The ranges of some familiar arithmetic functions

Michigan State U. Mathematics Colloquium
October 13, 2016

Carl Pomerance, Dartmouth College

Let us introduce our cast of characters: $\varphi, \lambda, \sigma, s$

- Euler's function: $\varphi(n)$ is the cardinality of $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
- Carmichael's function: $\lambda(n)$ is the exponent of $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
- σ : the sum-of-divisors function.
- $s(n)=\sigma(n)-n$: the sum-of-proper-divisors function.

The functions φ and σ are multiplicative, which means that for coprime positive integers m, n we have

$$
\varphi(m n)=\varphi(m) \varphi(n), \quad \sigma(m n)=\sigma(m) \sigma(n)
$$

This leads to the formulas, where $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$,

$$
\varphi(n)=\prod_{i=1}^{k} p_{i}^{a_{i}-1}\left(p_{i}-1\right), \quad \sigma(n)=\prod_{i=1}^{k}\left(p_{i}^{a_{i}+1}-1\right) /\left(p_{i}-1\right)
$$

Note: For n squarefree, that is $n=p_{1} p_{2} \ldots p_{k}$, we have

$$
\varphi(n)=\prod_{i=1}^{k}\left(p_{i}-1\right), \quad \sigma(n)=\prod_{i=1}^{k}\left(p_{i}+1\right)
$$

Recall that $\lambda(n)$ is the exponent of $(\mathbb{Z} / n \mathbb{Z})^{\times}$, the least positive integer k such that $a^{k} \equiv 1(\bmod n)$ for all a coprime to n (or the order of the largest cyclic subgroup of $\left.(\mathbb{Z} / n \mathbb{Z})^{\times}\right)$.

The function λ is not multiplicative, but it also is determined by its values on prime powers via:

$$
\text { If } m, n \text { are coprime, then } \lambda(m n)=\operatorname{lcm}(\lambda(m), \lambda(n)) .
$$

Moreover, $\lambda\left(p^{a}\right)=\varphi\left(p^{a}\right)$ except when $p=2$ and $a \geq 3$, and then $\lambda\left(2^{a}\right)=2^{a-2}=\frac{1}{2} \varphi\left(2^{a}\right)$.

The function s, where $s(n)=\sigma(n)-n$ is a bit more awkward.

All 4 of our functions have the pleasant property that computing them is computationally equivalent to factoring. That is, via the formulas, they are easily computed given the prime factorization of n. On the other hand, there is a random, polynomial time algorithm that returns the prime factorization of n given n and $f(n)$, where f is one of the four functions.

But this talk is concerned with the ranges of these functions, that is, the set of values they take.

The oldest of these functions is $s(n)=\sigma(n)-n$, going back to Pythagoras. He was interested in fixed points $(s(n)=n)$ and 2-cycles $(s(n)=m, s(m)=n)$ in the dynamical system given by iterating s.

Very little is known after millennia of study, but we do know that the number of n to x with $s(n)=n$ is at most x^{ϵ} (Hornfeck \& Wirsing, 1957) and that the number of n to x with n in a 2-cycle is at most $x / \exp \left((\log x)^{1 / 2}\right)$ for x large ($\mathrm{P}, 2014$).

The study of the comparison of $s(n)$ to n led to the theorems of Schoenberg, Davenport, and Erdős \& Wintner and the birth of probabilistic number theory.

Erdős was the first to consider the set of values of $s(n)$. Note that if $p \neq q$ are primes, then $s(p q)=p+q+1$, so that:

All even integers at least 8 are the sum of 2 unequal primes, implies

All odd numbers at least 9 are values of s.

Also, $s(2)=1, s(4)=3$, and $s(8)=7$, so presumably the only odd number that's not an s-value is 5 . It's known that this slightly stronger form of Goldbach is almost true in that the set of evens not so representable as $p+q$ has density 0 .

Thus: the image of s contains almost all odd numbers.

Note that a set A of positive integers has density δ if

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{\substack{a \in A \\ a \leq x}} 1=\delta
$$

And when we say the image of s contains "almost all odd numbers" we mean that the set of odd numbers not in the image of s has density 0 .

But what of even numbers? Erdős (1973): There is a positive proportion of even numbers missing from the image of s.

But what of even numbers? Erdős (1973): There is a positive proportion of even numbers missing from the image of s.
Y.-G. Chen \& Q.-Q. Zhao (2011): At least $(0.06+o(1)) x$ even numbers in $[1, x]$ are not of the form $s(n)$.

P \& H.-S. Yang (2014): Computationally it is appearing that about $\frac{1}{6} x$ even numbers to x are not of the form $s(n)$.

But what of even numbers? Erdős (1973): There is a positive proportion of even numbers missing from the image of s.
Y.-G. Chen \& Q.-Q. Zhao (2011): At least $(0.06+o(1)) x$ even numbers in $[1, x]$ are not of the form $s(n)$.

P \& H.-S. Yang (2014): Computationally it is appearing that about $\frac{1}{6} x$ even numbers to x are not of the form $s(n)$.
P. Pollack \& P (2016): Heuristically the density of even numbers not in the image of s exists and is equal to

$$
\lim _{y \rightarrow \infty} \frac{1}{\log y} \sum_{\substack{a \leq y \\ 2 \mid a}} \frac{1}{a} \mathrm{e}^{-a / s(a)} \approx .1718
$$

Note that the proportion to 10^{12}, computed this year by A. Mosunov is $\approx .1712$.

Can we prove that s actually hits a positive proportion of even numbers?

This had been an open problem until recently Luca \& P proved this in 2014. The proof doesn't lend itself to getting a reasonable numerical estimate.

It is still unsolved if the range of s has a density.

Let's look at the range of Euler's function φ. We'll show this set has density 0 .

To start, note that if n has at least k odd prime divisors, then $2^{k} \mid \varphi(n)$, and the number of multiples of 2^{k} at most x is $\leq x / 2^{k}$.

Assume that $n=\varphi(m) \leq x$ and that m has fewer than k odd prime divisors. We have

$$
\frac{m}{\varphi(m)}=\prod_{p \mid m}\left(1-\frac{1}{p}\right)^{-1}=O(\log k)
$$

using a 19th century result of Mertens. Since $\varphi(m) \leq x$, we have $m=O(x \log k)$.

By a result of Hardy \& Ramanujan, the number of integers $m \leq z$ with at most k prime divisors is

$$
O\left(\frac{z}{\log z} \frac{(\log \log z+c)^{k-1}}{(k-1)!}\right)
$$

Applying this with z being the bound for m just above, shows that for each fixed k there are few φ values in this case.

The set of values of φ was first considered by Pillai (1929):
The number $V_{\varphi}(x)$ of φ-values in $[1, x]$ is $O\left(x /(\log x)^{c}\right)$, where $c=\frac{1}{\mathrm{e}} \log 2=0.254 \ldots$.

Pillai discovered the above approach and took $k \approx \frac{1}{\mathrm{e}} \log \log x$.

The set of values of φ was first considered by Pillai (1929):
The number $V_{\varphi}(x)$ of φ-values in $[1, x]$ is $O\left(x /(\log x)^{c}\right)$, where $c=\frac{1}{e} \log 2=0.254 \ldots$.

Pillai discovered the above approach and took $k \approx \frac{1}{\mathrm{e}} \log \log x$.
Erdős (1935): $V_{\varphi}(x)=x /(\log x)^{1+o(1)}$.
Erdós's idea: Deal with $\Omega(\varphi(n))$ (the total number of prime factors of $\varphi(n)$, with multiplicity). This paper was seminal for the various ideas introduced. For example, the proof of the infinitude of Carmichael numbers owes much to this paper.

Again: $V_{\varphi}(x)=x /(\log x)^{1+o(1)}$.
But: A great deal of info may be lurking in that " $o(1)$ ".

After work of Erdős \& Hall, Maier \& P, and Ford, we now know that $V_{\varphi}(x)$ is of magnitude

$$
\frac{x}{\log x} \exp \left(A\left(\log _{3} x-\log _{4} x\right)^{2}+B \log _{3} x+C \log _{4} x\right),
$$

where $\log _{k}$ is the k-fold iterated log, and A, B, C are explicit constants.

Unsolved: Is there an asymptotic formula for $V_{\varphi}(x)$?
Do we have $V_{\varphi}(2 x)-V_{\varphi}(x) \sim V_{\varphi}(x)$?
(From Ford we have $V_{\varphi}(2 x)-V_{\varphi}(x) \asymp V_{\varphi}(x)$.)

The same results and unsolved problems pertain as well for the image of σ.

In 1959, Erdós conjectured that the image of σ and the image of φ has an infinite intersection; that is, there are infinitely many pairs m, n with

$$
\sigma(m)=\varphi(n)
$$

It is amazing how many famous conjectures imply that the answer is yes!

Yes, if there are infinitely many twin primes:

If $p, p+2$ are both prime, then

$$
\varphi(p+2)=p+1=\sigma(p)
$$

Yes, if there are infinitely many twin primes:

If $p, p+2$ are both prime, then

$$
\varphi(p+2)=p+1=\sigma(p)
$$

Yes, if there are infinitely many Mersenne primes:

If $2^{p}-1$ is prime, then

$$
\varphi\left(2^{p+1}\right)=2^{p}=\sigma\left(2^{p}-1\right)
$$

Yes, if there are infinitely many twin primes:

If $p, p+2$ are both prime, then

$$
\varphi(p+2)=p+1=\sigma(p)
$$

Yes, if there are infinitely many Mersenne primes:

If $2^{p}-1$ is prime, then

$$
\varphi\left(2^{p+1}\right)=2^{p}=\sigma\left(2^{p}-1\right)
$$

Yes, if the Extended Riemann Hypothesis holds.

It would seem a promising strategy to prove that there are at most finitely many solutions to $\sigma(m)=\varphi(n)$; it has some fantastic corollaries!

It would seem a promising strategy to prove that there are at most finitely many solutions to $\sigma(m)=\varphi(n)$; it has some fantastic corollaries!

However, Ford, Luca, \& P (2010): There are indeed infinitely many solutions to $\sigma(m)=\varphi(n)$.

We gave several proofs, but one proof uses a conditional result of Heath-Brown: If there are infinitely many Siegel zeros, then there are infinitely many twin primes.

Some further results:

Garaev (2011): For each fixed number a, the number $V_{\varphi, \sigma}(x)$ of common values of φ and σ in $[1, x]$ exceeds $\exp \left((\log \log x)^{a}\right)$ for x sufficiently large.

Ford \& Pollack (2011): Assuming a strong form of the prime k-tuples conjecture, $V_{\varphi, \sigma}(x)=x /(\log x)^{1+o(1)}$.

Ford \& Pollack (2012): Most values of φ are not values of σ and vice versa.

The situation for Carmichael's function λ has only recently become clearer. Recall that $\lambda\left(p^{a}\right)=\varphi\left(p^{a}\right)$ unless $p=2, a \geq 3$, when $\lambda\left(2^{a}\right)=2^{a-2}$, and that (where $[a, b]$ is the Icm of a, b)

$$
\lambda([m, n])=[\lambda(m), \lambda(n)] .
$$

It is easy to see that the image of φ has density 0 , just playing with powers of 2 as did Pillai. But what can be done with λ ? It's not even obvious that λ-values that are 2 mod 4 have density 0 .

The solution lies in the "anatomy of integers" and in particular of shifted primes. It is known (Erdős \& Wagstaff) that most numbers do not have a large divisor of the form $p-1$ with p prime. But a λ-value has such a large divisor or it is "smooth" (aka "friable"), so in either case, there are not many of them.

Using these thoughts, Erdős, $\mathrm{P}, \&$ Schmutz (1991): There is a positive constant c such that $V_{\lambda}(x)$, the number of λ-values in $[1, x]$, is $O\left(x /(\log x)^{c}\right)$.

Using these thoughts, Erdős, P, \& Schmutz (1991): There is a positive constant c such that $V_{\lambda}(x)$, the number of λ-values in $[1, x]$, is $O\left(x /(\log x)^{c}\right)$.

Friedlander \& Luca (2007): A valid choice for c is $1-\frac{e}{2} \log 2=0.057 \ldots$.

Using these thoughts, Erdős, P, \& Schmutz (1991): There is a positive constant c such that $V_{\lambda}(x)$, the number of λ-values in $[1, x]$, is $O\left(x /(\log x)^{c}\right)$.

Friedlander \& Luca (2007): A valid choice for c is $1-\frac{e}{2} \log 2=0.057 \ldots$.

Banks, Friedlander, Luca, Pappalardi, \& Shparlinski (2006):
$V_{\lambda}(x) \geq \frac{x}{\log x} \exp \left((A+o(1))\left(\log _{3} x\right)^{2}\right)$.
So, $V_{\lambda}(x)$ is somewhere between $x /(\log x)^{1+o(1)}$ and $x /(\log x)^{c}$, where $c=1-\frac{e}{2} \log 2$.

Recently, Luca \& P (2013): $V_{\lambda}(x) \leq x /(\log x)^{\eta+o(1)}$, where $\eta=1-(1+\log \log 2) / \log 2=0.086 \ldots$.
Further, $V_{\lambda}(x) \geq x /(\log x)^{0.36}$ for all large x.
Actually, the "correct" exponent is η (Ford, Luca, \& P, 2014).
The constant η actually pops up in some other problems:
Erdős (1960): The number of distinct entries in the $N \times N$ multiplication table is $N^{2} /(\log N)^{\eta+o(1)}$.

Erdős: The asymptotic density of integers with a divisor in the interval $[N, 2 N]$ is $1 /(\log N)^{\eta+o(1)}$.

McNew, Pollack, \& P: The number of integers to x divisible by some $p-1>y$ is $x /(\log y)^{\eta+o(1)}$.

Here is a heuristic argument behind the theorem that $V_{\lambda}(x) \geq x /(\log x)^{\eta+o(1)}$.

Suppose we consider numbers n of the form $p_{1} p_{2} \ldots p_{k}$ with $\lambda(n) \leq x$. Now

$$
\lambda(n)=\left[p_{1}-1, p_{2}-1, \ldots, p_{k}-1\right] .
$$

Assume each $p_{i}-1=a_{i}$ is squarefree. For each prime $p \mid a_{1} a_{2} \ldots a_{k}$, let $S_{p}=\left\{i: p \mid a_{i}\right\}$. Then

$$
\left[a_{1}, a_{2}, \ldots, a_{k}\right]=\prod_{\substack{S \subset\{1,2, \ldots, k\} \\ S \neq \emptyset}} \prod_{\substack{S_{p}=S}} p=\prod_{\substack{S \subset\{1,2, \ldots, k\} \\ S \neq \emptyset}} M_{S}, \quad \text { say }
$$

and the numbers $a_{i}\left(=p_{i}-1\right)$ can be retrieved from this factorization via $a_{i}=\prod_{i \in S} M_{S}$.

Thus, a squarefree number M is of the form
[$p_{1}-1, p_{2}-1, \ldots, p_{k}-1$] if and only if M has an ordered factorization into $2^{k}-1$ factors M_{S} indexed by the nonempty $S \subset\{1,2, \ldots, k\}$, such that for $i \leq k$, the product of all M_{S} with $i \in S$ is a shifted prime $p_{i}-1$, with the p_{i} 's distinct.

What is the chance that a random squarefree $M \leq x$ has such a factorization?

We assume that M is even. Then, for $M / 2$, we ask for the product of the factors corresponding to i to be half a shifted prime, $\left(p_{i}-1\right) / 2$.

The number of factorizations of $M / 2$ is $\left(2^{k}-1\right)^{\omega(M / 2)}$. Thus, the chance that $M=\lambda(n)$ with $\omega(n)=k, n$ squarefree, might be close to 1 if $\left(2^{k}-1\right)^{\omega(M / 2)}>(\log x)^{k}$, that is,

$$
\omega(M / 2)>\frac{k \log \log x}{\log \left(2^{k}-1\right)} \approx \frac{\log \log x}{\log 2},
$$

when k is large. But the number of even, squarefree $M \leq x$ with $\omega(M / 2) \geq(1+o(1)) \log \log x / \log 2$ is $x /(\log x)^{\eta+o(1)}$.

This last assertion follows from the Hardy-Ramanujan inequality mentioned earlier.

Square values Banks, Friedlander, P, \& Shparlinski (2004): There are more than $x^{0.7}$ integers $n \leq x$ with $\varphi(n)$ a square. The same goes for σ and λ.

Square values Banks, Friedlander, P, \& Shparlinski (2004): There are more than $x^{0.7}$ integers $n \leq x$ with $\varphi(n)$ a square. The same goes for σ and λ.

Remark. There are only $x^{0.5}$ squares below x. (!)

Square values Banks, Friedlander, P, \& Shparlinski (2004): There are more than $x^{0.7}$ integers $n \leq x$ with $\varphi(n)$ a square. The same goes for σ and λ.

Remark. There are only $x^{0.5}$ squares below x. (!)
Might there be a positive proportion of integers n with n^{2} a value of φ ? To 10^{8}, there are $26,094,797$, or more than 50% of even numbers. But:

Pollack \& P (2013): No, the number of $n \leq x$ with n^{2} a φ-value is $O\left(x /(\log x)^{0.0063}\right)$. The same goes for σ.

Unsolved: Could possibly almost all even squares be λ-values??

Here's why this may be. Most $n \leq x$ have
$\omega(n)>(1-\epsilon) \log \log x$. Thus, most $n \leq x$ have $\tau\left(n^{2}\right)>3^{(1-\epsilon) \log \log x}$. For each odd $p^{a} \| n$, the number of
 and this expression is $>(\log x)^{\epsilon}$. So, most of the time, for each $p^{a} \| n$, there should be at least one such prime $d p^{2 a}+1$. If m is the product of all of the primes $d p^{2 a}+1$ so found, we would have that $\lambda(m)=n^{2}$.

This is very similar to the heuristic for $V_{\lambda}(x)$. A proof anyone?

THANK YOU

