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Euler’s ϕ-function is quite chaotic:

n ϕ(n) n ϕ(n) n ϕ(n) n ϕ(n)
1 1 11 10 21 12 31 30
2 1 12 4 22 10 32 16
3 2 13 12 23 22 33 20
4 2 14 6 24 8 34 16
5 4 15 8 25 20 35 24
6 2 16 8 26 12 36 12
7 6 17 16 27 18 37 36
8 4 18 6 28 12 38 18
9 6 19 18 29 28 39 24

10 4 20 8 30 8 40 16
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But already we can see some patterns:

n ϕ(n) n ϕ(n) n ϕ(n) n ϕ(n)
1 1 11 10 21 12 31 30
2 1 12 4 22 10 32 16
3 2 13 12 23 22 33 20
4 2 14 6 24 8 34 16
5 4 15 8 25 20 35 24
6 2 16 8 26 12 36 12
7 6 17 16 27 18 37 36
8 4 18 6 28 12 38 18
9 6 19 18 29 28 39 24

10 4 20 8 30 8 40 16

The ϕ-function is monotone on the primes.
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And it is trivially monotone where it is constant:

n ϕ(n) n ϕ(n) n ϕ(n) n ϕ(n)
1 1 11 10 21 12 31 30
2 1 12 4 22 10 32 16
3 2 13 12 23 22 33 20
4 2 14 6 24 8 34 16
5 4 15 8 25 20 35 24
6 2 16 8 26 12 36 12
7 6 17 16 27 18 37 36
8 4 18 6 28 12 38 18
9 6 19 18 29 28 39 24

10 4 20 8 30 8 40 16
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Define M↑(n) to be the size of the largest subset S of

{1,2, . . . , n} on which ϕ is nondecreasing.

Similarly define M↓(n) to be the size of the largest subset S of

{1,2, . . . , n} on which ϕ is nonincreasing.

Then M↓(40) = 6, since we can take the five 8’s, which start

at ϕ(15) = 8, preceded either by ϕ(11) = 10 or ϕ(13) = 12.

Another down sequence has n starting with 4 prime powers:

23,25,27,32,34,40. And it can be continued to a 7th term at

42.

We can do better than the 12 primes for M↑(40) . . .
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In fact M↑(40) = 19:

n ϕ(n) n ϕ(n) n ϕ(n) n ϕ(n)
1 1 11 10 21 12 31 30
2 1 12 4 22 10 32 16
3 2 13 12 23 22 33 20
4 2 14 6 24 8 34 16
5 4 15 8 25 20 35 24
6 2 16 8 26 12 36 12
7 6 17 16 27 18 37 36
8 4 18 6 28 12 38 18
9 6 19 18 29 28 39 24

10 4 20 8 30 8 40 16
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Two years ago at this conference, I posed several problems:

Do we have M↑(n) = o(n) as n→∞?

Do we have M↑(n)− π(n) unbounded?

Do we have M↓(n) = o(n) as n→∞?

Let C(n) denote the size of the largest subset of {1,2, . . . , n}
on which ϕ is constant. We know that C(n) > n0.7 for all large

n, and C(n) > n1−ε is conjectured. Here’s a new question:

Do we have M↓(n)− C(n) unbounded?

6



We can answer 3 of these 4 questions:

Pollack, P, & Treviño (2011): For each fixed ε > 0 and n

sufficiently large, M↑(n) < n/(logn)1−ε.

Pollack, P, & Treviño (2011): For each fixed ε > 0 and n

sufficiently large, M↓(n) < n/ exp
(
(1

2 − ε)
√

logn log logn
)
.

Pollack, P, & Treviño (2011): For n sufficiently large,

M↓(n)− C(n) > n0.13.
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Still unsolved:

Is M↑(n)− π(n) unbounded?

We have some numerical evidence that perhaps for all large n

we have M↑(n)− π(n) = 64. It is true for n = 31,957 and it

continues to hold for all larger values up to 10,000,000.

A related problem which may be easier: Is there is a constant c

such that if ϕ is monotone on S ⊂ [1, n], then∑
n∈S

1

n
≤ log logn+ c?

We cannot do this one either.
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Some ideas involved in the proofs.

Let W (n) denote the size of the set {ϕ(1), ϕ(2), . . . , ϕ(n)}.
That is, W (n) is the number of distinct values of ϕ restricted

to [1, n]. It has been known since Erdős in 1935 that

W (n) ≤ n/(logn)1−ε for n sufficiently large. Thus, if M↑(n) is

considerably bigger than W (n), there would be many solution

pairs a, k to the equation

ϕ(a) = ϕ(a+ k), with a+ k ≤ n, k < logn. (1)

In a paper from 1999 of Graham, Holt, & P it is shown that

ϕ(a) = ϕ(a+ k) has few solutions in [1, n] for fixed k. What we

had to do was to make this result uniform in k up to logn so

that we could bound the number of solutions in (1).
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This proof works for M↓(n) as well, but we can do better by a
simpler argument: Get a good estimate for the number of
integers in a down sequence with a given number of prime
factors, starting from the observation that the case of 1 prime
factor is very easy, and using induction. (E.g., note that the
down sequence 23,25,27,32 of prime powers has increasing
exponents.)

We remark that while sets where ϕ is constant also count as
monotone nondecreasing, they don’t compete with the primes.
We know from work of Erdős, as improved by P, that

C(n) ≤ n1−(1−ε) log log logn/ log logn,

so that C(n) is tiny compared to π(n). Though we can prove
that M↓(n)− C(n) tends to infinity, it may be that
M↓(n) ∼ C(n) as n→∞.
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I close with one final result from our paper: The maximum size

of a set of consecutive integers in [1, n] for which ϕ is

nondecreasing is

log3 n

log6 n
+ (c+ o(1))

log3 n

(log6 n)2

as n→∞, where logk is the k-fold iterated logarithm, and

c = 0.0028428289 . . . is a constant. The same holds for

nonincreasing.

The proof borrows from a similar result of Erdős. The details

are in the paper, plus several other results and problems.

Pollack, P, & Treviño, Sets of monotonicity for Euler’s totient

function, submitted for publication, available at:

www.math.dartmouth.edu/∼carlp
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Thank You!
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