Sets of monotonicity for Euler's function

Carl Pomerance, Dartmouth College
Hanover, New Hampshire, USA

West Coast Number Theory Conference December 16-20, 2011

Based on joint work with
Paul Pollack \& Enrique Treviño

Euler's φ-function is quite chaotic:

n	$\varphi(n)$	n	$\varphi(n)$	n	$\varphi(n)$	n	$\varphi(n)$
1	1	11	10	21	12	31	30
2	1	12	4	22	10	32	16
3	2	13	12	23	22	33	20
4	2	14	6	24	8	34	16
5	4	15	8	25	20	35	24
6	2	16	8	26	12	36	12
7	6	17	16	27	18	37	36
8	4	18	6	28	12	38	18
9	6	19	18	29	28	39	24
10	4	20	8	30	8	40	16

But already we can see some patterns:

n	$\varphi(n)$	n	$\varphi(n)$	n	$\varphi(n)$	n	$\varphi(n)$
1	1	11	10	21	12	31	30
2	1	12	4	22	10	32	16
3	2	13	12	23	22	33	20
4	2	14	6	24	8	34	16
5	4	15	8	25	20	35	24
6	2	16	8	26	12	36	12
7	6	17	16	27	18	37	36
8	4	18	6	28	12	38	18
9	6	19	18	29	28	39	24
10	4	20	8	30	8	40	16

The φ-function is monotone on the primes.

And it is trivially monotone where it is constant:

n	$\varphi(n)$	n	$\varphi(n)$	n	$\varphi(n)$	n	$\varphi(n)$
1	1	11	10	21	12	31	30
2	1	12	4	22	10	32	16
3	2	13	12	23	22	33	20
4	2	14	6	24	8	34	16
5	4	15	8	25	20	35	24
6	2	16	8	26	12	36	12
7	6	17	16	27	18	37	36
8	4	18	6	28	12	38	18
9	6	19	18	29	28	39	24
10	4	20	8	30	8	40	16

Define $M^{\uparrow}(n)$ to be the size of the largest subset S of $\{1,2, \ldots, n\}$ on which φ is nondecreasing.

Similarly define $M^{\downarrow}(n)$ to be the size of the largest subset S of $\{1,2, \ldots, n\}$ on which φ is nonincreasing.

Then $M^{\downarrow}(40)=6$, since we can take the five 8 's, which start at $\varphi(15)=8$, preceded either by $\varphi(11)=10$ or $\varphi(13)=12$.

Another down sequence has n starting with 4 prime powers: $23,25,27,32,34,40$. And it can be continued to a 7 th term at 42.

We can do better than the 12 primes for $M^{\uparrow}(40) \ldots$

In fact $M^{\uparrow}(40)=19$:

n	$\varphi(n)$	n	$\varphi(n)$	n	$\varphi(n)$	n	$\varphi(n)$
1	1	11	10	21	12	31	30
2	1	12	4	22	10	32	16
3	2	13	12	23	22	33	20
4	2	14	6	24	8	34	16
5	4	15	8	25	20	35	24
6	2	16	8	26	12	36	12
7	6	17	16	27	18	37	36
8	4	18	6	28	12	38	18
9	6	19	18	29	28	39	24
10	4	20	8	30	8	40	16

Two years ago at this conference, I posed several problems:
Do we have $M^{\uparrow}(n)=o(n)$ as $n \rightarrow \infty$?
Do we have $M^{\uparrow}(n)-\pi(n)$ unbounded?
Do we have $M^{\downarrow}(n)=o(n)$ as $n \rightarrow \infty$?
Let $C(n)$ denote the size of the largest subset of $\{1,2, \ldots, n\}$ on which φ is constant. We know that $C(n)>n^{0.7}$ for all large n, and $C(n)>n^{1-\epsilon}$ is conjectured. Here's a new question:

Do we have $M^{\downarrow}(n)-C(n)$ unbounded?

We can answer 3 of these 4 questions:
Pollack, P, \& Treviño (2011): For each fixed $\epsilon>0$ and n sufficiently large, $M^{\uparrow}(n)<n /(\log n)^{1-\epsilon}$.

Pollack, P, \& Treviño (2011): For each fixed $\epsilon>0$ and n sufficiently large, $M^{\downarrow}(n)<n / \exp \left(\left(\frac{1}{2}-\epsilon\right) \sqrt{\log n \log \log n}\right)$.

Pollack, P, \& Treviño (2011): For n sufficiently large, $M^{\downarrow}(n)-C(n)>n^{0.13}$.

Still unsolved:

Is $M^{\uparrow}(n)-\pi(n)$ unbounded?

We have some numerical evidence that perhaps for all large n we have $M^{\uparrow}(n)-\pi(n)=64$. It is true for $n=31,957$ and it continues to hold for all larger values up to $10,000,000$.

A related problem which may be easier: Is there is a constant c such that if φ is monotone on $S \subset[1, n]$, then

$$
\sum_{n \in S} \frac{1}{n} \leq \log \log n+c ?
$$

We cannot do this one either.

Some ideas involved in the proofs.
Let $W(n)$ denote the size of the set $\{\varphi(1), \varphi(2), \ldots, \varphi(n)\}$.
That is, $W(n)$ is the number of distinct values of φ restricted to $[1, n]$. It has been known since Erdős in 1935 that $W(n) \leq n /(\log n)^{1-\epsilon}$ for n sufficiently large. Thus, if $M^{\uparrow}(n)$ is considerably bigger than $W(n)$, there would be many solution pairs a, k to the equation

$$
\begin{equation*}
\varphi(a)=\varphi(a+k), \quad \text { with } \quad a+k \leq n, \quad k<\log n . \tag{1}
\end{equation*}
$$

In a paper from 1999 of Graham, Holt, \& P it is shown that $\varphi(a)=\varphi(a+k)$ has few solutions in $[1, n]$ for fixed k. What we had to do was to make this result uniform in k up to $\log n$ so that we could bound the number of solutions in (1).

This proof works for $M^{\downarrow}(n)$ as well, but we can do better by a simpler argument: Get a good estimate for the number of integers in a down sequence with a given number of prime factors, starting from the observation that the case of 1 prime factor is very easy, and using induction. (E.g., note that the down sequence $23,25,27,32$ of prime powers has increasing exponents.)

We remark that while sets where φ is constant also count as monotone nondecreasing, they don't compete with the primes. We know from work of Erdős, as improved by P, that

$$
C(n) \leq n^{1-(1-\epsilon) \log \log \log n / \log \log n}
$$

so that $C(n)$ is tiny compared to $\pi(n)$. Though we can prove that $M^{\downarrow}(n)-C(n)$ tends to infinity, it may be that $M^{\downarrow}(n) \sim C(n)$ as $n \rightarrow \infty$.

I close with one final result from our paper: The maximum size of a set of consecutive integers in $[1, n]$ for which φ is nondecreasing is

$$
\frac{\log _{3} n}{\log _{6} n}+(c+o(1)) \frac{\log _{3} n}{\left(\log _{6} n\right)^{2}}
$$

as $n \rightarrow \infty$, where $\log _{k}$ is the k-fold iterated logarithm, and $c=0.0028428289 \ldots$ is a constant. The same holds for nonincreasing.

The proof borrows from a similar result of Erdős. The details are in the paper, plus several other results and problems.

Pollack, P, \& Treviño, Sets of monotonicity for Euler's totient function, submitted for publication, available at:
www.math. dartmouth.edu/~carlp

Thank You!

