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Let us introduce our cast of characters: ϕ, λ, σ, s

• Euler’s function: ϕ(n) is the cardinality of (Z/nZ)×.

• Carmichael’s function: λ(n) is the exponent of (Z/nZ)×.

• σ: the sum-of-divisors function.

• s(n) = σ(n)− n: the sum-of-proper-divisors function.
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The functions ϕ and σ are multiplicative. For n squarefree, we

have

ϕ(n) =
∏
p|n

(p− 1), σ(n) =
∏
p|n

(p+ 1).

This similarity leads to general theorems that hold for both

functions.

For example, each function on average is a positive constant

times the argument. Both have continuous distribution

functions. And the maximal order of σ(n)/n is asymptotically

equal to the maximal order of n/ϕ(n), namely

(eγ + o(1)) log logn.
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Recall that λ(n) is the exponent of (Z/nZ)×, the least positive

integer k such that ak ≡ 1 (mod n) for all a coprime to n (or

the order of the largest cyclic subgroup of (Z/nZ)×).

The function λ is not multiplicative, but it also is determined

multiplicatively: If [m,n] denotes the lcm of m,n, then

λ([m,n]) = [λ(m), λ(n)].

Moreover, λ(pa) = ϕ(pa) except when p = 2 and a ≥ 3, and

then λ(2a) = 2a−2 = 1
2ϕ(2a).
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The function s, where s(n) = σ(n)− n is a bit more awkward,

multiplicatively speaking.

All 4 of our functions have the pleasant property that

computing them is computationally equivalent to factoring.

That is, they are easily computed via the formulas, given the

prime factorization of n. On the other hand, there is a random,

polynomial time algorithm that returns the prime factorization

of n given n and f(n), where f is one of the four functions.

But this talk is concerned with the ranges of these functions,

that is, the set of values they take.
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The oldest of these functions is s(n) = σ(n)− n, going back to

Pythagoras. He was interested in fixed points (s(n) = n) and

2-cycles (s(n) = m, s(m) = n) in the dynamical system given by

iterating s.

Very little is known after millennia of study, but we do know

that the number of n to x with s(n) = n is at most xε (Hornfeck

& Wirsing, 1957) and that the number of n to x with n in a

2-cycle is at most x/ exp((logx)1/2) for x large (P, 2014).

The study of the comparison of s(n) to n led to the theorems

of Schoenberg, Davenport, and Erdős & Wintner and the birth

of probabilistic number theory.
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Erdős was the first to consider the set of values of s(n). Note

that if p 6= q are primes, then s(pq) = p+ q + 1, so that:

All even integers at least 8 are the sum of 2 unequal primes,

implies

All odd numbers at least 9 are values of s.

Also, s(2) = 1, s(4) = 3, and s(8) = 7, so presumably the only

odd number that’s not an s-value is 5. It’s known that this

slightly stronger form of Goldbach is almost true in that the set

of evens not so representable as p+ q has density 0.

Thus: the image of s contains “almost all” odd numbers.
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By “almost all” I mean all but for a set of asymptotic density 0.
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But what of even numbers? Erdős (1973): There is a positive

proportion of even numbers missing from the image of s.
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But what of even numbers? Erdős (1973): There is a positive

proportion of even numbers missing from the image of s.

Y.-G. Chen & Q.-Q. Zhao (2011): At least (0.06 + o(1))x even

numbers in [1, x] are not of the form s(n).

P & H.-S. Yang (2014): Computationally it is appearing that

about 1
6x even numbers to x are not of the form s(n).
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But what of even numbers? Erdős (1973): There is a positive
proportion of even numbers missing from the image of s.

Y.-G. Chen & Q.-Q. Zhao (2011): At least (0.06 + o(1))x even
numbers in [1, x] are not of the form s(n).

P & H.-S. Yang (2014): Computationally it is appearing that
about 1

6x even numbers to x are not of the form s(n).

P. Pollack & P (2016): Heuristically the density of even
numbers not in the image of s exists and is equal to

lim
y→∞

1

log y

∑
a≤y
2|a

1

a
e−a/s(a) ≈ .1718.

Note that the proportion to 1012, computed last year by
A. Mosunov is ≈ .1712.
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Can we prove that s actually hits a positive proportion of even

numbers?

This had been an open problem until recently Luca & P proved

it in 2014. The proof doesn’t lend itself to getting a reasonable

numerical estimate.

It is still unsolved if the range of s has a density.
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Let’s take a look at the Erdős proof that s misses a positive
proportion of even numbers. Consider multiples of 12. If
1 < s(n) ≤ x then n/p ≤ x where p is the least prime factor of n.
Since p ≤

√
n, we have n ≤ x2. Since s(n) is even, either n is an

odd square or n is even. Since s(p2) = p+ 1 gives rise to only a
density-0 set of numbers, if n is an odd square, it has a prime
factor p ≤ n1/4, so n = m2 ≤ x4/3 and there are at most x2/3

choices.

So, we must have n even, so that n ≤ 2x. Now almost all n are
divisible by a prime p ≡ −1 mod 12 to exactly the first power,
so that 12 | σ(n) for almost all n. So, if 12 | s(n), almost always
we have 12 | n. But then σ(n)/n ≥ σ(12)/12 = 7/3, so that
s(n)/n ≥ 4/3 and n ≤ (3/4)x.

Thus, the range of s contains at most 75% of the multiples of
12.
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Let’s look at the range of Euler’s function ϕ. We’ll show this

set has density 0.

The values begin as

1,2,4,6,8,10,12, . . .

Clearly all the values after 1 are even, so the set of values has

density at most 1/2. Maybe it’s 1/2?
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Let’s look at the range of Euler’s function ϕ. We’ll show this

set has density 0.

The values begin as

1,2,4,6,8,10,12, . . .

However, 14 is missing, and the values then continue

16,18,20,22,24,28,30,32, . . . .

It looks like a few numbers that are 2 mod 4 are missing. In

fact, the only values that are 2 mod 4 are numbers

ϕ(pa) = pa−1(p− 1) where p is a prime that’s 3 mod 4. That is,

most 2 mod 4’s are missing. So the values have density at

most 1/4.
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In general, note that if n has at least k odd prime divisors, then

2k | ϕ(n), and the number of multiples of 2k at most x is

≤ x/2k.

Assume that n = ϕ(m) ≤ x and that m has fewer than k odd

prime divisors. We have, via Mertens’ theorem,

m

ϕ(m)
=

∏
p|m

(
1−

1

p

)−1

= O(log k),

so that m = O(x log k). By a result of Hardy & Ramanujan, the

number of such integers m is

O
(
x log k(log logx)k−1/((k − 1)! logx)

)
.

By letting k get large, this proves that the range of ϕ has

density 0
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By optimizing the choice of k one can an estimate of the shape

x/(logx)c.

Subbayya Sivasankaranarayana Pillai discovered the above

approach and took k ≈ 1
e log logx.

S. S. Pillai(1929): We have Vϕ(x) = O(x/(logx)c), where

c = 1
e log 2 = 0.254 . . . .

16



By optimizing the choice of k one can an estimate of the shape
x/(logx)c.

Subbayya Sivasankaranarayana Pillai discovered the above
approach and took k ≈ 1

e log logx.

S. S. Pillai(1929): We have Vϕ(x) = O(x/(logx)c), where
c = 1

e log 2 = 0.254 . . . .

Clearly Vϕ(x) ≥ (1 + o(1))x/ logx.

Erdős (1935): Vϕ(x) = x/(logx)1+o(1).

Erdős’s idea: Deal with Ω(ϕ(n)) (the total number of prime
factors of ϕ(n), with multiplicity). This paper was seminal for
the various ideas introduced. For example, the proof of the
infinitude of Carmichael numbers owes much to this paper.
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Again: Vϕ(x) = x/(logx)1+o(1).

But: A great deal of info may be lurking in that “o(1)”.

After work of Erdős & Hall, Maier & P, and Ford, we now

know that Vϕ(x) is of magnitude

x

logx
exp

(
A(log3 x− log4 x)2 +B log3 x+ C log4 x

)
,

where logk is the k-fold iterated log, and A,B,C are explicit

constants.

Unsolved: Is there an asymptotic formula for Vϕ(x)?

Do we have Vϕ(2x)− Vϕ(x) ∼ Vϕ(x)?

(From Ford we have Vϕ(2x)− Vϕ(x) � Vϕ(x).)
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The same results and unsolved problems pertain as well for the

image of σ.

In 1959, Erdős conjectured that the image of σ and the image

of ϕ has an infinite intersection; that is, there are infinitely

many pairs m,n with

σ(m) = ϕ(n).

It is amazing how many famous conjectures imply that the

answer is yes!
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Yes, if there are infinitely many twin primes:

If p, p+ 2 are both prime, then

ϕ(p+ 2) = p+ 1 = σ(p).
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Yes, if there are infinitely many twin primes:

If p, p+ 2 are both prime, then

ϕ(p+ 2) = p+ 1 = σ(p).

Yes, if there are infinitely many Mersenne primes:

If 2p − 1 is prime, then

ϕ(2p+1) = 2p = σ(2p − 1).

21



Yes, if there are infinitely many twin primes:

If p, p+ 2 are both prime, then

ϕ(p+ 2) = p+ 1 = σ(p).

Yes, if there are infinitely many Mersenne primes:

If 2p − 1 is prime, then

ϕ(2p+1) = 2p = σ(2p − 1).

Yes, if the Extended Riemann Hypothesis holds.
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It would seem a promising strategy to prove that there are at

most finitely many solutions to σ(m) = ϕ(n); it has some

fantastic corollaries!
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It would seem a promising strategy to prove that there are at

most finitely many solutions to σ(m) = ϕ(n); it has some

fantastic corollaries!

However, Ford, Luca, & P (2010): There are indeed infinitely

many solutions to σ(m) = ϕ(n).

We gave several proofs, but one proof uses a conditional result

of Heath-Brown: If there are infinitely many Siegel zeros, then

there are infinitely many twin primes.

24



Some further results:

Garaev (2011): For each fixed number a, the number Vϕ,σ(x)

of common values of ϕ and σ in [1, x] exceeds exp ((log logx)a)

for x sufficiently large.

Ford & Pollack (2011): Assuming a strong form of the prime

k-tuples conjecture, Vϕ,σ(x) = x/(logx)1+o(1).

Ford & Pollack (2012): Most values of ϕ are not values of σ

and vice versa.
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The situation for Carmichael’s function λ has only recently
become clearer. Recall that λ(pa) = ϕ(pa) unless p = 2, a ≥ 3,
when λ(2a) = 2a−2, and that

λ([m,n]) = [λ(m), λ(n)].

It is easy to see that the image of ϕ has density 0, just playing
with powers of 2 as did Pillai. But what can be done with λ?
It’s not even obvious that λ-values that are 2 mod 4 have
density 0.

The solution lies in the “anatomy of integers” and in particular
of shifted primes. It is known (Erdős & Wagstaff) that most
numbers do not have a large shifted-prime divisor p− 1. But a
λ-value either has a large shifted-prime divisor or it is “smooth”
(aka “friable”), so in either case, there are not many of them.
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Using these thoughts, Erdős, P, & Schmutz (1991): There is a

positive constant c such that Vλ(x), the number of λ-values in

[1, x], is O(x/(logx)c).
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Using these thoughts, Erdős, P, & Schmutz (1991): There is a

positive constant c such that Vλ(x), the number of λ-values in

[1, x], is O(x/(logx)c).

Friedlander & Luca (2007): A valid choice for c is

1− e
2 log 2 = 0.057 . . . .
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Using these thoughts, Erdős, P, & Schmutz (1991): There is a

positive constant c such that Vλ(x), the number of λ-values in

[1, x], is O(x/(logx)c).

Friedlander & Luca (2007): A valid choice for c is

1− e
2 log 2 = 0.057 . . . .

Banks, Friedlander, Luca, Pappalardi, & Shparlinski (2006):

Vλ(x) ≥ x
logx exp

(
(A+ o(1))(log3 x)2

)
.

So, Vλ(x) is somewhere between x/(logx)1+o(1) and x/(logx)c,

where c = 1− e
2 log 2.
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Recently, Luca & P (2013): Vλ(x) ≤ x/(logx)η+o(1), where

η = 1− (1 + log log 2)/ log 2 = 0.086 . . . .

Further, Vλ(x) ≥ x/(logx)0.36 for all large x.

Actually, the “correct” exponent is η (Ford, Luca, & P, 2014).
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The “Erdős–Ford–Tenenbaum” constant

η = 1−
1 + log log 2

log 2
≈ 0.086

amazingly pops up in some other problems:

Erdős (1960): The number of distinct entries in the N ×N
multiplication table is N2/(logN)η+o(1).

Erdős: The asymptotic density of integers with a divisor in the
interval [N,2N ] is 1/(logN)η+o(1).

McNew, Pollack, & P (2016): The number of integers to x
divisible by some p− 1 > y is x/(log y)η+o(1).

Chow & P (2017): The number of integers to x that belong to
a Pythagorean triple with prime hypotenuse is at most
x/(logx)η+o(1).
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Here is a heuristic argument behind the theorem that

Vλ(x) ≥ x/(logx)η+o(1).

Suppose we consider odd squarefree numbers n, say

n = p1p2 . . . pk, with λ(n) ≤ x. Now

λ(n) = [p1 − 1, p2 − 1, . . . , pk − 1].

Assume each pi − 1 = ai is squarefree. For each prime

p | a1a2 . . . ak, let Sp = {i : p | ai}. Then

[a1, a2, . . . , ak] =
∏

S⊂{1,2,...,k}
S 6=∅

∏
Sp=S

p =
∏

S⊂{1,2,...,k}
S 6=∅

MS, say,

and the numbers ai (= pi − 1) can be retrieved from this

factorization via ai =
∏
S3iMS.
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For example, say n = 3 · 31 · 211, so that

λ(n) = [2,30,210] = 2 · 3 · 5 · 7.

We have

S2 = {1,2,3}, S3 = {2,3}, S5 = {2,3}, S7 = {3}.

And for each S ⊂ {1,2,3} with S 6= ∅, we have MS = 1, except

M{1,2,3} = 2, M{2,3} = 15, M{3} = 7.

Further, ∏
S31

MS = 2,
∏
S32

MS = 30,
∏
S33

MS = 210.
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Thus, a squarefree number M is of the form

[p1 − 1, p2 − 1, . . . , pk − 1] if and only if M has an ordered

factorization into 2k − 1 factors MS indexed by the nonempty

S ⊂ {1,2, . . . , k}, such that for i ≤ k, the product of all MS with

i ∈ S is a shifted prime pi − 1, with the pi’s distinct.

What is the chance that a random squarefree M ≤ x has such a

factorization?

We assume that M is even. Then, for M/2, we ask for the

product of the factors corresponding to i to be half a shifted

prime, (pi − 1)/2.
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The number of factorizations of M/2 is (2k − 1)ω(M/2). Thus,

the chance that M = λ(n) with ω(n) = k, n squarefree, might

be close to 1 if (2k − 1)ω(M/2) > (logx)k, that is,

ω(M/2) >
k log logx

log(2k − 1)
≈

log logx

log 2
,

when k is large. But the number of even, squarefree M ≤ x with

ω(M/2) ≥ (1 + o(1))
log logx

log 2

is x/(logx)η+o(1).

This last assertion follows from the Hardy–Ramanujan

inequality mentioned earlier (and the fact that it is fairly tight

in this range).
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Square values Banks, Friedlander, P, & Shparlinski (2004):

There are more than x0.7 integers n ≤ x with ϕ(n) a square.

The same goes for σ and λ.
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Square values Banks, Friedlander, P, & Shparlinski (2004):

There are more than x0.7 integers n ≤ x with ϕ(n) a square.

The same goes for σ and λ.

Remark. There are only x0.5 squares below x. (!)
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Square values Banks, Friedlander, P, & Shparlinski (2004):

There are more than x0.7 integers n ≤ x with ϕ(n) a square.

The same goes for σ and λ.

Remark. There are only x0.5 squares below x. (!)

Might there be a positive proportion of integers n with n2 a

value of ϕ? To 108, there are 26,094,797, or more than 50% of

even numbers. But:

Pollack & P (2013): No, the number of n ≤ x with n2 a

ϕ-value is O(x/(logx)0.0063). The same goes for σ.

Unsolved: Could possibly almost all even squares be λ-values??
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Here’s why this may be. Most n ≤ x have

ω(n) > (1− ε) log logx. Thus, most n ≤ x have

τ(n2) > 3(1−ε) log logx. For each pa‖n, the number of d | n2/p2a

with dp2a + 1 prime might be > 3(1−2ε) log logx/ logx, and this

expression is > (logx)ε. So, most of the time, for each pa‖n,

there should be at least one such prime dp2a + 1. If m is the

product of all of the primes dp2a + 1 so found, we would have

that λ(m) = n2.

This is very similar to the heuristic for Vλ(x). A proof anyone?
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THANK YOU
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