, Tao, Solymosi, . . .

The best that’s been proved (Solymosi) is that there are at

least N4/3 different entries.

This list of mathematicians contains two Fields Medalists, a

Wolf Prize winner, an Abel Prize winner, four Salem Prize

Winners, two Crafoord Prize winners, and an Aisenstadt Prize

winner.

And still the problem is not solved!
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My message: We could use a little help with these problems!!
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My message: We could use a little help with these problems!!

THANK YOU
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