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In this talk we will consider 4 statistical problems in elementary

number theory each of which has a computational component,

but not always in the obvious way. With all of these problems,

there remain substantial open questions.

The problems:

• Let M(N) denote the number of distinct entries in the

N ×N multiplication table. How does M(N) grow as

N →∞?

• For random numbers j, n with 1 ≤ j ≤
√
n, how likely is it

for the number of divisors of n lying in [1, j] to be even?
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• Let s(n) = σ(n)− n, be the sum of the divisors of n other

than n. How likely is it for a random number to be a value

of s, and how does this go for evens and for odds?

• Two numbers m,n are said to form an amicable pair if

s(m) = n and s(n) = m. What can one say about the

distribution of numbers in an amicable pair, and in

particular, what about their sum of reciprocals?
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Let M(N) be the number of distinct entries in the N ×N
multiplication table.

× 1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

So, M(5) = 14.
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× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

So, M(10) = 42.
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What would you conjecture about M(N) asymptotically?

Maybe

lim
N→∞

M(N)

N2
=

1

3
?

Maybe

lim
N→∞

M(N)

N2
= c > 0?

Maybe

lim
N→∞

M(N)

N2
= 0?
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Here are some values of M(N)/N2 (Brent & Kung 1981):

N M(N) M(N)/N2

1 1 1.0000
3 6 0.6667
7 25 0.5102

15 89 0.3956
31 339 0.3528
63 1237 0.3117

127 4646 0.2881
255 17577 0.2703
511 67591 0.2588

1023 258767 0.2473
2047 1004347 0.2397
4095 3902356 0.2327
8191 15202049 0.2266
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And some more values (Brent & Kung 1981, Brent 2012):

N M(N) M(N)/N2

214 − 1 59410556 0.2213
215 − 1 232483839 0.2165
216 − 1 911689011 0.2123
217 − 1 3581049039 0.2084
218 − 1 14081089287 0.2049
219 − 1 55439171530 0.2017
220 − 1 218457593222 0.1987
221 − 1 861617935050 0.1959
222 − 1 3400917861267 0.1933
223 − 1 13433148229638 0.1909
224 − 1 53092686926154 0.1886
225 − 1 209962593513291 0.1865
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And some statistically sampled values (Brent & P 2012):

N M(N)/N2 N M(N)/N2

230 0.1774 2100000 0.0348
240 0.1644 2200000 0.0312
250 0.1552 2500000 0.0269

2100 0.1311 21000000 0.0240
2200 0.1119 22000000 0.0216
2500 0.0919 25000000 0.0186

21000 0.0798 210000000 0.0171
22000 0.0697 220000000 0.0153
25000 0.0586 250000000 0.0133

210000 0.0517 2100000000 0.0122
220000 0.0457 2200000000 0.0115
250000 0.0390 2500000000 0.0095
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It’s fairly “clear” that M(N) = o(N2) as N →∞.

9



Do we have M(N) of the shape N2−c1?
Of the shape N2/(logN)c2?
Of the shape N2/(log logN)c3?

N M(N)/N2 c1

210 0.2473 2.02× 10−1

2102
0.1311 2.93× 10−2

2103
0.0798 3.65× 10−3

2104
0.0517 4.27× 10−4

2105
0.0348 4.84× 10−5

2106
0.0240 5.38× 10−6

2107
0.0171 5.87× 10−7

2108
0.0122 6.36× 10−8
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Do we have M(N) of the shape N2−c1?
Of the shape N2/(logN)c2?
Of the shape N2/(log logN)c3?

N M(N)/N2 c1 c2

210 0.2473 2.02× 10−1 .887

2102
0.1311 2.93× 10−2 .479

2103
0.0798 3.65× 10−3 .387

2104
0.0517 4.27× 10−4 .335

2105
0.0348 4.84× 10−5 .301

2106
0.0240 5.38× 10−6 .277

2107
0.0171 5.87× 10−7 .258

2108
0.0122 6.36× 10−8 .244
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Do we have M(N) of the shape N2−c1?
Of the shape N2/(logN)c2?
Of the shape N2/(log logN)c3?

N M(N)/N2 c1 c2 c3

210 0.2473 2.02× 10−1 .887 2.12

2102
0.1311 2.93× 10−2 .479 1.41

2103
0.0798 3.65× 10−3 .387 1.35

2104
0.0517 4.27× 10−4 .335 1.36

2105
0.0348 4.84× 10−5 .301 1.39

2106
0.0240 5.38× 10−6 .277 1.44

2107
0.0171 5.87× 10−7 .258 1.48

2108
0.0122 6.36× 10−8 .244 1.52
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Long before such extensive calculations existed, Paul Erdős
studied this problem in two papers, one in 1955, the other in
1960.

Paul Erdős, 1913–1996
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In 1955, Erdős proved (in Hebrew) that M(N)/N2 → 0 as

N →∞ and indicated that it was likely that M(N) is of the

shape N2/(logN)c.

In 1960, at the prodding of Linnik and Vinogradov, Erdős

identified (in Russian) the value of “c”. Let

c = 1−
1 + log log 2

log 2
= 0.08607 . . . .

Then M(N2) = N2/(logN)c+o(1) as N →∞.
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In work of Tenenbaum progress was made (in French) in nailing

down the “o(1)”.

In 2008, Ford showed (in English) that M(N) is of order of

magnitude

N2

(logN)c(log logN)3/2
.

No matter the language, we still don’t know an asymptotic

estimate for M(N), despite this just being about the

multiplication table!
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So how can the fact that M(N) is small compared to N2 be

explained?

It all comes down to the function Ω(n), the total number of

prime factors of n, counted with multiplicity. For example,

Ω(8) = 3, Ω(9) = 2, Ω(10) = 2, Ω(11) = 1, Ω(12) = 3.

Some higher values: Ω(1024) = 10, Ω(1009) = 1, and

Ω(217 − 1) = 1, Ω(217) = 17.

But what is Ω(n) usually? That is, can Ω(n) be approximately

predicted from the size of n if we throw out thin sets like

primes and powers of 2?

Indeed it can.
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In 1917, Hardy and Ramanujan proved that the normal order of

Ω(n) is log logn. That is, for each ε > 0, the set of integers n

with ∣∣∣Ω(n)− log logn
∣∣∣ < ε log logn

has asymptotic density 1.

So, this explains the multiplication table. Most products n1n2

have both n1 > N1/2 and n2 > N1/2, and most of these have

Ω(n1) and Ω(n2) fairly close to log logN (note that

log log(N1/2) differs from log logN by less than 1). So most of

the products formed have about 2 log logN prime factors,

which is an unusual value to have for a number below N2.
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G. H. Hardy S. Ramanujan
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So, log logN for integers below N is the center of the

distribution. To quantify M(N) one needs to know about

estimates for the tail, and that’s where the constant c arises.

I should take a small diversion from our progress here and

mention one of the most beautiful theorems in number theory,

the Erdős–Kac theorem. It says that the “standard deviation”

for Ω(n) for integers up to N is (log logN)1/2 and that the

distribution is Gaussian. Namely, for each real number u, the

set {
n : Ω(n) ≤ log logn+ u(log logn)1/2

}
has asymptotic density equal to

1√
2π

∫ u
−∞

e−t
2/2 dt.
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Einstein: “God does not play dice with the universe.”
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Einstein: “God does not play dice with the universe.”

Erdős & Kac: Maybe so but something’s going on with the

primes.
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Einstein: “God does not play dice with the universe.”

Erdős & Kac: Maybe so but something’s going on with the

primes.

(Note: I made this up, it was a joke . . . )
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Prime numbers, the most mysterious figures in math, D. Wells
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We now move on to the second problem:

For random numbers j, n with 1 ≤ j ≤
√
n, how likely is it for

the number of divisors of n lying in [1, j] to be even?

Doing a thought experiment, one might guess it’s 50-50. List

the divisors of n that are at most
√
n:

1 = d1 < d2 < · · · < dk ≤
√
n < dk+1.

(Note that for n not a square, τ(n), the total number of

divisors of n, is even and, for such n, we have k = 1
2τ(n).)

Surely picking a random number j in the interval [1,
√
n] and

finding j ∈ [di, di+1), wouldn’t skew i towards being more often

odd than even, or vice versa?
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Actually, it is skewed in favor of evens, and this is fairly easy to

see from the multiplication table theorem.

Suppose that dk <
1

10
√
n. For almost all n, we will have k even,

since we may assume that n is not of the form pm2 with p

prime (such numbers n have asymptotic density 0). Thus, at

least 90% of the values of j ≤
√
n will fall in an even interval.

Good, but how likely is it for dk <
1

10
√
n? If not, then

n = dkdk+1, with dk+1 ≤ 10
√
n, so with N = d10

√
ne, we have n

as an entry in the N ×N multiplication table. So n must come

from a sparse set.

And we can repeat this with “10” replaced with any fixed

number.
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Let’s take a different angle with this problem. Fix j and let

τj(n) be the number of divisors of n in [1, j]. Let ∆j be the

asymptotic density of the set of n with τj(n) odd.

Note that τj(n) depends only on gcd(n,Lj), where Lj is the

least common multiple of 1,2, . . . , j. So, the density ∆j exists.

How does ∆j behave asymptotically?

We could begin by looking at some values of ∆j. It’s easy to

compute

∆1 = 1, ∆2 =
1

2
, ∆3 =

1

2
, ∆4 =

7

12
.
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j Lj #{n ≤ Lj : τj(n) odd} ∆j

5,6 60 33 0.55
7 420 225 0.5357142857
8 840 405 0.4821428571
9 2520 1305 0.5178571429
10 2520 1235 0.4900793651
11,12 27720 13635 0.4918831169
13 360360 177705 0.4931318681
14 360360 170775 0.4739010989
15 360360 170181 0.4722527473
16 720720 359073 0.4982142857
17 12252240 6106815 0.4984243697
18 12252240 5919705 0.4831528765
19 232792560 112887225 0.4849262580
20 232792560 109706355 0.4712622903
21 232792560 110362725 0.4740818392
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Florian Luca Jeffrey Shallit
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Very recently (July, 2014):

Luca, P, & Shallit — As j →∞, ∆j → 0. In fact,

∆j = O

(
1

(log j)c/(1+c)(log log j)1.5/(1+c)

)
,

where c = 1−
1 + log log 2

log 2
is the Erdős–Ford–Tenenbaum

constant.

It is easy to see that ∆j > K/ log j for some positive constant

K, but we have no idea what the “correct” order of magnitude

of ∆j is.
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Odd counts for the 10,000 numbers following the k × 105-th

prime.

j 105 2× 105 3× 105 4× 105 5× 105 6× 105

100 4131 4121 4077 4099 4123 4109
200 4061 4107 4174 4181 4231 4050
300 3800 3850 3954 3980 4002 3969
400 3630 3703 3800 3744 3877 3875
500 3466 3587 3673 3710 3793 3772
600 3351 3512 3526 3594 3722 3682
700 3294 3435 3502 3543 3627 3593
800 3213 3301 3431 3475 3577 3574
900 2822 3245 3337 3411 3522 3477
1000 2358 3197 3248 3334 3459 3439
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One might ask about other residue classes for τj(n). Our proof

shows that for each fixed integer k, the set of n with k | τ(n)

and k - τj(n) has density o(1) as j →∞.

For k not a power of 2, the density of the set of n with k - τ(n)

is positive. Within this set we don’t know how likely it is for

k | τj(n) as j grows. Perhaps some numerical experiments

would help here.
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Pythagoras, ca. 500 B.C.E.
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Beyond his triangles, Pythagoras defined what is perhaps the

first function of mathematics: s(n), the sum of the proper

divisors of n. We have

s(n) = σ(n)− n =
∑
d |n
d<n

d.

He discovered that s(6) = 6 and that

s(220) = 284, s(284) = 220.

So, as soon as he had the first function, he had the first

dynamical system!
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The Catalan–Dickson conjecture: There are no unbounded

orbits n→ s(n)→ s(s(n))→ . . . .

The Guy–Selfridge counter conjecture: For asymptotically all

even numbers n, the orbit starting with n is unbounded.

The first number in doubt is n = 276, there are 4 others below

1000, known as the “Lehmer 5”.

The sociable-numbers conjecture: Numbers involved in a cycle

(sociable numbers) have asymptotic density 0.

Kobayashi–Pollack–P (2009): The upper density is at most

about 0.002. (For cycles of bounded length, Erdős proved the

conjecture.)
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These are hard questions.

So let’s consider an easy (?) question: Which odd numbers are

in the range of s, and which even numbers?

Note that if p, q are different primes, then s(pq) = p+ q + 1.

Since presumably all even numbers starting with 8 are the sum

of two different primes (a slightly stronger form of Goldbach’s

conjecture), it would follow that all odd numbers starting with

9 are in the range of s.

Also, s(2k) = 2k − 1, so 1,3,7 are also in the range of s.

Conjecture: All odd numbers except for 5 are in the range of s.
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Theorem: Asymptotically all odd numbers are in the range of s.

(van der Corput, Chudakov, Estermann, Vaughan,

Montgomery–Vaughan, Chen–Pan, Li, Pintz, Lu,. . . )



What about even values of s?

Erdős (1973): A positive proportion of even numbers are not

of the form s(n).

Chen & Zhao (2011) This proportion is at least 0.06.

P & Yang (2014): Let U(x) denote the number of integers to x

not of the form s(n).

x U(x)/x

105 0.138630
106 0.150232
107 0.157497
108 0.162469
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But what of even numbers that are of the form s(n)?

Luca & P (June, 2014): There is a positive proportion of even

numbers in the range of s.

This mostly would follow from:

The Erdős, Granville, P, & Spiro conjecture (1990): If A is a

set of asymptotic density 0, then s−1(A) has asymptotic

density 0.

Maybe our proof will shed some light on the conjecture. This

conjecture would imply that for each positive integer k, s(k)(N)

does not have density 0. (Our proof gives this for k = 2.)
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We have discussed 3 of the 4 problems. The 4th: What can we
say about the distribution of the amicable numbers?

Recall that n is amicable if there is some m 6= n with
s(m) = n, s(n) = m.

About 12 million pairs are known, so about 24 million amicable
numbers.

Erdős (1955): The amicable numbers have asymptotic density
zero.

P (1981): The number of amicable numbers in [1, x] is at most
x/ exp((logx)1/3).

P (February 2014): It’s at most x/ exp((logx)1/2).
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From these latter results, it follows that∑
n amicable

1

n
<∞.

Can we numerically approximate this sum?

Using the known amicable numbers, the sum is at least

0.011984 . . . .

What about an upper bound?
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Jonathan Bayless, Dominic Klyve

Bayless & Klyve (2011): The reciprocal sum is < 6.56× 108

41



Hanh Nguyen

Nguyen (June, 2014): The reciprocal sum is < 4084.
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