The ranges of some familiar arithmetic functions

MSRI
March 7, 2017

Carl Pomerance
Dartmouth College, University of Georgia
Let us introduce our cast of characters: $\varphi, \lambda, \sigma, s$

- **Euler**’s function: $\varphi(n)$ is the cardinality of $(\mathbb{Z}/n\mathbb{Z})^\times$.

- **Carmichael**’s function: $\lambda(n)$ is the exponent of $(\mathbb{Z}/n\mathbb{Z})^\times$.

- σ: the sum-of-divisors function.

- $s(n) = \sigma(n) - n$: the sum-of-proper-divisors function.
The functions φ and σ are multiplicative. For n squarefree, we have

$$\varphi(n) = \prod_{p|n} (p - 1), \quad \sigma(n) = \prod_{p|n} (p + 1).$$

This similarity leads to general theorems that hold for both functions.

For example, each function on average is a positive constant times the argument. Both have continuous distribution functions. And the maximal order of $\sigma(n)/n$ is asymptotically equal to the maximal order of $n/\varphi(n)$, namely $(e^\gamma + o(1)) \log \log n$.
Recall that $\lambda(n)$ is the exponent of $(\mathbb{Z}/n\mathbb{Z})^\times$, the least positive integer k such that $a^k \equiv 1 \pmod{n}$ for all a coprime to n (or the order of the largest cyclic subgroup of $(\mathbb{Z}/n\mathbb{Z})^\times$).

The function λ is not multiplicative, but it also is determined multiplicatively: If $[m,n]$ denotes the lcm of m,n, then

$$\lambda([m,n]) = [\lambda(m), \lambda(n)].$$

Moreover, $\lambda(p^a) = \varphi(p^a)$ except when $p = 2$ and $a \geq 3$, and then $\lambda(2^a) = 2^{a-2} = \frac{1}{2}\varphi(2^a)$.
The function s, where $s(n) = \sigma(n) - n$ is a bit more awkward, multiplicatively speaking.

All 4 of our functions have the pleasant property that computing them is computationally equivalent to factoring. That is, they are easily computed via the formulas, given the prime factorization of n. On the other hand, there is a random, polynomial time algorithm that returns the prime factorization of n given n and $f(n)$, where f is one of the four functions.

But this talk is concerned with the ranges of these functions, that is, the set of values they take.
The oldest of these functions is \(s(n) = \sigma(n) - n \), going back to Pythagoras. He was interested in fixed points \((s(n) = n)\) and 2-cycles \((s(n) = m, s(m) = n)\) in the dynamical system given by iterating \(s \).

Very little is known after millennia of study, but we do know that the number of \(n \) to \(x \) with \(s(n) = n \) is at most \(x^\epsilon \) (Hornfeck & Wirsing, 1957) and that the number of \(n \) to \(x \) with \(n \) in a 2-cycle is at most \(x/\exp((\log x)^{1/2}) \) for \(x \) large (P, 2014).

The study of the comparison of \(s(n) \) to \(n \) led to the theorems of Schoenberg, Davenport, and Erdős & Wintner and the birth of probabilistic number theory.
Erdős was the first to consider the set of values of $s(n)$. Note that if $p \neq q$ are primes, then $s(pq) = p + q + 1$, so that:

All even integers at least 8 are the sum of 2 unequal primes,

implies

All odd numbers at least 9 are values of s.

Also, $s(2) = 1$, $s(4) = 3$, and $s(8) = 7$, so presumably the only odd number that's not an s-value is 5. It's known that this slightly stronger form of Goldbach is almost true in that the set of evens not so representable as $p + q$ has density 0.

Thus: the image of s contains “almost all” odd numbers.
By “almost all” I mean all but for a set of asymptotic density 0.
But what of even numbers? Erdős (1973): *There is a positive proportion of even numbers missing from the image of \(s\).*
But what of even numbers? Erdős (1973): *There is a positive proportion of even numbers missing from the image of s.*

Y.-G. Chen & Q.-Q. Zhao (2011): *At least* $(0.06 + o(1))x$ *even numbers in* $[1, x]$ *are not of the form* $s(n)$.

P & H.-S. Yang (2014): Computationally it is appearing that about $\frac{1}{6}x$ *even numbers to* x *are not of the form* $s(n)$.
But what of even numbers? Erdős (1973): There is a positive proportion of even numbers missing from the image of s.

Y.-G. Chen & Q.-Q. Zhao (2011): At least $(0.06 + o(1)) x$ even numbers in $[1, x]$ are not of the form $s(n)$.

P & H.-S. Yang (2014): Computationally it is appearing that about $\frac{1}{6} x$ even numbers to x are not of the form $s(n)$.

P. Pollack & P (2016): Heuristically the density of even numbers not in the image of s exists and is equal to

$$\lim_{y \to \infty} \frac{1}{\log y} \sum_{a \leq y \atop 2 | a} \frac{1}{a} e^{-a/s(a)} \approx 0.1718.$$

Note that the proportion to 10^{12}, computed last year by A. Mosunov is ≈ 0.1712.
Can we prove that s actually hits a positive proportion of even numbers?

This had been an open problem until recently Luca & P proved it in 2014. The proof doesn’t lend itself to getting a reasonable numerical estimate.

It is still unsolved if the range of s has a density.
Let’s take a look at the Erdős proof that s misses a positive proportion of even numbers. Consider multiples of 12. If $1 < s(n) \leq x$ then $n/p \leq x$ where p is the least prime factor of n. Since $p \leq \sqrt{n}$, we have $n \leq x^2$. Since $s(n)$ is even, either n is an odd square or n is even. Since $s(p^2) = p + 1$ gives rise to only a density-0 set of numbers, if n is an odd square, it has a prime factor $p \leq n^{1/4}$, so $n = m^2 \leq x^{4/3}$ and there are at most $x^{2/3}$ choices.

So, we must have n even, so that $n \leq 2x$. Now almost all n are divisible by a prime $p \equiv -1 \mod 12$ to exactly the first power, so that $12 \mid \sigma(n)$ for almost all n. So, if $12 \mid s(n)$, almost always we have $12 \mid n$. But then $\sigma(n)/n \geq \sigma(12)/12 = 7/3$, so that $s(n)/n \geq 4/3$ and $n \leq (3/4)x$.

Thus, the range of s contains at most 75% of the multiples of 12.
Let’s look at the range of Euler’s function \(\varphi \). We’ll show this set has density 0.

The values begin as

\[
1, 2, 4, 6, 8, 10, 12, \ldots
\]

Clearly all the values after 1 are even, so the set of values has density at most 1/2. Maybe it’s 1/2?
Let’s look at the range of Euler’s function φ. We’ll show this set has density 0.

The values begin as

$$1, 2, 4, 6, 8, 10, 12, \ldots$$

However, 14 is missing, and the values then continue

$$16, 18, 20, 22, 24, 28, 30, 32, \ldots$$

It looks like a few numbers that are 2 mod 4 are missing. In fact, the only values that are 2 mod 4 are numbers

$$\varphi(p^a) = p^{a-1}(p - 1)$$

where p is a prime that’s 3 mod 4. That is, most 2 mod 4’s are missing. So the values have density at most 1/4.
In general, note that if \(n \) has at least \(k \) odd prime divisors, then \(2^k \mid \varphi(n) \), and the number of multiples of \(2^k \) at most \(x \) is \(\leq x/2^k \).

Assume that \(n = \varphi(m) \leq x \) and that \(m \) has fewer than \(k \) odd prime divisors. We have, via Mertens’ theorem,

\[
\frac{m}{\varphi(m)} = \prod_{p|m} \left(1 - \frac{1}{p}\right)^{-1} = O(\log k),
\]

so that \(m = O(x \log k) \). By a result of Hardy & Ramanujan, the number of such integers \(m \) is

\[
O\left(x \log k (\log \log x)^{k-1}/((k - 1)! \log x)\right).
\]

By letting \(k \) get large, this proves that the range of \(\varphi \) has density 0.
By optimizing the choice of k one can an estimate of the shape \(x/(\log x)^c \).

Subbayya Sivasankaranarayana Pillai discovered the above approach and took $k \approx \frac{1}{e} \log \log x$.

S. S. Pillai (1929): We have $V_\varphi(x) = O(x/(\log x)^c)$, where $c = \frac{1}{e} \log 2 = 0.254 \ldots$
By optimizing the choice of k one can an estimate of the shape $x/(\log x)^{c}$.

Subbayya Sivasankaranarayana Pillai discovered the above approach and took $k \approx \frac{1}{e} \log \log x$.

S. S. Pillai (1929): We have $V_\varphi(x) = O(x/(\log x)^c)$, where $c = \frac{1}{e} \log 2 = 0.254 \ldots$.

Clearly $V_\varphi(x) \geq (1 + o(1))x/\log x$.

Erdős (1935): $V_\varphi(x) = x/(\log x)^{1+o(1)}$.

Erdős’s idea: Deal with $\Omega(\varphi(n))$ (the total number of prime factors of $\varphi(n)$, with multiplicity). This paper was seminal for the various ideas introduced. For example, the proof of the infinitude of **Carmichael** numbers owes much to this paper.
Again: $V_\varphi(x) = x/(\log x)^{1+o(1)}$.

But: A great deal of info may be lurking in that "$o(1)$".

After work of Erdős & Hall, Maier & P, and Ford, we now know that $V_\varphi(x)$ is of magnitude

$$\frac{x}{\log x} \exp \left(A(\log_3 x - \log_4 x)^2 + B \log_3 x + C \log_4 x \right),$$

where \log_k is the k-fold iterated log, and A, B, C are explicit constants.

Unsolved: Is there an asymptotic formula for $V_\varphi(x)$? Do we have $V_\varphi(2x) - V_\varphi(x) \sim V_\varphi(x)$? (From Ford we have $V_\varphi(2x) - V_\varphi(x) \asymp V_\varphi(x)$.)
The same results and unsolved problems pertain as well for the image of \(\sigma \).

In 1959, Erdős conjectured that the image of \(\sigma \) and the image of \(\varphi \) has an infinite intersection; that is, there are infinitely many pairs \(m, n \) with

\[\sigma(m) = \varphi(n). \]

It is amazing how many famous conjectures imply that the answer is yes!
Yes, if there are infinitely many twin primes:

If $p, p + 2$ are both prime, then

$$\varphi(p + 2) = p + 1 = \sigma(p).$$
Yes, if there are infinitely many twin primes:

If p, $p + 2$ are both prime, then
\[\varphi(p+2) = p + 1 = \sigma(p). \]

Yes, if there are infinitely many Mersenne primes:

If $2^p - 1$ is prime, then
\[\varphi(2^{p+1}) = 2^p = \sigma(2^p - 1). \]
Yes, if there are infinitely many twin primes:

If p, $p + 2$ are both prime, then

$$\varphi(p + 2) = p + 1 = \sigma(p).$$

Yes, if there are infinitely many Mersenne primes:

If $2^p - 1$ is prime, then

$$\varphi(2^{p+1}) = 2^p = \sigma(2^p - 1).$$

Yes, if the Extended Riemann Hypothesis holds.
It would seem a promising strategy to prove that there are at most finitely many solutions to $\sigma(m) = \varphi(n)$; it has some fantastic corollaries!
It would seem a promising strategy to prove that there are at most finitely many solutions to $\sigma(m) = \varphi(n)$; it has some fantastic corollaries!

However, Ford, Luca, & P (2010): There are indeed infinitely many solutions to $\sigma(m) = \varphi(n)$.

We gave several proofs, but one proof uses a conditional result of Heath-Brown: *If there are infinitely many Siegel zeros, then there are infinitely many twin primes.*
Some further results:

Garaev (2011): For each fixed number a, the number $V_{\varphi,\sigma}(x)$ of common values of φ and σ in $[1,x]$ exceeds $\exp((\log \log x)^a)$ for x sufficiently large.

Ford & Pollack (2011): Assuming a strong form of the prime k-tuples conjecture, $V_{\varphi,\sigma}(x) = x/(\log x)^{1+o(1)}$.

Ford & Pollack (2012): Most values of φ are not values of σ and vice versa.
The situation for Carmichael’s function λ has only recently become clearer. Recall that $\lambda(p^a) = \varphi(p^a)$ unless $p = 2, a \geq 3$, when $\lambda(2^a) = 2^{a-2}$, and that

$$\lambda([m, n]) = [\lambda(m), \lambda(n)].$$

It is easy to see that the image of φ has density 0, just playing with powers of 2 as did Pillai. But what can be done with λ? It’s not even obvious that λ-values that are 2 mod 4 have density 0.

The solution lies in the “anatomy of integers” and in particular of shifted primes. It is known (Erdős & Wagstaff) that most numbers do not have a large shifted-prime divisor $p - 1$. But a λ-value either has a large shifted-prime divisor or it is “smooth” (aka “friable”), so in either case, there are not many of them.
Using these thoughts, Erdős, P, & Schmutz (1991): There is a positive constant c such that $V_\lambda(x)$, the number of λ-values in $[1, x]$, is $O(x/(\log x)^c)$.
Using these thoughts, **Erdős, P, & Schmutz** (1991): *There is a positive constant c such that $V_\lambda(x)$, the number of λ-values in $[1, x]$, is $O(x/(\log x)^c)$.*

Friedlander & Luca (2007): *A valid choice for c is $1 - \frac{e}{2} \log 2 = 0.057\ldots$.*
Using these thoughts, Erdős, P, & Schmutz (1991): There is a positive constant c such that $V_\lambda(x)$, the number of λ-values in $[1, x]$, is $O(x/(\log x)^c)$.

Friedlander & Luca (2007): A valid choice for c is $1 - \frac{e}{2} \log 2 = 0.057\ldots$.

Banks, Friedlander, Luca, Pappalardi, & Shparlinski (2006): $V_\lambda(x) \geq \frac{x}{\log x} \exp \left((A + o(1))(\log_3 x)^2 \right)$.

So, $V_\lambda(x)$ is somewhere between $x/(\log x)^{1+o(1)}$ and $x/(\log x)^c$, where $c = 1 - \frac{e}{2} \log 2$.

Recently, Luca & P (2013): $V_{\lambda}(x) \leq x/(\log x)^{\eta + o(1)}$, where

$\eta = 1 - (1 + \log \log 2)/\log 2 = 0.086\ldots$.

Further, $V_{\lambda}(x) \geq x/(\log x)^{0.36}$ for all large x.

Actually, the “correct” exponent is η (Ford, Luca, & P, 2014).
The “Erdős–Ford–Tenenbaum” constant
\[\eta = 1 - \frac{1 + \log \log 2}{\log 2} \approx 0.086 \]
amazingly pops up in some other problems:

Erdős (1960): The number of distinct entries in the \(N \times N \) multiplication table is \(N^2/(\log N)^{\eta + o(1)} \).

Erdős: The asymptotic density of integers with a divisor in the interval \([N, 2N]\) is \(1/(\log N)^{\eta + o(1)} \).

McNew, Pollack, & P (2016): The number of integers to \(x \) divisible by some \(p - 1 > y \) is \(x/(\log y)^{\eta + o(1)} \).

Chow & P (2017): The number of integers to \(x \) that belong to a Pythagorean triple with prime hypotenuse is at most \(x/(\log x)^{\eta + o(1)} \).
Here is a heuristic argument behind the theorem that $V_\lambda(x) \geq x/(\log x)^{\eta + o(1)}$.

Suppose we consider odd squarefree numbers n, say $n = p_1 p_2 \ldots p_k$, with $\lambda(n) \leq x$. Now

$$\lambda(n) = [p_1 - 1, p_2 - 1, \ldots, p_k - 1].$$

Assume each $p_i - 1 = a_i$ is squarefree. For each prime $p | a_1 a_2 \ldots a_k$, let $S_p = \{i : p | a_i\}$. Then

$$[a_1, a_2, \ldots, a_k] = \prod_{S \subseteq \{1, 2, \ldots, k\}} \prod_{S_p = S} p = \prod_{S \subseteq \{1, 2, \ldots, k\}} M_S,$$

and the numbers $a_i (= p_i - 1)$ can be retrieved from this factorization via $a_i = \prod_{S \ni i} M_S$.

32
For example, say $n = 3 \cdot 31 \cdot 211$, so that

$$\lambda(n) = [2, 30, 210] = 2 \cdot 3 \cdot 5 \cdot 7.$$

We have

$$S_2 = \{1, 2, 3\}, \quad S_3 = \{2, 3\}, \quad S_5 = \{2, 3\}, \quad S_7 = \{3\}.$$

And for each $S \subset \{1, 2, 3\}$ with $S \neq \emptyset$, we have $M_S = 1$, except

$$M_{\{1,2,3\}} = 2, \quad M_{\{2,3\}} = 15, \quad M_{\{3\}} = 7.$$

Further,

$$\prod_{S \ni 1} M_S = 2, \quad \prod_{S \ni 2} M_S = 30, \quad \prod_{S \ni 3} M_S = 210.$$

Thus, a squarefree number M is of the form $[p_1 - 1, p_2 - 1, \ldots, p_k - 1]$ if and only if M has an ordered factorization into $2^k - 1$ factors M_S indexed by the nonempty $S \subset \{1, 2, \ldots, k\}$, such that for $i \leq k$, the product of all M_S with $i \in S$ is a shifted prime $p_i - 1$, with the p_i's distinct.

What is the chance that a random squarefree $M \leq x$ has such a factorization?

We assume that M is even. Then, for $M/2$, we ask for the product of the factors corresponding to i to be half a shifted prime, $(p_i - 1)/2$.
The number of factorizations of $M/2$ is $(2^k - 1)\omega(M/2)$. Thus, the chance that $M = \lambda(n)$ with $\omega(n) = k$, n squarefree, might be close to 1 if $(2^k - 1)\omega(M/2) > (\log x)^k$, that is,

$$\omega(M/2) > \frac{k \log \log x}{\log(2^k - 1)} \approx \frac{\log \log x}{\log 2},$$

when k is large. But the number of even, squarefree $M \leq x$ with

$$\omega(M/2) \geq (1 + o(1))\frac{\log \log x}{\log 2}$$

is $x/(\log x)^{\eta + o(1)}$.

This last assertion follows from the Hardy–Ramanujan inequality mentioned earlier (and the fact that it is fairly tight in this range).
Square values Banks, Friedlander, P, & Shparlinski (2004): There are more than \(x^{0.7} \) integers \(n \leq x \) with \(\varphi(n) \) a square. The same goes for \(\sigma \) and \(\lambda \).
Square values Banks, Friedlander, P, & Shparlinski (2004): There are more than $x^{0.7}$ integers $n \leq x$ with $\varphi(n)$ a square. The same goes for σ and λ.

Remark. There are only $x^{0.5}$ squares below x. (!)
Square values Banks, Friedlander, P, & Shparlinski (2004): There are more than $x^{0.7}$ integers $n \leq x$ with $\varphi(n)$ a square. The same goes for σ and λ.

Remark. There are only $x^{0.5}$ squares below x. (!)

Might there be a positive proportion of integers n with n^2 a value of φ? To 10^8, there are 26,094,797, or more than 50% of even numbers. But:

Pollack & P (2013): No, the number of $n \leq x$ with n^2 a φ-value is $O(x/(\log x)^{0.0063})$. The same goes for σ.

Unsolved: Could possibly almost all even squares be λ-values??
Here’s why this may be. Most \(n \leq x \) have
\(\omega(n) > (1 - \epsilon) \log \log x \). Thus, most \(n \leq x \) have
\(\tau(n^2) > 3^{(1-\epsilon) \log \log x} \). For each \(p^a \| n \), the number of \(d \mid n^2/p^{2a} \) with \(dp^{2a} + 1 \) prime might be \(> 3^{(1-2\epsilon) \log \log x / \log x} \), and this expression is \(> (\log x)^\epsilon \). So, most of the time, for each \(p^a \| n \), there should be at least one such prime \(dp^{2a} + 1 \). If \(m \) is the product of all of the primes \(dp^{2a} + 1 \) so found, we would have that \(\lambda(m) = n^2 \).

This is very similar to the heuristic for \(V_\lambda(x) \). A proof anyone?
THANK YOU