
Euclidean prime generators

Andrew R. Booker, Bristol University

Bristol, UK

Carl Pomerance, Dartmouth College (emeritus)

Hanover, New Hampshire, USA

(U. Georgia, emeritus)

West Coast Number Theory Conference, Pacific Grove,

CA, December, 2016



We all recall Euclid’s proof that there are infinitely many

primes:

Assume there are only finitely many, multiply them all

together, add 1, and take a prime factor.

Starting from the empty product, that is, 1, we get

2, 3, 7, 43, . . .

The next step is 2× 3× 7× 43 + 1 = 1807 = 13× 139, so we

have a choice of taking 13 as the next prime, 139, or both.
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A. A. Mullin suggested in 1963 to look at the sequence of
primes formed with Euclid’s construction where we always take
the least prime factor of the product plus 1.

There is a heuristic argument of D. Shanks that this sequence
contains every prime.

Mullin also suggested to always take the largest prime factor of
the product plus 1. It would seem obvious that this sequence
omits infinitely many primes, but it is not trivial to prove this
since the product plus 1 could conceivably be a power of the
least prime not found so far.

However, Booker (2012) was able to prove this second
sequence does omit infinitely many primes, and a simplified
proof was given by P. Pollack and E. Treviño (2014).
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Euclid’s construction of new primes from old motivated a

definition that appeared in the APR (Adleman, P, Rumely)

primality test: Start with a bunch of small primes, maybe all of

the primes to some point. Call these the initial primes and let I

denote their product. Then consider the primes p of the form

a + 1 where a | I. Call these the Euclidean primes and let E

denote their product.

The APR primality test runs in time IO(1) on numbers n < E2.

Thus, one wants I small and E large. It’s shown that with a

judicious choice of I one has I ≤ (logE)O(log log logE), and so

the test is almost polynomial time.

The same I, E construction is used in the Lenstra finite fields

primality test.
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Euclid’s construction can be modified in several possible ways,
the first motivated by initial and Euclidean primes:

1. If n is the product of the primes so far, choose as the next
prime the least new prime dividing some a + 1, with a | n.
That is,

min{p : p - n, p | a + 1 for some a | n}.

2. If n is the product of the primes so far, choose as the next
prime some prime factor of some a + b, where ab = n.

Booker (2016) gave a proof that there are valid choices in the
second sequence so that every prime is generated. I claimed
about 20 years ago, but never wrote up, that the first sequence
contains every prime, essentially in order.
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To illustrate the first sequence, we start with the empty

product 1, and find the primes 2,3. Can we now get 5? Well

none of 1 + 1, 2 + 1, 3 + 1, 6 + 1 is divisible by 5.
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To illustrate the first sequence, we start with the empty
product 1, and find the primes 2,3. Can we now get 5? Well
none of 1 + 1, 2 + 1, 3 + 1, 6 + 1 is divisible by 5.

But we can get 7. And then we get 5 via 14 + 1. And then we
get 11 via 10 + 1.

Continuing, the least new prime that can made from these:
7× 11 + 1 has the prime factor 13. We can pick up 17 from
3× 11 + 1. We can pick up 19 from 2× 5× 17 + 1, etc.

So, it really does seem that this sequence picks up every prime
in order, except that 5 and 7 are reversed. This assertion
immediately follows from: Every prime p ≥ 7 has the residue
class −1 represented by a squarefree number all of whose prime
factors are smaller than p.
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We prove the following stronger result:

Every prime p > 7 has each residue class mod p represented by

a squarefree number all of whose prime factors are at most p.

Not only does this assertion immediately prove that the first

sequence contains every prime (and in order starting with 11),

it also allows a short proof that the second sequence contains

every prime.

We prove the assertion via a combinatorial result of V. Lev

on sumsets and a numerically explicit Pólya–Vinogradov

inequality. Some computation is required for p < 3× 108.
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To close the talk, lets see the short proof that the second

sequence contains every prime.

Recall: If n is the product of the primes found so far, then we

choose a prime factor of some a + b where ab = n.

Say we have found all of the primes below p > 7 and have not

found p yet. Let n be the product of the primes found so far. If

(−n/p) = 1, then there is a solution a to a2 + n ≡ 0 (mod p), so

that

a + n/a ≡ 0 (mod p).

By our assertion, we can represent a (mod p) as a squarefree

product of the primes less than p, and then a | n, with

p | a + n/a.
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So assume that (−n/p) = −1. This case is trickier, but there’s

a short proof that there is a solution a to(
a + n/a

p

)
= −1. (1)

Assuming so, represent a as a squarefree product of primes < p,

so that a | n. Then choose q as any prime factor of a + n/a

with (q/p) = −1 (at least one such q must exist), and take it as

the next prime in the sequence. The new product is qn and we

have (−qn/p) = 1, so we can find p with one more step.

Here’s why (1) is solvable. It’s equivalent to a3 + an being a

quadratic nonresidue mod p. The elliptic curve y2 = x3 + nx

has at most p + 2p1/2 solutions mod p, and all but 1 of them

occur in pairs (x,±y), so there are values of x not

corresponding to a point on the curve; let a be one of them.
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Thank you
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