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Let us introduce our cast of characters: ϕ, λ, σ, s

• Euler’s function: ϕ(n) is the cardinality of (Z/nZ)×.

• Carmichael’s function: λ(n) is the exponent of (Z/nZ)×.

• σ: the sum-of-divisors function.

• s(n) = σ(n)− n: the sum-of-proper-divisors function.
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The functions ϕ and σ are multiplicative, which means that for

coprime positive integers m,n we have

ϕ(mn) = ϕ(m)ϕ(n), σ(mn) = σ(m)σ(n).

This leads to the formulas, where n = p
a1
1 p

a2
2 . . . p

ak
k ,

ϕ(n) =
k∏
i=1

p
ai−1
i (pi − 1), σ(n) =

k∏
i=1

(pai+1
i − 1)/(pi − 1).

Note: For n squarefree, that is n = p1p2 . . . pk, we have

ϕ(n) =
k∏
i=1

(pi − 1), σ(n) =
k∏
i=1

(pi + 1).
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Recall that λ(n) is the exponent of (Z/nZ)×, the least positive

integer k such that ak ≡ 1 (mod n) for all a coprime to n (or

the order of the largest cyclic subgroup of (Z/nZ)×).

The function λ is not multiplicative, but it also is determined

by its values on prime powers via:

If m,n are coprime, then λ(mn) = lcm(λ(m), λ(n)).

Moreover, λ(pa) = ϕ(pa) except when p = 2 and a ≥ 3, and

then λ(2a) = 2a−2 = 1
2ϕ(2a).

The function s, where s(n) = σ(n)− n is a bit more awkward.
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All 4 of our functions have the pleasant property that

computing them is computationally equivalent to factoring.

That is, via the formulas, they are easily computed given the

prime factorization of n. On the other hand, there is a random,

polynomial time algorithm that returns the prime factorization

of n given n and f(n), where f is one of the four functions.

But this talk is concerned with the ranges of these functions,

that is, the set of values they take.
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The oldest of these functions is s(n) = σ(n)− n, going back to

Pythagoras. He was interested in fixed points (s(n) = n) and

2-cycles (s(n) = m, s(m) = n) in the dynamical system given by

iterating s.

Very little is known after millennia of study, but we do know

that the number of n to x with s(n) = n is at most xε (Hornfeck

& Wirsing, 1957) and that the number of n to x with n in a

2-cycle is at most x/ exp((logx)1/2) for x large (P, 2014).

The study of the comparison of s(n) to n led to the theorems

of Schoenberg, Davenport, and Erdős & Wintner and the birth

of probabilistic number theory.
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Erdős was the first to consider the set of values of s(n). Note

that if p 6= q are primes, then s(pq) = p+ q + 1, so that:

All even integers at least 8 are the sum of 2 unequal primes,

implies

All odd numbers at least 9 are values of s.

Also, s(2) = 1, s(4) = 3, and s(8) = 7, so presumably the only

odd number that’s not an s-value is 5. It’s known that this

slightly stronger form of Goldbach is almost true in that the set

of evens not so representable as p+ q has density 0.

Thus: the image of s contains almost all odd numbers.
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Note that a set A of positive integers has density δ if

lim
x→∞

1

x

∑
a∈A
a≤x

1 = δ.

And when we say the image of s contains ”almost all odd

numbers” we mean that the set of odd numbers not in the

image of s has density 0.
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But what of even numbers? Erdős (1973): There is a positive

proportion of even numbers missing from the image of s.
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But what of even numbers? Erdős (1973): There is a positive

proportion of even numbers missing from the image of s.

Y.-G. Chen & Q.-Q. Zhao (2011): At least (0.06 + o(1))x even

numbers in [1, x] are not of the form s(n).

P & H.-S. Yang (2014): Computationally it is appearing that

about 1
6x even numbers to x are not of the form s(n).
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But what of even numbers? Erdős (1973): There is a positive
proportion of even numbers missing from the image of s.

Y.-G. Chen & Q.-Q. Zhao (2011): At least (0.06 + o(1))x even
numbers in [1, x] are not of the form s(n).

P & H.-S. Yang (2014): Computationally it is appearing that
about 1

6x even numbers to x are not of the form s(n).

P. Pollack & P (2016): Heuristically the density of even
numbers not in the image of s exists and is equal to

lim
y→∞

1

log y

∑
a≤y
2|a

1

a
e−a/s(a) ≈ .1718.

Note that the proportion to 1012, computed this year by
A. Mosunov is ≈ .1712.
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Can we prove that s actually hits a positive proportion of even

numbers?

This had been an open problem until recently Luca & P proved

this in 2014. The proof doesn’t lend itself to getting a

reasonable numerical estimate.

It is still unsolved if the range of s has a density.

11



Let’s look at the range of Euler’s function ϕ. We’ll show this

set has density 0.

To start, note that if n has at least k odd prime divisors, then

2k | ϕ(n), and the number of multiples of 2k at most x is

≤ x/2k.

Assume that n = ϕ(m) ≤ x and that m has fewer than k odd

prime divisors. We have

m

ϕ(m)
=

∏
p|m

(
1−

1

p

)−1

= O(log k),

using a 19th century result of Mertens. Since ϕ(m) ≤ x, we

have m = O(x log k).
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By a result of Hardy & Ramanujan, the number of integers

m ≤ z with at most k prime divisors is

O

(
z

log z

(log log z + c)k−1

(k − 1)!

)
.

Applying this with z being the bound for m just above, shows

that for each fixed k there are few ϕ values in this case.
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The set of values of ϕ was first considered by Pillai (1929):

The number Vϕ(x) of ϕ-values in [1, x] is O(x/(logx)c), where

c = 1
e log 2 = 0.254 . . . .

Pillai discovered the above approach and took k ≈ 1
e log logx.
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The set of values of ϕ was first considered by Pillai (1929):

The number Vϕ(x) of ϕ-values in [1, x] is O(x/(logx)c), where

c = 1
e log 2 = 0.254 . . . .

Pillai discovered the above approach and took k ≈ 1
e log logx.

Erdős (1935): Vϕ(x) = x/(logx)1+o(1).

Erdős’s idea: Deal with Ω(ϕ(n)) (the total number of prime

factors of ϕ(n), with multiplicity). This paper was seminal for

the various ideas introduced. For example, the proof of the

infinitude of Carmichael numbers owes much to this paper.
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Again: Vϕ(x) = x/(logx)1+o(1).

But: A great deal of info may be lurking in that “o(1)”.

After work of Erdős & Hall, Maier & P, and Ford, we now

know that Vϕ(x) is of magnitude

x

logx
exp

(
A(log3 x− log4 x)2 +B log3 x+ C log4 x

)
,

where logk is the k-fold iterated log, and A,B,C are explicit

constants.

Unsolved: Is there an asymptotic formula for Vϕ(x)?

Do we have Vϕ(2x)− Vϕ(x) ∼ Vϕ(x)?

(From Ford we have Vϕ(2x)− Vϕ(x) � Vϕ(x).)
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The same results and unsolved problems pertain as well for the

image of σ.

In 1959, Erdős conjectured that the image of σ and the image

of ϕ has an infinite intersection; that is, there are infinitely

many pairs m,n with

σ(m) = ϕ(n).

It is amazing how many famous conjectures imply that the

answer is yes!
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Yes, if there are infinitely many twin primes:

If p, p+ 2 are both prime, then

ϕ(p+ 2) = p+ 1 = σ(p).
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Yes, if there are infinitely many twin primes:

If p, p+ 2 are both prime, then

ϕ(p+ 2) = p+ 1 = σ(p).

Yes, if there are infinitely many Mersenne primes:

If 2p − 1 is prime, then

ϕ(2p+1) = 2p = σ(2p − 1).
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Yes, if there are infinitely many twin primes:

If p, p+ 2 are both prime, then

ϕ(p+ 2) = p+ 1 = σ(p).

Yes, if there are infinitely many Mersenne primes:

If 2p − 1 is prime, then

ϕ(2p+1) = 2p = σ(2p − 1).

Yes, if the Extended Riemann Hypothesis holds.
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It would seem a promising strategy to prove that there are at

most finitely many solutions to σ(m) = ϕ(n); it has some

fantastic corollaries!
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It would seem a promising strategy to prove that there are at

most finitely many solutions to σ(m) = ϕ(n); it has some

fantastic corollaries!

However, Ford, Luca, & P (2010): There are indeed infinitely

many solutions to σ(m) = ϕ(n).

We gave several proofs, but one proof uses a conditional result

of Heath-Brown: If there are infinitely many Siegel zeros, then

there are infinitely many twin primes.
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Some further results:

Garaev (2011): For each fixed number a, the number Vϕ,σ(x)

of common values of ϕ and σ in [1, x] exceeds exp ((log logx)a)

for x sufficiently large.

Ford & Pollack (2011): Assuming a strong form of the prime

k-tuples conjecture, Vϕ,σ(x) = x/(logx)1+o(1).

Ford & Pollack (2012): Most values of ϕ are not values of σ

and vice versa.
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The situation for Carmichael’s function λ has only recently
become clearer. Recall that λ(pa) = ϕ(pa) unless p = 2, a ≥ 3,
when λ(2a) = 2a−2, and that (where [a, b] is the lcm of a, b)

λ([m,n]) = [λ(m), λ(n)].

It is easy to see that the image of ϕ has density 0, just playing
with powers of 2 as did Pillai. But what can be done with λ?
It’s not even obvious that λ-values that are 2 mod 4 have
density 0.

The solution lies in the “anatomy of integers” and in particular
of shifted primes. It is known (Erdős & Wagstaff) that most
numbers do not have a large divisor of the form p− 1 with p

prime. But a λ-value has such a large divisor or it is “smooth”
(aka “friable”), so in either case, there are not many of them.
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Using these thoughts, Erdős, P, & Schmutz (1991): There is a

positive constant c such that Vλ(x), the number of λ-values in

[1, x], is O(x/(logx)c).
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Using these thoughts, Erdős, P, & Schmutz (1991): There is a

positive constant c such that Vλ(x), the number of λ-values in

[1, x], is O(x/(logx)c).

Friedlander & Luca (2007): A valid choice for c is

1− e
2 log 2 = 0.057 . . . .
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Using these thoughts, Erdős, P, & Schmutz (1991): There is a

positive constant c such that Vλ(x), the number of λ-values in

[1, x], is O(x/(logx)c).

Friedlander & Luca (2007): A valid choice for c is

1− e
2 log 2 = 0.057 . . . .

Banks, Friedlander, Luca, Pappalardi, & Shparlinski (2006):

Vλ(x) ≥ x
logx exp

(
(A+ o(1))(log3 x)2

)
.

So, Vλ(x) is somewhere between x/(logx)1+o(1) and x/(logx)c,

where c = 1− e
2 log 2.
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Recently, Luca & P (2013): Vλ(x) ≤ x/(logx)η+o(1), where
η = 1− (1 + log log 2)/ log 2 = 0.086 . . . .
Further, Vλ(x) ≥ x/(logx)0.36 for all large x.

Actually, the “correct” exponent is η (Ford, Luca, & P, 2014).

The constant η actually pops up in some other problems:

Erdős (1960): The number of distinct entries in the N ×N
multiplication table is N2/(logN)η+o(1).

Erdős: The asymptotic density of integers with a divisor in the
interval [N,2N ] is 1/(logN)η+o(1).

McNew, Pollack, & P: The number of integers to x divisible by
some p− 1 > y is x/(log y)η+o(1).
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Here is a heuristic argument behind the theorem that

Vλ(x) ≥ x/(logx)η+o(1).

Suppose we consider numbers n of the form p1p2 . . . pk with

λ(n) ≤ x. Now

λ(n) = [p1 − 1, p2 − 1, . . . , pk − 1].

Assume each pi − 1 = ai is squarefree. For each prime

p | a1a2 . . . ak, let Sp = {i : p | ai}. Then

[a1, a2, . . . , ak] =
∏

S⊂{1,2,...,k}
S 6=∅

∏
Sp=S

p =
∏

S⊂{1,2,...,k}
S 6=∅

MS, say,

and the numbers ai (= pi − 1) can be retrieved from this

factorization via ai =
∏
i∈SMS.
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Thus, a squarefree number M is of the form

[p1 − 1, p2 − 1, . . . , pk − 1] if and only if M has an ordered

factorization into 2k − 1 factors MS indexed by the nonempty

S ⊂ {1,2, . . . , k}, such that for i ≤ k, the product of all MS with

i ∈ S is a shifted prime pi − 1, with the pi’s distinct.

What is the chance that a random squarefree M ≤ x has such a

factorization?

We assume that M is even. Then, for M/2, we ask for the

product of the factors corresponding to i to be half a shifted

prime, (pi − 1)/2.
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The number of factorizations of M/2 is (2k − 1)ω(M/2). Thus,

the chance that M = λ(n) with ω(n) = k, n squarefree, might

be close to 1 if (2k − 1)ω(M/2) > (logx)k, that is,

ω(M/2) >
k log logx

log(2k − 1)
≈

log logx

log 2
,

when k is large. But the number of even, squarefree M ≤ x
with ω(M/2) ≥ (1 + o(1)) log logx/ log 2 is x/(logx)η+o(1).

This last assertion follows from the Hardy–Ramanujan

inequality mentioned earlier.
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Square values Banks, Friedlander, P, & Shparlinski (2004):

There are more than x0.7 integers n ≤ x with ϕ(n) a square.

The same goes for σ and λ.
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Square values Banks, Friedlander, P, & Shparlinski (2004):

There are more than x0.7 integers n ≤ x with ϕ(n) a square.

The same goes for σ and λ.

Remark. There are only x0.5 squares below x. (!)
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Square values Banks, Friedlander, P, & Shparlinski (2004):

There are more than x0.7 integers n ≤ x with ϕ(n) a square.

The same goes for σ and λ.

Remark. There are only x0.5 squares below x. (!)

Might there be a positive proportion of integers n with n2 a

value of ϕ? To 108, there are 26,094,797, or more than 50% of

even numbers. But:

Pollack & P (2013): No, the number of n ≤ x with n2 a

ϕ-value is O(x/(logx)0.0063). The same goes for σ.

Unsolved: Could possibly almost all even squares be λ-values??

34



Here’s why this may be. Most n ≤ x have

ω(n) > (1− ε) log logx. Thus, most n ≤ x have

τ(n2) > 3(1−ε) log logx. For each odd pa‖n, the number of

d | n2/p2a with dp2a + 1 prime might be > 3(1−2ε) log logx/ logx,

and this expression is > (logx)ε. So, most of the time, for each

pa‖n, there should be at least one such prime dp2a + 1. If m is

the product of all of the primes dp2a + 1 so found, we would

have that λ(m) = n2.

This is very similar to the heuristic for Vλ(x). A proof anyone?
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THANK YOU
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