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§1. Introduction. In this paper we prove

THEOREM 1. If N is a natural number and I is an interval of N consecutive
integers, then there is a 1-1 correspondence f: {1, 2,. . . , N} -* I such that (i,f(i)) = 1
for 1 s£ i «: N.

We call the function / described in the theorem a coprime mapping. Theorem 1
settles in the affirmative a conjecture of D. J. Newman. The special case when
/ = {JV + l.JV + 2, ...,2Af} was proved by D. E. Daykin and M. J. Baines [2]. V.
Chvatal [1] established Newman's conjecture for each JV ^ 1002. We prove
Theorem 1 constructively by giving an algorithm for the construction of a coprime
mapping / . This algorithm will be discussed in §2.

If u is a real number and n is a natural number, let D{u, ri) denote the number of
odd integers /, 1 < / < 2n — 1, with <p(l)/l ^ u, where 4> denotes Euler's function. If
also k is a natural number, let E(k, ri) denote the maximal number of integers
coprime to k that can be found in every set of n consecutive integers. Thus, for
example, £(3,4) = 2, since in every set of 4 consecutive integers there are at least 2
integers coprime to 3 and the set {0,1,2, 3} has exactly 2 integers coprime to 3. If
n > 1, let p^ri) denote the largest prime not exceeding 2n — \. We shall prove

THEOREM 2. / / n is a natural number and k is odd with 1 < k < 2n — 1 and
k + pi(«), then D{<j>(k)/k, n) < E(k, n).

In §2 we shall show that Theorem 1 is a fairly simple corollary of Theorem 2. The
remainder of the paper then will take up the proof of Theorem 2.

Note that the function D(u, ri) is related to the well-known distribution function
for (j>:

D^u) = lim - £ 1 .

In fact, if we let D(u) = \imn^ ^Diu, ri)/n, then it can be seen that, like D^u), D(u)
exists for all u, D(u) is strictly monotone on [0, 1], D{u) is continuous, and D(u) is
singular on [0,1]. We have £>0(«) = (D(u)+D(2u))/2.

For k fixed it is easy to see that E(k, ri) ~ (cj)(k)/k)n as n -+ oo. We thus have the
following consequence of Theorem 2.

COROLLARY. For every u ^ 0, D(u) < u.
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We do not use computers in the proof, although many calculations were
performed out of convenience on a hand calculator. However, the proof relies quite
heavily on the computer-assisted results of Rosser and Schoenfeld [4].

We take this opportunity to thank Paul Erdds for calling our attention to
Newman's conjecture. We should also remark that a key step in our proof—namely,
the use of the sets J,(P) in §7—is suggested by an old argument of Erd6s (Theorem 3
in [3]). We also wish to thank M. Mendes France for informing us of [1].

§2. The algorithm. In this section we shall inductively describe an algorithm for
the construction of a coprime mapping/. The algorithm will make use of Theorem 2,
which shall be assumed as true in this section. Thus this section will show that
Theorem 2 implies Theorem 1.

If JV = 1, then there is only one mapping/: {1} -> / , and certainly/is a coprime
mapping. If N = 2, then let / ( I ) be the even member of / and let /(2) be the odd
member of / . This / i s a coprime mapping.

Say now N ^ 3 and we have given algorithms for the construction of coprime
mappings for all M < N. Let / be a set of N consecutive integers. We first describe /
at the odd members of {1,2,... , AT} and then use our induction hypothesis to
describe / at even arguments.

Let n = N — [JV/2] denote the number of odd numbers in {1, 2,. . . , N}. Then
n ^ 2. Label these odd numbers kl,k2,...,kn where (/>(&()/&; ^ <j)(ki+1)/ki + l for
1 ^ i < n. Note that kn^1 = px(n) and kn = 1. We first describe how to choose
/(*!>, ...,/(*,,-2).

Now / has either n o r n - 1 even numbers. If they are each divided by 2, then we
obtain a string of consecutive integers. Thus for each i, there are at least E(kh n — 1)
even integers in / that are coprime to kt.

By Theorem 2, if n Ss 3,

E(k,, n-1) ^ E(kt,n)-\> D^)/^, n) ^ 1,

so that there are even numbers in / coprime to k1. Let /(fcj be the least such number.
Say i < n —2 and f(kx), ...,/(&,_!) have already been defined. By Theorem 2,

£(/c;, n - 1 ) > E(kh n)-\> />(#*,)/*„ n) > i,

so that there are at least i even numbers in / coprime to fe;. Thus we may let /(fc,) be
the least even number in / coprime to kt and not equal to f{kx\ ...,/(&;_!).

We now define f{kn_i). If / has n even numbers, there are 2 of them left which
have not yet been used as a value of/. Moreover, kn_x = p^ri) does not divide both
of them since half of their difference is at most n — 1, while by Bertrand's Postulate,
p^ri) > n. Thus we let f(kn_l) be the least of the remaining even numbers of/ which
is not divisible by Pi(n). If/ has only n — 1 even numbers, then both endpoints of/ are
odd and not both are divisible by p^n) (half of their difference is n —1). So we let
/(/cn_!) be the least endpoint of / which is not divisible by Pi(n).

In either case, we have exactly one even number left in / which has not yet been
used as a value of/. We let f(kn) be this number.

Now we describe how to define / at even arguments, using essentially the same
idea as Theorem 2 in [1]. Let J be the set of remaining members of / not used
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already as values of/. Then J is an interval of [N/2] consecutive odd numbers. Let
m equal the product of the odd primes not exceeding [N/2]. Let
/' = {(j + m)/2: j e J}. Then / ' is an interval of [N/2] consecutive integers. By our
induction hypothesis there is a construction for a coprime mapping
g: {1,2,..., [N/2]} -+ / ' . If 1 < fc < [N/2], let f(2k) = 2g(k)-m. We have thus
described a 1-1 correspondence from {2,4, ...,2[N/2]} to J and for each k,
1 < k < [N/2],

(2k,f(2k)) = (2k,2g(k)-m) = l.

This completes the construction of the coprime mapping / .
Before we proceed to the proof of Theorem 2, we describe a simpler algorithm for

the construction of a coprime mapping. We do not have a».proof that this simpler
algorithm is always successful, but we feel that a proof probably could be provided
using the methods of this paper. As in the above algorithm, we may assume N ^ 3.
Relabel {1, . . . , N} as blf..., bN where 0(&,-)/fej < (f>(bi+i)/bi+1 for 1 < j < JV. If it is
not the case that both of /'s endpoints are odd, inductively define /(b,) as the least
number in / coprime to bt and not equal to /(b^, ...,/(fo;_ j). If both of /'s endpoints
are odd, first define f{bN_t) as one of the endpoints, and then inductively define f(bt)
for i ± N — 1 as the least number in / — {f{bN_l)} coprime to bt and not equal to
f(bi), ...,/(£;_!). The need for the special treatment of bN_x in the latter case can be
seen from the example N = 9,1 — { —1,0,..., 7}.

§3. Preliminaries. If k is a natural number, let co(k) denote the number of distinct
prime factors of k.

LEMMA 1. lfk>\, then

£ ( f c n ) > n

Proof. If k0 is the largest square-free divisor of k, then E(ko,n) = E(k,ri),
^oV^o = 4>(k)lk, and co(/c0) = w(k). Thus we may assume k itself is square-free. If m
is any integer and if j > 1 is an integer, then

< 1.

Thus

m < i ^ m + n j\k m < i ^ m + n

>n+ X
i\k

j >
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LEMMA 2. / / 1 < k < 2n— 1 and ifp is the largest prime factor ofk, then,

\ k p -

Proof Write k = p'm where p J m. Thus pm < In, so that

1 — m/n > 1 — 2/p .

Thus
E(k,n) ^ £(m,n)-([n/p] + [n/ni] -n/p -

m n

m pj p \ k ' p - 1 p

LEMMA 3. If m > 1 is odd, and n is a positive integer,

1 1

_V

< * < 2 n - l
2 1 k , m \ k

1 - ^
m 2 2m

Proof. The quantity in the absolute value signs has its minimal value when
In — 1 = m —2; the value is — l/2 + l/(2m). The maximal value is attained when
2 n - l = m; the value is l/2-l/(2m).

LEMMA 4. / / m is odd, let

F(m,n)= 1-
1 =S k =S 2 n - l
2 / k , (»>.*) > 1

Then
F(m, ri)

F(IO5, n) < M«

Proo/ The maximum value of F(m, ri) — (1 — <t>(m)/m)n for all n can be computed
by evaluating this difference for any m consecutive choices for n. This is how we
established the latter two assertions. To see the first statement, note that by Lemma
3,

F(m,n)=
; I m.j >

JI m,j

1 < k < 2 n - l

j I m,j
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< 1 -
m

m J
where, as in the proof of Lemma 1, we assume m is square-free.

§4. The proof of Theorem 2 for n < 1000. We first note that for any fixed n,
Theorem 2 may be numerically checked as follows. Order the odd numbers k,
1 ^ k < 2n —1, as ki,k2,...,kn where </>(k,)//c; < cj)(ki + i)/ki+l for 1 < i < «. The
numbers E(kh n) are each evaluated. We then check if i < E[kh n) for each i < n — 2.
If so, Theorem 2 has been established for n. Indeed, if 4>{k)/k = $(/)//, then k and /
must have the same set of prime factors, so that E(k, n) = £(/, n). Thus if
1 ^ i ^ n — 2 and

:;, n) = j < E(kj, n) = E(kh n).
then

We follow the above procedure for n ^ 16. Of course there is nothing to prove
for n = 1,2. Moreover, one can easily see that if Theorem 2 is true for n — 1 and
2n — 1 is prime, then Theorem 2 is true for n as well. Thus the above procedure need
only be carried out for n = 5, 8, 11, 13, and 14. These calculations are displayed in
Table 1.

We now follow a different procedure to prove Theorem 2 for n in the interval
17 ^ n < 1000.

PROPOSITION 1. Theorem 2 is true if

(1)

E(kh 5)

Table 1

E(kh 8)

1
15
3

4 5
5 7
6 6

6
11
7

•i, 11)

1
15
5

2
21
5

7 8 9
11 13 17
10 10 10

t,, 13)

1
15
6

2 3
21 3
6 8

5
5
10

6
25
10

7
7
11

8
11
11

9
13
12

10
17
12

11
19
12

£(*„ 14)

1
15
7

2
21
7

5
27
9

6
5
11

7
25
11

8
7
12

9
11
12

10
13
12

11
17
13

12
19
13
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Proof. Let n ^ 17, k odd, l < k < 2 n —l,fe^= px(n), and assume (1). Thus k is
divisible by no prime p < V(2« — 1), so that k is itself a prime and fe > J(2n — 1).
Denote fc by p, where p; is the i-th largest prime not exceeding 2n — 1. Thus

D{4>{k)lk, n) = D{\ - 1/p,., «) = « - i , (2)

for the only odd / ^ In — 1 with (/>(/)// > 1 — l/pt- are p 1 _ 1 , p I _ 2 , . . . , ? ! , 1. Now by
Lemma 1,

Thus to show D((j)(k)/k, n) < E(k, ri), we need only show that

n/Pl<i-l. (3)

Now (3) is certainly true for n < pt < px. By Rosser and Schoenfeld [3], the largest
i0 with n < p,0 < pt is exactly

n(2n)-n(n) > n/(2 log n) for all n > 5-5 .

Thus if ^J(2n — 1) < p, ^ n, we have

n/Pi < n/V(2n-1) < n/(2 log n) < i0 < i - 1

which holds for all n ^ 16. Thus (3) holds for all i > 1.
For future reference we note that (2) implies for all n > 1,

(4)

For the remainder of this section we assume 17 < n ^ 1000, k is odd, k ^ 2n — 1,
and

Case 1. 0(/c)/A: ^ 120/143 = (10/ll)(12/13). Using (4), a table of primes up to
2000, and a hand calculator, we verify that D(4>(k)/k, n) < (0-712)n (cf. Lemma 1 in
[1]). If aik) $s 3, then k 5= 13 . 17. 19 > 2 n - l , so we may assume oik) < 2. By
Lemma 1, we thus have E(k, ri) > (120/143)n-3. Thus D(<f>{k)lk, n) < E{k, ri) for all
n Ss 24. Assume 1 7 ^ n < 24. If oik) ^ 2, then k ^ 11. 13 > 2 n - l , a
contradiction. So assume co(k) = 1. By Lemma 1, E(k,n) > (120/143)n —1. Thus
D{4>{k)/k, n) < E{k, ri) for 17 ^ n < 24.

Case 2. 120/143 > 4>{k)/k 5* 720/1001 = (6/7X10/11)(12/13). Since 11. 13 . 17 >
2000, the condition <t>(k)/k < 120/143 implies k is divisible by 3, 5, or
7. Moreover, k is not a power of 7. Thus by Lemma 4, D((j)(k)/k, n) ^ (19/35)n-5/7.
Indeed, this is a direct consequence of Lemma 4 if n ^ 25, and if 17 ^ n < 25, we
note that £(105, ri) < (19/35)n + 2/7. Now the only odd k < 2000 with co(k) Ss 4 are

3 . 5 . 7 . 1 1 , 3 . 5 . 7 . 1 3 , 3 . 5 . 7 . 1 7 , 3 . 5 . 7 . 1 9 , (5) j

and none of these satisfy the conditions of Case 2. Thus oj(k) ^ 3. By Lemma 1, I
E(k,n) > (720/1001)n-l. Thus D{4>(k)lk,n) < E(k,n) for 36 ^ n < 1000. So!
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assume 17 < n < 36. Then oik) ^ 2, so that E(k, n) > (720/1001)n-3. Thus
D((j)(k)/k, n) < E(k, n) for these n as well.

Case 3. 720/1001 > <j}(k)/k > 48/77 = (4/5)(6/7)(10/ll). Since k < 2000, we see
that 3 | k or 5 | k. Moreover k is not a power of 5. Thus for 17 < n ^ 1000, Lemma 4
implies D(<£(/c)//c, n) < (7/15)n—4/3. Since none of the integers in (5) satisfy the
condition of Case 3, we have co{k) < 3. Thus E(k, n) > (48/77)n — 7, so that
D((j)(k)/k,n) < E(k,n) if n ^ 37. But if 17 ^ n < 37, then <o(k) < 2, so that
£(fc, n) > (48/77)n-3 and D{4>{k)lk, n) < E(k, n).

Case 4. 48/77 > <p(k)/k. Since 5 . 7 . 11 .13 > 2000, we have 3 | k and k is not a
power of 3 so that Lemma 3, implies D{<f>(k)lk, n) ^ (l/3)n —8/3. Since co(k) < 4, we
have <t>{k)/k $s (2/3)(4/5X6/7)( 10/11) = 32/77. Thus -Lemma 1 implies
E(k, n) > (32/77) n - 1 5 and we see that D((j)(k)/k, n) < E(k, ri) if n 3? 150. So assume
n < 150. Then oAk) ^ 3 and 0(fc)//c ^ (2/3)(4/5)(6/7) = 16/35. We have
E(k,n) > {16/35)n-7 and D(4>(k)/k, n) < E(k, n) if n ^ 36. So assume 17 < n < 36.
Then co{k) < 2, £(fc, n) > (8/15)n-3 (note that (2/3X4/5) = 8/15), and

c, n) < £(/c, n).

§5. The proof of Theorem 2forn> 1000: r/ie range <j)(k)/k ^ l-( logw)-1.

PROPOSITION 2. Theorem 2 is true for

1, l - ( 2 n - l ) - 1 / 2 ] . (6)

Proof. Let n > 1000, 1 < f e ^ 2 n - l , / c odd, and assume (6). We distinguish the
two cases ca{k) ^ 5, co(k) ^ 6.

If oik) ^ 5, then by Lemma 1,

E(k,n) > (l

But by (4) and Rosser and Schoenfeld [4],

, n)<n + V(2n - 1 ) -2n/(log (2n) - 1 / 2 ) . (7)

Thus D((j)(k)/k, n) < E(k, n).
So we now assume a>(k) ^ 6. Then p, the largest prime factor of k, is at least

5 log n + 1 . For if p < 5 log n +1, then

1 + 5 log n A - l + 51ogn/ V 5 log n

6 15 1
> 151ogn ' 251og2n logn'

a contradiction. Thus by Lemma 2,
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\ \ l / \l o g n / \ 51ogn/ 5 log n

5 log n
„ _ , .

Thus by (7), D(<t>(k)/k, n) < E{k, n).
We now note that Proposition 2 in conjunction with Proposition 1 prove

Theorem 2 for all k in the range <t>(k)/k > 1 -(log ri)~x.

§6. The range <f>{k)/k s£ 0-623.

PROPOSITION 3. For all n > 1000,

Z k/4>(k) < (l-3)n .

Proof. Throughout the proof, the letters d,j, k, m, will stand for positive odd
integers. Let h be the multiplicative function such that h(p) = l/(p —1) for primes p
and h(pl) = 0 for i ^ 2. Then n/(/>(n) = £ /i(/). Thus

(c<2n
z z

fc < 2n d | fc d <2n m < Inji

d < In d <2n

Now

d <2n P>2

(8)

1-2958 , (9)

where C is Riemann's function.
Also let H denote the multiplicative function with H(p) = p'1^ — I)"1 ,

i/(p2) = -ff(p), and H(p') = 0 for i > 3. Then h(ri) = £ H(/)//n. Thus

d <2n j\d
Z H(j) Z
< 2n m < 2n/j

2(2 fr2irf3i\
^ • H ^ 2 < 1-6791+(0-8396) log (2«).
3 4(6) /

(10)
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From (8), (9), (10), we have

X k/<Mk) < (l-2958)n-0-6478 + 0-8396 + (0-4198)log(2n)

PROPOSITION 4. For all n > 1000 and 0 < u < 1, D(u, n) < (0-3)wn/(l -u).

Proof. Throughout the proof, the letter k will stand for a positive odd integer
parameter. Let n > 1000, 0 < u < 1 be fixed. Let c be such that D(u, n) = en. Then,
using Proposition 3,

en = X 1 < u X fc/#*) = « I */#*)-« Z
k < 2n k < 2n k < In k <7n

<Hk)/k < u 0(fc)/t < u *(li)//k > u

<(l-3)wn-u X 1 = (l-3)wn-M(l-c)n,

so that c < (0-3)M+CM and our conclusion follows.

PROPOSITION 5. Theorem 2 is true if 4>(k)/k < 0-623.

Proof Let n > 1000, 1 < k < 2n-l, k odd, </>(£)/£ < 0-623. We distinguish
two cases: a>(k) < 7, a>(/c) > 8.

Say co(/c) < 7. By Lemma 1, E(k, n) > ((/>(k)/k)n-127. Thus using Proposition 4,
D(4>{k)lk, n) < E(k, n) if (with u =

un-127 > (0-3)un/(l-u);

that is,
n > 127(1-M)/M(0-7-M). (11)

Now the maximal value of u is 0-623 and the minimal value is

n o-i/p).
3 « p « 19

But the maximal value of the right side of (11) for the stated range of u is below 1000,
so (11) holds.

Now say co(k) > 8. Let p denote the largest prime factor of k and write k = p'm,
p\m. Then p ^ 23. Let u = 4>(k)/k. We have

p'1 =(p-iy1um/<fi(m)^(p-ir1u n «/(«-!)
2 <q <p

<(uP.2) [I « / ( « - 1 ) < ( 0 - 1 3 2 9 ) M , (12)
2 < a < 23
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where we use the fact that the function

(p-ir1 n «/(«-!)
2<q <p

defined for odd prime arguments p is decreasing. From (12) and Lemma 2 we have

E(k,ri) > ( 2 1 / 2 2 - 0 - 1 3 2 9 ) H H - 1 > (0-8216)«n-l.

Thus by Proposition 4, D(<f>(k)/k, n) < E(k, n) if

(0-8216)un-l

that is,

(13)
uV0-5216-(0-8216)u

Now the maximal value for 0 < u s£ 0623 of the right factor in (13) is less than 40.
Thus the proof will be complete if we can show n > 40/u.

From Rosser and Schoenfeld [4]

\ju = k/<f>(k) < (1/2)^ loglog k + 1-26/loglog k for k ^ 3,2 \ k.

Thus it only remains to note that for all n > 1000,

n > 40((l/2)e7 loglog (2n)+ 1-26/loglog (2n)) > 40/u .

§7. 77M; rangre 0-623 < (j){k)/k < 1 -(log n)'1. If P is a prime, P ^ 7, let S(P, n)
denote the set of odd k, l ^ / c ^ 2 n — 1, with /c divisible by at least t + 1 distinct
primes in some set defined by

( [0, P), if t = 0 ,
Jr = J,(P) =

U S ^ ^ ^ ' P ) , if t>l.

If fe is odd, 1 «S k ^ 2 M - 1, and /c ^ S(P, n), then

where a, = a,(P) is defined to be the product of the first t primes in J, (if J, does not
have t primes, then a, is the product of all the primes in Jt). Write

r = l

Then
n) ^ \S(P, n)
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Let D(P, t, n) denote the number of odd fc,l<fc<2« — 1, such that k is divisible by
it least t +1 distinct primes in Jt. Thus

D(u(p),n)^ £ D(P,t,n). (14)
1 = 0

We now proceed to define the column headings in Table 2.

Definition ofv(P). We define v(P) as a positive quantity satisfying the inequality
>(P) < u(P) according to the following scheme. Let

= 0-704

^orP ^ 11, let

2-25

-1 p ^ p y PU

Definition of w(P). We shall define w(P) as a positive quantity, such that if
' > 7, then w(P) ^ v(P') where P' is the prime just before P, according to the
allowing scheme.

w(7) = 0-623 .
•or 11 sS P < 37, let

ly Rosser and Schoenfeld [4], if P $s 41, then P' > 7P/8. So we may take

Definitions ofd(P) and c(P). We shall define positive quantities d(P), c(P) so that
>r all n ^ 1,

), n) ^ D(u(P), n) < d{P)n+c(P). (15)
We let

d{l) = 0-543 , c(7) = 6 .

remains to show that (15) holds for P = 7. First we note that Lemma 4 implies

0(7,0,1) < (7/15)n + 2/3.

ince D(7,1, n) is the number of odd k, l < / c ^ 2 n — 1, divisible by two distinct
rimes in {7, 11, 13, 17, 19}, Lemma 3 implies

D(l, l ,n) < (0-069)n + 5 .



say, a result that is valid for all T > 1. So '

\t*i ' iS

f) p) +2n

( l 1/pY
\peJl J

> -1 - a(63)

(0007)n.

Thus by (14), D(M(7), «) < (0-543)n + 6.
We let

= 0-625, c(ll) = 12.

To show (15) holds, we note that Lemmas 4 and 3 imply

D(U, 0, n) ^ (19/35)n+9/7 , D(ll, 1,«) < (0064)n +10-5 .

Furthermore, by (16),

£ D(U,t,n)<2n j
1=2 1-2 \i>ej,

< 2n(e*(")-l-a(33)-£a(33)2) < (0018)n .

Thus D(M(11), n) < (0*625)71 +12.
For 13 «£ P ^ 37, we let (cf. (16))

2 < p < P

c(P) - 2"p>-3;

and for P > 41, we let

•* - a(3P)



Where the last inequality is valid for all P ^ 5 from the estimates of Rosser and
Schoenfeld [4]. Also by (16),

X D(P,t,n)<2n £ ( £ 1/pY '/(I+1)!
1=1 1=1 \n<=y, /

\2

[ 1/p +2H £ «(;
= J| / 1 = 2

P < 41

2» £ «(.

« ( I 1/P
VfJi

P < 4 1

P ^ 41

Thus (14) implies (15).

Definition of pr (P). For 7 < P < 37, we define pr(P) as the least prime p so
that there is a k with 6 distinct prime factors, the largest of which is p, and
<t>{k)jk ^ w(P). For P Js 41, we let

pr(P) = 35P/18 = 5(1 -

We now note that if k has at least 6 distinct prime factors and 4>(k)/k > w(P), then
one of these primes is at least as big as pr (P). For if not,

<Mk)/k < (1 - 1/pr (P))6 = (1 -18/(35 P))6

< 1 -6(18/(35P))+ 15(18/(35 P)f

< 1-5(18/(35 P)) = w(P).

Definition of x(P). We shall define x(P) so that if k is divisible by at least 6
distinct primes and <f>{k)jk 3* vv(P), then

E(k,n) > x(P)n~\ . (17)
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For 7 < P < 37, we let

x(P) = w(P)[l - l/(pr (P) -1 ) j - 1/pr (P),

so that (17) follows from Lemma 2. For P ^ 41, we let

x(P) = 1 -3-6/P < (1 - 18/(7P))(1 -18/(35 P))-18/(35 P)

< w(P)(l - l/(pr (P) - 1 ) ) - 1/pr (P),

so again (17) follows from Lemma 2.

PROPOSITION 6. / / /c is odd, 1 < fc < 2n - 1 , w(P) ^ <t>{k)/k ^ D(P), and

< x(P), then D{4>(k)lk, n) < E(k, ri)for all n > M^P), with

Proof. From (15), we have

D{<p(k)/k,n) < d(P)n + c{P).

Say co(/c) < 5. By Lemma 1,

E(k,n) > {4>{k)lk)n-31 S* w(P)n-31 .

The assumption d(P) < x(P) implies d(P) < w(P). Thus D(<p(k)/k, n) < E(k, n) for a
n > (c(P) + 3l)/(w(P)-d(P)).

Now assume co(k) ^ 6. By (17), D((j>{k)/k, n) < E(k, ri) for a
( ) / ( )

PROPOSITION 7. Theorem 2 is true if 0-623 < (j>(k)/k < 1 —(log n)"1 .

Proo/ Let n > 1000, fe odd, 1 < k ^ 2 n - l , 0-623 < ^(k)/fe < l -( logn)~
There exists a prime P ^ 7 such that w(P) ^ (j)(k)/k < t)(P). Thi
w(P) < 1 -( log n )~ \ so that

n > max {1000, d1-*^} = M2(P), (I1

say. By an examination of Table 2, we see that the condition (19) implies tl
condition (18) for all P 5= 7. Thus by Proposition 6, D(4>{k)lk, n) < E(k, n).

In comparing the last two columns of Table 2 for P > 41, it is helpful to noi
that M2(P) = e1Pin and since <x(P) < 1-316/logP,

M^P) < 6(logP)(2p/(logi>-15)
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p

1
11
13
17
19
23
29
31
37

<AP)

•704
•795
•826
•867
•881
•902
•922
•927
•939
(a)

w(P)

•623
•704
•795
•826
•867
•881
•902
•922
•927
(b)

d(P)

•543
•625
•706
•729
•727
•742
•761
•759
•111

(c)

c(P)

6
12
8
16
32
64
128
256
512

(d)

pr(P)

29
31
41
43
59
61
73
89
97
(e)

x(P)

•566
•648
•750
•783
•835
•849
•875
•900
•907

(f)

Mt(P)

463
566
439
485
450
684
1132
1823
3947

M2(P)

1000
1000
1000
1000
1842
4462
27013
369724
889691

(a) 1-2-25/P

(b) 1 -

(c) 1 -2e-y iog P -2e- ' / log 3 P + 2(ea(p)-1 -oc(P))

where a(P) = log (l +(log 3)/log P) + I/log 2 (3P) +1/(2 log 2P)

(d) 2p/(Iogi>~15)~3

(e) 35P/18

(f) 1-3-6/P

Round-off notes

bounded down:

bounded up:

v(P), w(P), x{P), M2(P)

d(P), Mt(P)

The entries in the last two columns (see (18), (19) for definitions) are computed from

he rounded numbers appearing in the other columns of the table.
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